Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era
Abstract
:Simple Summary
Abstract
1. Introduction
2. Delivery Methods
2.1. Super-Selective Intra-Arterial Cerebral Infusions
2.2. Blood–Brain Barrier Disruptors
2.3. Drug–Tumor Residence Time
2.4. Technical Considerations of Endovascular Therapeutics
3. Therapies
3.1. Chemotherapeutics
3.2. Radiotherapy
3.3. Immunobiologics
3.4. Liquid Embolics
4. Future Directions
4.1. Endovascular Sampling of Peri-Tumoral Vasculature
4.2. Drug Formulations
4.3. Endovascular Delivery of Non-Pharmaceutical Therapies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014, 16 (Suppl. S4), iv1–iv63. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Weller, M.; Lee, E.Q.; Alexander, B.M.; Barnholtz-Sloan, J.S.; Barthel, F.P.; Batchelor, T.T.; Bindra, R.S.; Chang, S.M.; Chiocca, E.A.; et al. Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020, 22, 1073–1113. [Google Scholar] [CrossRef] [PubMed]
- Marenco-Hillembrand, L.; Wijesekera, O.; Suarez-Meade, P.; Mampre, D.; Jackson, C.; Peterson, J.; Trifiletti, D.; Hammack, J.; Ortiz, K.; Lesser, E.; et al. Trends in glioblastoma: Outcomes over time and type of intervention: A systematic evidence based analysis. J. Neuro-Oncol. 2020, 147, 297–307. [Google Scholar] [CrossRef]
- Bikfalvi, A.; da Costa, C.A.; Avril, T.; Barnier, J.V.; Bauchet, L.; Brisson, L.; Cartron, P.F.; Castel, H.; Chevet, E.; Chneiweiss, H.; et al. Challenges in glioblastoma research: Focus on the tumor microenvironment. Trends Cancer 2023, 9, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Rapp, M.; Baernreuther, J.; Turowski, B.; Steiger, H.J.; Sabel, M.; Kamp, M.A. Recurrence Pattern Analysis of Primary Glioblastoma. World Neurosurg. 2017, 103, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Tosoni, A.; Franceschi, E.; Sotti, G.; Frezza, G.; Amistà, P.; Morandi, L.; Spagnolli, F.; Ermani, M. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: Correlation With MGMT promoter methylation status. J. Clin. Oncol. 2009, 27, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Broekman, M.L.; Maas, S.L.N.; Abels, E.R.; Mempel, T.R.; Krichevsky, A.M.; Breakefield, X.O. Multidimensional communication in the microenvirons of glioblastoma. Nat. Rev. Neurol. 2018, 14, 482–495. [Google Scholar] [CrossRef] [PubMed]
- van Solinge, T.S.; Nieland, L.; Chiocca, E.A.; Broekman, M.L.D. Advances in local therapy for glioblastoma—Taking the fight to the tumour. Nat. Rev. Neurol. 2022, 18, 221–236. [Google Scholar] [CrossRef]
- Klopp, C.T.; Alford, T.C.; Bateman, J.; Berry, G.N.; Winship, T. Fractionated intra-arterial cancer; chemotherapy with methyl bis amine hydrochloride; a preliminary report. Ann. Surg. 1950, 132, 811–832. [Google Scholar] [CrossRef]
- French, J.D.; West, P.M.; Von Amerongen, F.K.; Magoun, H.W. Effects of intracarotid administration of nitrogen mustard on normal brain and brain tumors. J. Neurosurg. 1952, 9, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Peschillo, S.; Miscusi, M.; Missori, P. Endovascular superselective treatment of brain tumors: A new endovascular era? A quick review. J. Neurointerv. Surg. 2015, 7, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Imbesi, F.; Marchioni, E.; Benericetti, E.; Zappoli, F.; Galli, A.; Corato, M.; Ceroni, M. A randomized phase III study: Comparison between intravenous and intraarterial ACNU administration in newly diagnosed primary glioblastomas. Anticancer. Res. 2006, 26, 553–558. [Google Scholar] [PubMed]
- Su, Y.S.; Ali, R.; Feroze, A.H.; Li, G.; Lawton, M.T.; Choudhri, O. Endovascular therapies for malignant gliomas: Challenges and the future. J. Clin. Neurosci. 2016, 26, 26–32. [Google Scholar] [CrossRef]
- Srinivasan, V.M.; Lang, F.F.; Kan, P. Intraarterial delivery of virotherapy for glioblastoma. Neurosurg. Focus. 2021, 50, E7. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, W.R.; Green, S.B.; Burger, P.C.; Selker, R.G.; VanGilder, J.C.; Robertson, J.T.; Mealey, J., Jr.; Ransohff, J.; Mahaley, M.S., Jr. A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. J. Neurosurg. 1992, 76, 772–781. [Google Scholar] [CrossRef]
- Zuur, C.L.; Simis, Y.J.; Lansdaal, P.E.; Hart, A.A.; Schornagel, J.H.; Dreschler, W.A.; Rasch, C.R.; Balm, A.J. Ototoxicity in a randomized phase III trial of intra-arterial compared with intravenous cisplatin chemoradiation in patients with locally advanced head and neck cancer. J. Clin. Oncol. 2007, 25, 3759–3765. [Google Scholar] [CrossRef] [PubMed]
- Peschillo, S.; Caporlingua, A.; Diana, F.; Caporlingua, F.; Delfini, R. New therapeutic strategies regarding endovascular treatment of glioblastoma, the role of the blood-brain barrier and new ways to bypass it. J. Neurointerv. Surg. 2016, 8, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Tashi, S.; Tan, Z.; Gogna, A. Use of the triple coaxial (triaxial) microcatheter system in superselective arterial embolisation for complex interventional cases: An initial experience with the system. CVIR Endovasc. 2022, 5, 67. [Google Scholar] [CrossRef]
- Northcutt, B.G.; Shah, A.A.; Sheu, Y.R.; Carmi, L. Wires, Catheters, and More: A Primer for Residents and Fellows Entering Interventional Radiology: Resident and Fellow Education Feature. Radiographics 2015, 35, 1621–1622. [Google Scholar] [CrossRef]
- Pinkiewicz, M.; Pinkiewicz, M.; Walecki, J.; Zawadzki, M. A systematic review on intra-arterial cerebral infusions of chemotherapeutics in the treatment of glioblastoma multiforme: The state-of-the-art. Front. Oncol. 2022, 12, 950167. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, R.S.; Khatri, D.; Reichman, N.; Patel, N.V.; Wong, T.; Fralin, S.R.; Li, M.; Ellis, J.A.; Ortiz, R.; Langer, D.J.; et al. Super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood-brain barrier disruption: Where are we now, and where we are going. J. Neuro-Oncol. 2020, 147, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Daniels, A.B.; Froehler, M.T.; Pierce, J.M.; Nunnally, A.H.; Calcutt, M.W.; Bridges, T.M.; LaNeve, D.C.; Williams, P.E.; Boyd, K.L.; Reyzer, M.L.; et al. Pharmacokinetics, Tissue Localization, Toxicity, and Treatment Efficacy in the First Small Animal (Rabbit) Model of Intra-Arterial Chemotherapy for Retinoblastoma. Investig. Ophthalmol. Vis. Sci. 2018, 59, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Daniels, A.B.; Froehler, M.T.; Kaczmarek, J.V.; Bogan, C.M.; Santapuram, P.R.; Pierce, J.M.; Chen, S.C.; Schremp, E.A.; Boyd, K.L.; Tao, Y.K.; et al. Efficacy, Toxicity, and Pharmacokinetics of Intra-Arterial Chemotherapy Versus Intravenous Chemotherapy for Retinoblastoma in Animal Models and Patients. Transl. Vis. Sci. Technol. 2021, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.R.; Chen, M.M.; Ene, C.; Lang, F.F.; Kan, P. Perfusion-guided endovascular super-selective intra-arterial infusion for treatment of malignant brain tumors. J. Neurointerv. Surg. 2022, 14, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Gobin, Y.P.; Cloughesy, T.F.; Chow, K.L.; Duckwiler, G.R.; Sayre, J.W.; Milanese, K.; Viñuela, F. Intraarterial chemotherapy for brain tumors by using a spatial dose fractionation algorithm and pulsatile delivery. Radiology 2001, 218, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, J.K.; Riina, H.A.; Shin, B.J.; Moliterno, J.A.; Hofstetter, C.P.; Boockvar, J.A. Intra-arterial chemotherapy for malignant gliomas: A critical analysis. Interv. Neuroradiol. 2011, 17, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Saris, S.C.; Blasberg, R.G.; Carson, R.E.; deVroom, H.L.; Lutz, R.; Dedrick, R.L.; Pettigrew, K.; Chang, R.; Doppman, J.; Wright, D.C.; et al. Intravascular streaming during carotid artery infusions. Demonstration in humans and reduction using diastole-phased pulsatile administration. J. Neurosurg. 1991, 74, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.A.; Banu, M.; Hossain, S.S.; Singh-Moon, R.; Lavine, S.D.; Bruce, J.N.; Joshi, S. Reassessing the Role of Intra-Arterial Drug Delivery for Glioblastoma Multiforme Treatment. J. Drug Deliv. 2015, 2015, 405735. [Google Scholar] [CrossRef]
- Fortin, D.; Morin, P.A.; Belzile, F.; Mathieu, D.; Paré, F.M. Intra-arterial carboplatin as a salvage strategy in the treatment of recurrent glioblastoma multiforme. J. Neuro-Oncol. 2014, 119, 397–403. [Google Scholar] [CrossRef]
- Chakraborty, S.; Filippi, C.G.; Wong, T.; Ray, A.; Fralin, S.; Tsiouris, A.J.; Praminick, B.; Demopoulos, A.; McCrea, H.J.; Bodhinayake, I.; et al. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: Phase I study. J. Neuro-Oncol. 2016, 128, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Singh-Moon, R.P.; Ellis, J.A.; Chaudhuri, D.B.; Wang, M.; Reif, R.; Bruce, J.N.; Bigio, I.J.; Straubinger, R.M. Cerebral hypoperfusion-assisted intra-arterial deposition of liposomes in normal and glioma-bearing rats. Neurosurgery 2015, 76, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Haumann, R.; Videira, J.C.; Kaspers, G.J.L.; van Vuurden, D.G.; Hulleman, E. Overview of Current Drug Delivery Methods Across the Blood-Brain Barrier for the Treatment of Primary Brain Tumors. CNS Drugs 2020, 34, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Neuwelt, E.A.; Maravilla, K.R.; Frenkel, E.P.; Rapaport, S.I.; Hill, S.A.; Barnett, P.A. Osmotic blood-brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J. Clin. Investig. 1979, 64, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Angeli, E.; Nguyen, T.T.; Janin, A.; Bousquet, G. How to Make Anticancer Drugs Cross the Blood-Brain Barrier to Treat Brain Metastases. Int. J. Mol. Sci. 2019, 21, 22. [Google Scholar] [CrossRef]
- Ostermann, S.; Csajka, C.; Buclin, T.; Leyvraz, S.; Lejeune, F.; Decosterd, L.A.; Stupp, R. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin. Cancer Res. 2004, 10, 3728–3736. [Google Scholar] [CrossRef] [PubMed]
- Blaney, S.M.; Cole, D.E.; Balis, F.M.; Godwin, K.; Poplack, D.G. Plasma and cerebrospinal fluid pharmacokinetic study of topotecan in nonhuman primates. Cancer Res. 1993, 53, 725–727. [Google Scholar]
- Warren, K.E.; Patel, M.C.; McCully, C.M.; Montuenga, L.M.; Balis, F.M. Effect of P-glycoprotein modulation with cyclosporin A on cerebrospinal fluid penetration of doxorubicin in non-human primates. Cancer Chemother. Pharmacol. 2000, 45, 207–212. [Google Scholar] [CrossRef]
- Jacobs, S.; McCully, C.L.; Murphy, R.F.; Bacher, J.; Balis, F.M.; Fox, E. Extracellular fluid concentrations of cisplatin, carboplatin, and oxaliplatin in brain, muscle, and blood measured using microdialysis in nonhuman primates. Cancer Chemother. Pharmacol. 2010, 65, 817–824. [Google Scholar] [CrossRef]
- Csordas, K.; Hegyi, M.; Eipel, O.T.; Muller, J.; Erdelyi, D.J.; Kovacs, G.T. Comparison of pharmacokinetics and toxicity after high-dose methotrexate treatments in children with acute lymphoblastic leukemia. Anticancer. Drugs 2013, 24, 189–197. [Google Scholar] [CrossRef]
- Kellie, S.J.; Barbaric, D.; Koopmans, P.; Earl, J.; Carr, D.J.; de Graaf, S.S. Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing: A surrogate marker of brain penetration. Cancer 2002, 94, 1815–1820. [Google Scholar] [CrossRef]
- Zylber-Katz, E.; Gomori, J.M.; Schwartz, A.; Lossos, A.; Bokstein, F.; Siegal, T. Pharmacokinetics of methotrexate in cerebrospinal fluid and serum after osmotic blood-brain barrier disruption in patients with brain lymphoma. Clin. Pharmacol. Ther. 2000, 67, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Bellavance, M.A.; Blanchette, M.; Fortin, D. Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J. 2008, 10, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Liu, M.; Ojha, T.; Storm, G.; Kiessling, F.; Lammers, T. Ultrasound-mediated drug delivery to the brain: Principles, progress and prospects. Drug Discov. Today Technol. 2016, 20, 41–48. [Google Scholar] [CrossRef]
- Burgess, A.; Shah, K.; Hough, O.; Hynynen, K. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert. Rev. Neurother. 2015, 15, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, M.; Sato, N.; Taniyama, Y.; Yamamoto, S.; Endoh, M.; Kurinami, H.; Aoki, M.; Ogihara, T.; Kaneda, Y.; Morishita, R. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Ther. 2004, 11, 1532–1539. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, H.W.; Hua, M.Y.; Wei, K.C. Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood-brain barrier disruption for brain tumor treatment: An overview of the current preclinical status. Neurosurg. Focus. 2012, 32, E4. [Google Scholar] [CrossRef]
- Salgaonkar, V.A.; Diederich, C.J. Catheter-based ultrasound technology for image-guided thermal therapy: Current technology and applications. Int. J. Hyperthermia 2015, 31, 203–215. [Google Scholar] [CrossRef]
- Ghoshal, G.; Gee, L.; Heffter, T.; Williams, E.; Bromfield, C.; Rund, L.; Ehrhardt, J.M.; Diederich, C.J.; Fischer, G.S.; Pilitsis, J.G.; et al. A minimally invasive catheter-based ultrasound technology for therapeutic interventions in brain: Initial preclinical studies. Neurosurg. Focus. 2018, 44, E13. [Google Scholar] [CrossRef]
- Power, E.A.; Rechberger, J.S.; Zhang, L.; Oh, J.H.; Anderson, J.B.; Nesvick, C.L.; Ge, J.; Hinchcliffe, E.H.; Elmquist, W.F.; Daniels, D.J. Overcoming translational barriers in H3K27-altered diffuse midline glioma: Increasing the drug-tumor residence time. Neurooncol. Adv. 2023, 5, vdad033. [Google Scholar] [CrossRef]
- Copeland, R.A.; Pompliano, D.L.; Meek, T.D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 2006, 5, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Copeland, R.A. The drug-target residence time model: A 10-year retrospective. Nat. Rev. Drug Discov. 2016, 15, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Dismuke, T.; Malawsky, D.; Ramsey, J.D.; Hwang, D.; Godfrey, V.L.; Kabanov, A.V.; Gershon, T.R.; Sokolsky-Papkov, M. Enhancing CDK4/6 inhibitor therapy for medulloblastoma using nanoparticle delivery and scRNA-seq-guided combination with sapanisertib. Sci. Adv. 2022, 8, eabl5838. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.S.; Yang, J.; Niu, J.; Ng, C.J.; Wagner, K.M.; Dong, H.; Kodani, S.D.; Wan, D.; Morisseau, C.; Hammock, B.D. Drug-Target Residence Time Affects in Vivo Target Occupancy through Multiple Pathways. ACS Cent. Sci. 2019, 5, 1614–1624. [Google Scholar] [CrossRef] [PubMed]
- Cenic, A.; Nabavi, D.G.; Craen, R.A.; Gelb, A.W.; Lee, T.Y. Dynamic CT measurement of cerebral blood flow: A validation study. AJNR Am. J. Neuroradiol. 1999, 20, 63–73. [Google Scholar] [PubMed]
- Petr, J.; Platzek, I.; Seidlitz, A.; Mutsaerts, H.J.; Hofheinz, F.; Schramm, G.; Maus, J.; Beuthien-Baumann, B.; Krause, M.; van den Hoff, J. Early and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRI. Radiother. Oncol. 2016, 118, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Chow, K.L.; Gobin, Y.P.; Cloughesy, T.; Sayre, J.W.; Villablanca, J.P.; Viñuela, F. Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma treated with selective intra-arterial chemotherapy. AJNR Am. J. Neuroradiol. 2000, 21, 471–478. [Google Scholar] [PubMed]
- Riina, H.A.; Knopman, J.; Greenfield, J.P.; Fralin, S.; Gobin, Y.P.; Tsiouris, A.J.; Souweidane, M.M.; Boockvar, J.A. Balloon-assisted superselective intra-arterial cerebral infusion of bevacizumab for malignant brainstem glioma. A technical note. Interv. Neuroradiol. 2010, 16, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Wang, M.; Etu, J.J.; Suckow, R.F.; Cooper, T.B.; Feinmark, S.J.; Bruce, J.N.; Fine, R.L. Transient cerebral hypoperfusion enhances intraarterial carmustine deposition into brain tissue. J. Neuro-Oncol. 2008, 86, 123–132. [Google Scholar] [CrossRef]
- Janowski, M.; Walczak, P.; Pearl, M.S. Predicting and optimizing the territory of blood-brain barrier opening by superselective intra-arterial cerebral infusion under dynamic susceptibility contrast MRI guidance. J. Cereb. Blood Flow. Metab. 2016, 36, 569–575. [Google Scholar] [CrossRef]
- Zawadzki, M.; Walecki, J.; Kostkiewicz, B.; Kostyra, K.; Pearl, M.S.; Solaiyappan, M.; Walczak, P.; Janowski, M. Real-time MRI guidance for intra-arterial drug delivery in a patient with a brain tumor: Technical note. BMJ Case Rep. 2019, 12, bcr-2018. [Google Scholar] [CrossRef] [PubMed]
- Muldoon, L.L.; Pagel, M.A.; Netto, J.P.; Neuwelt, E.A. Intra-arterial administration improves temozolomide delivery and efficacy in a model of intracerebral metastasis, but has unexpected brain toxicity. J. Neuro-Oncol. 2016, 126, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Codrici, E.; Enciu, A.M.; Popescu, I.D.; Mihai, S.; Tanase, C. Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int. 2016, 2016, 5728438. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, J.K.; Riina, H.; Shin, B.J.; Christos, P.; Kesavabhotla, K.; Hofstetter, C.P.; Tsiouris, A.J.; Boockvar, J.A. Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: Progression-free survival and overall survival. World Neurosurg. 2012, 77, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Uluc, K.; Ambady, P.; McIntyre, M.K.; Tabb, J.P.; Kersch, C.N.; Nerison, C.S.; Huddleston, A.; Liu, J.J.; Dogan, A.; Priest, R.A.; et al. Safety of intra-arterial chemotherapy with or without osmotic blood-brain barrier disruption for the treatment of patients with brain tumors. Neurooncol Adv. 2022, 4, vdac104. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Baig, A.A.; Donnelly, B.M.; Chaves, L.D.; Pol, S.U.; Koenigsknecht, C.; Pionessa, D.; Levy, B.R.; Gutierrez, L.; Tutino, V.M.; et al. The first endovascular rat glioma model for pre-clinical evaluation of intra-arterial therapeutics. Interv. Neuroradiol. 2024, 15910199231169597. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jiang, E. Recent Advances in the Application of Podophyllotoxin Derivatives to Fight Against Multidrug-Resistant Cancer Cells. Curr. Top. Med. Chem. 2021, 21, 1712–1724. [Google Scholar] [CrossRef]
- Ruan, J.; Shi, Y.; Luo, P.; Li, L.; Huang, J.; Chen, J.; Yang, H. Safety and feasibility of intra-arterial delivery of teniposide to high grade gliomas after blood-brain barrier disruption: A case series. J. Neurointerv. Surg. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bolcaen, J.; Kleynhans, J.; Nair, S.; Verhoeven, J.; Goethals, I.; Sathekge, M.; Vandevoorde, C.; Ebenhan, T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021, 11, 7911–7947. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Shilyagina, N.Y.; Vodeneev, V.A.; Zvyagin, A.V. Targeted Radionuclide Therapy of Human Tumors. Int. J. Mol. Sci. 2015, 17, 33. [Google Scholar] [CrossRef]
- Kunikowska, J.; Morgenstern, A.; Pełka, K.; Bruchertseifer, F.; Królicki, L. Targeted alpha therapy for glioblastoma. Front. Med. 2022, 9, 1085245. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.L.; Therkelsen, A.S.N.; Langkjær, N.; Olsen, B.B.; Thisgaard, H. Auger electron therapy of glioblastoma using [(125)I]5-iodo-2′-deoxyuridine and concomitant chemotherapy—Evaluation of a potential treatment strategy. Nucl. Med. Biol. 2021, 96–97, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Pasciak, A.S.; Manupipatpong, S.; Hui, F.K.; Gainsburg, L.; Krimins, R.; Zink, M.C.; Brayton, C.F.; Morris, M.; Sage, J.; Donahue, D.R.; et al. Yttrium-90 radioembolization as a possible new treatment for brain cancer: Proof of concept and safety analysis in a canine model. EJNMMI Res. 2020, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration, Center for Devices and Radiological Health. TheraSphere Y-90 Glass Microspheres Approval Letter. 17 March 2021. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf20/P200029A.pdf (accessed on 9 April 2024).
- Sofou, S. Radionuclide carriers for targeting of cancer. Int. J. Nanomed. 2008, 3, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Da Ros, V.; Oddo, L.; Toumia, Y.; Guida, E.; Minosse, S.; Strigari, L.; Strolin, S.; Paolani, G.; Di Giuliano, F.; Floris, R.; et al. PVA-Microbubbles as a Radioembolization Platform: Formulation and the In Vitro Proof of Concept. Pharmaceutics 2023, 15, 217. [Google Scholar] [CrossRef] [PubMed]
- Foreman, P.M.; Friedman, G.K.; Cassady, K.A.; Markert, J.M. Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics 2017, 14, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Kiyokawa, J.; Wakimoto, H. Preclinical And Clinical Development Of Oncolytic Adenovirus For The Treatment Of Malignant Glioma. Oncolytic Virother. 2019, 8, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, G.; Daras, M.; Cloughesy, T.F.; Colman, H.; Kumthekar, P.U.; Chen, C.C.; Aiken, R.; Groves, M.D.; Ong, S.; Ramakrishna, R.; et al. LTBK-04. Phase 2 multicenter study of the oncolytic adenovirus dnx-2401 (tasadenoturev) in combination with pembrolizumab for recurrent glioblastoma; captive study (keynote-192). Neuro Oncol. 2020, 22, ii237. [Google Scholar] [CrossRef]
- Lang, F.F.; Conrad, C.; Gomez-Manzano, C.; Yung, W.K.A.; Sawaya, R.; Weinberg, J.S.; Prabhu, S.S.; Rao, G.; Fuller, G.N.; Aldape, K.D.; et al. Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. J. Clin. Oncol. 2018, 36, 1419–1427. [Google Scholar] [CrossRef]
- Jiang, H.; Gomez-Manzano, C.; Rivera-Molina, Y.; Lang, F.F.; Conrad, C.A.; Fueyo, J. Oncolytic adenovirus research evolution: From cell-cycle checkpoints to immune checkpoints. Curr. Opin. Virol. 2015, 13, 33–39. [Google Scholar] [CrossRef]
- Guzman, G.; Reed, M.R.; Bielamowicz, K.; Koss, B.; Rodriguez, A. CAR-T Therapies in Solid Tumors: Opportunities and Challenges. Curr. Oncol. Rep. 2023, 25, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.; Jussing, E.; Liu, Z.; Meng, Q.; Rao, M.; Samén, E.; Grankvist, R.; Damberg, P.; Dodoo, E.; Maeurer, M.; et al. Safety of Intra-Arterial Injection With Tumor-Activated T Cells to the Rabbit Brain Evaluated by MRI and SPECT/CT. Cell Transplant. 2017, 26, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Kan, P.; Srinivasan, V.M.; Gumin, J.; Garcia, R.; Chen, S.R.; Johnson, J.N.; Collins, D.E.; Chen, M.M.; Ledbetter, D.; Huse, J.; et al. Development of a Rabbit Human Glioblastoma Model for Testing of Endovascular Selective Intra-Arterial Infusion (ESIA) of Novel Stem Cell-Based Therapeutics. Neuro Oncol. 2023, 26, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Xu, B.; Chen, Y.; Li, Z.; Wang, J.; Zhang, J.; Ma, R.; Cao, S.; Hu, W.; Chiocca, E.A.; et al. Specific targeting of glioblastoma with an oncolytic virus expressing a cetuximab-CCL5 fusion protein via innate and adaptive immunity. Nat. Cancer 2022, 3, 1318–1335. [Google Scholar] [CrossRef] [PubMed]
- Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial. Nat. Med. 2022, 28, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, Z.; Zhong, K.; Wang, Z.; Yang, N.; Tang, X.; Li, H.; Lu, Q.; Wu, Z.; Yuan, B.; et al. CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma. Mol. Ther. 2023, 31, 134–153. [Google Scholar] [CrossRef] [PubMed]
- White, K.; Connor, K.; Meylan, M.; Bougoüin, A.; Salvucci, M.; Bielle, F.; O’Farrell, A.C.; Sweeney, K.; Weng, L.; Bergers, G.; et al. Identification, validation and biological characterisation of novel glioblastoma tumour microenvironment subtypes: Implications for precision immunotherapy. Ann. Oncol. 2023, 34, 300–314. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Q.; Chen, Y.; Qin, C.F. Oncolytic Zika Virus: New Option for Glioblastoma Treatment. DNA Cell Biol. 2023, 42, 267–273. [Google Scholar] [CrossRef]
- Elmadany, N.; Alhalabi, O.T.; Platten, M.; Bunse, L. Site-Specific Considerations on Engineered T Cells for Malignant Gliomas. Biomedicines 2022, 10, 1738. [Google Scholar] [CrossRef]
- Pal, A.; Blanzy, J.; Gómez, K.J.R.; Preul, M.C.; Vernon, B.L. Liquid Embolic Agents for Endovascular Embolization: A Review. Gels 2023, 9, 378. [Google Scholar] [CrossRef]
- Sakata, T.; Tanikawa, M.; Yamada, H.; Fujinami, R.; Nishikawa, Y.; Yamada, S.; Mase, M. Minimally invasive treatment for glioblastoma through endoscopic surgery including tumor embolization when necessary: A technical note. Front. Neurol. 2023, 14, 1170045. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, M.; Currò, A.; Tommasi, A.; Di Sarno, L.; Doddato, G.; Baldassarri, M.; Frullanti, E.; Giliberti, A.R.; Fallerini, C.; Spinazzola, A.; et al. Cell-free DNA next-generation sequencing liquid biopsy as a new revolutionary approach for arteriovenous malformation. JVS Vasc. Sci. 2020, 1, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, M.; Pinto, A.M.; di Blasio, L.; Currò, A.; Monica, V.; Sarno, L.D.; Doddato, G.; Baldassarri, M.; Frullanti, E.; Giliberti, A.; et al. A pilot study of next generation sequencing-liquid biopsy on cell-free DNA as a novel non-invasive diagnostic tool for Klippel-Trenaunay syndrome. Vascular 2021, 29, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Khang, M.; Lee, J.H.; Lee, T.; Suh, H.W.; Lee, S.; Cavaliere, A.; Rushing, A.; Geraldo, L.H.; Belitzky, E.; Rossano, S.; et al. Intrathecal delivery of nanoparticle PARP inhibitor to the cerebrospinal fluid for the treatment of metastatic medulloblastoma. Sci. Transl. Med. 2023, 15, eadi1617. [Google Scholar] [CrossRef] [PubMed]
- Rainov, N.G.; Zimmer, C.; Chase, M.; Kramm, C.M.; Chiocca, E.A.; Weissleder, R.; Breakefield, X.O. Selective uptake of viral and monocrystalline particles delivered intra-arterially to experimental brain neoplasms. Hum. Gene Ther. 1995, 6, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Nabi, B.; Rehman, S.; Khan, S.; Baboota, S.; Ali, J. Ligand conjugation: An emerging platform for enhanced brain drug delivery. Brain Res. Bull. 2018, 142, 384–393. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood-brain barrier: Structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
- Qiu, Z.; Yu, Z.; Xu, T.; Wang, L.; Meng, N.; Jin, H.; Xu, B. Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells 2022, 11, 3761. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Boltze, J.; Li, S. Strategies for Improved Intra-arterial Treatments Targeting Brain Tumors: A Systematic Review. Front. Oncol. 2020, 10, 1443. [Google Scholar] [CrossRef]
- Rechberger, J.S.; Thiele, F.; Daniels, D.J. Status Quo and Trends of Intra-Arterial Therapy for Brain Tumors: A Bibliometric and Clinical Trials Analysis. Pharmaceutics 2021, 13, 1885. [Google Scholar] [CrossRef]
- Mahmoudi, K.; Garvey, K.L.; Bouras, A.; Cramer, G.; Stepp, H.; Jesu Raj, J.G.; Bozec, D.; Busch, T.M.; Hadjipanayis, C.G. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J. Neuro-Oncol. 2019, 141, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhao, M.; Wang, W.; Hong, L.; Wu, Z.; Luo, G.; Lu, S.; Tang, Y.; Li, J.; Wang, J.; et al. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death. Cancer Lett. 2023, 554, 216032. [Google Scholar] [CrossRef] [PubMed]
Study | Treatment | Study Type | Patient Cohort | Outcomes |
---|---|---|---|---|
“NCT02285959 Super-Selective Intraarterial Intracranial Infusion of Bevacizumab (Avastin) for Glioblastoma Multiforme” | Bevacizumab repeated every 3 weeks | Phase I single-arm prospective study | Recurrent GBM after resection | Primary: Adverse events Secondary: Tumor response |
“NCT02861898 Super-Selective Intra-Arterial Repeated Infusion of Cetuximab for the Treatment of Newly Diagnosed Glioblastoma” | Cetuximab and Mannitol for 3 doses q3 months | Phase I/II single-arm prospective study | Newly diagnosed GBM | Primary: Progression-free survival at 6 months and overall survival at 2 years Secondary: Composite overall response rate and toxicity by CTCAE |
“NCT05271240 Repeated Superselective Intraarterial Cerebral Infusion (SIACI) of Bevacizumab with Temozolomide and Radiation Compared to Temozolomide and Radiation Alone in Newly Diagnosed GBM” | Bevacizumab and mannitol + Temozolomide and XRT 3 doses q3 months | Phase III randomized control trial | Newly diagnosed GBM | Primary: Overall survival Secondary: Progression-free survival |
“NCT01269853 Repeated Super-Selective Intraarterial Cerebral Infusion of Bevacizumab (Avastin) for Treatment of Relapsed GBM and AA” | Bevacizumab and mannitol q2 week +/− IV bevacizumab | Phase I/II two-arm non-randomized prospective study | Recurrent GBM and anaplastic astrocytoma | Primary: Composite overall response; progression-free survival and overall survival at 6 months Secondary: Toxicity |
“NCT05773326 Superselective Intra-Arterial Cerebral Infusion of Temsirolimus in HGG” | Temsirolimus single infusion | Phase 0 single-arm prospective study | Newly diagnosed GBM pre-operatively | Primary: Total and unbound temsirolimus in tumor tissue Secondary: Quantification of pS6 positive cells |
“NCT02800486 Super Selective Intra-Arterial Repeated Infusion of Cetuximab (Erbitux) with Reirradiation for Treatment of Relapsed/Refractory GBM, AA, and AOA” | Cetuximab with mannitol and radiation | Phase II prospective study | Relapsed/refractory GBM, AA, AOA | Primary: PFS at 6 months and OS at 2 years Secondary: CORR and toxicity via CTCAE |
“NCT05956821 Treatment of Relapsed/Refractory Intracranial Glioma in Patients Under 22 Years of Age” | Cetuximab and bevacizumab q1 month for 1 year | Phase I/II prospective study | Recurrent GBM < 22 years old | Primary: Adverse events, CORR, and PFS and OS at 1 year |
“NCT03896568 MSC-DNX-2401 in Treating Patients with Recurrent High-Grade Glioma” | MSC-DNX-2401 oncolytic adenovirus 1–2 infusions 2 weeks pre-op + intramural injection | Phase I prospective study | Recurrent GBM | Primary: Max tolerated dose and adverse events Secondary: Tumor response, time to progression, virus replication in tumor, virus shedding, and adenoviral antibodies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kappel, A.D.; Jha, R.; Guggilapu, S.; Smith, W.J.; Feroze, A.H.; Dmytriw, A.A.; Vicenty-Padilla, J.; Alcedo Guardia, R.E.; Gessler, F.A.; Patel, N.J.; et al. Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era. Cancers 2024, 16, 1594. https://doi.org/10.3390/cancers16081594
Kappel AD, Jha R, Guggilapu S, Smith WJ, Feroze AH, Dmytriw AA, Vicenty-Padilla J, Alcedo Guardia RE, Gessler FA, Patel NJ, et al. Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era. Cancers. 2024; 16(8):1594. https://doi.org/10.3390/cancers16081594
Chicago/Turabian StyleKappel, Ari D., Rohan Jha, Saibaba Guggilapu, William J. Smith, Abdullah H. Feroze, Adam A. Dmytriw, Juan Vicenty-Padilla, Rodolfo E. Alcedo Guardia, Florian A. Gessler, Nirav J. Patel, and et al. 2024. "Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era" Cancers 16, no. 8: 1594. https://doi.org/10.3390/cancers16081594
APA StyleKappel, A. D., Jha, R., Guggilapu, S., Smith, W. J., Feroze, A. H., Dmytriw, A. A., Vicenty-Padilla, J., Alcedo Guardia, R. E., Gessler, F. A., Patel, N. J., Du, R., See, A. P., Peruzzi, P. P., Aziz-Sultan, M. A., & Bernstock, J. D. (2024). Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era. Cancers, 16(8), 1594. https://doi.org/10.3390/cancers16081594