Correlation of Molecular Status with Preoperative Olfactory Function in Olfactory Groove Meningioma
Abstract
:Simple Summary
Abstract
1. Background
2. Methods
2.1. Study Design and Methods
2.2. Olfactory Performance Testing
2.3. Pre- and Postoperative Imaging
2.4. Tumour Sequencing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Study Limitations
- The study was only able to analyse a small subgroup due to the lack of preoperative data on olfactory function in patients with OGM.
- The included molecular alterations have a naturally low frequency, making it difficult to interpret the results in terms of comprehensive statistical analyses and may not be representative of the larger population.
- Because of the small sample size, the study’s statistical power is diminished, making it harder to draw firm findings and thus rendering this more of an exploratory study.
- The study has a retrospective design.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alruwaili, A.A.; De Jesus, O. Meningioma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Hentschel, S.J.; DeMonte, F. Olfactory groove meningiomas. Neurosurg. Focus. 2003, 14, e4. [Google Scholar] [CrossRef] [PubMed]
- Prem, B.; Mueller, C.A. Smell loss as initial symptom of olfactory groove meningioma. BMJ Case Rep. 2021, 14, e241013. [Google Scholar] [CrossRef] [PubMed]
- Rochet, M.; El-Hage, W.; Richa, S.; Kazour, F.; Atanasova, B. Depression, Olfaction, and Quality of Life: A Mutual Relationship. Brain Sci. 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Toller, S.V. Assessing the impact of anosmia: Review of a questionnaire’s findings. Chem. Senses 1999, 24, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Struck, M.; Roser, F.; Vorkapic, P.; Samii, M. Olfactory groove meningiomas: Clinical outcome and recurrence rates after tumor removal through the frontolateral and bifrontal approach. Neurosurgery 2008, 62, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.Y.; Jung, S.; Jung, T.Y.; Moon, K.S.; Kim, I.Y. Preservation of olfaction in surgery of olfactory groove meningiomas. Clin. Neurol. Neurosurg. 2013, 115, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Dedeciusova, M.; Svoboda, N.; Benes, V.; Astl, J.; Netuka, D. Olfaction in Olfactory Groove Meningiomas. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2020, 81, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.H.; Zada, G.; Mosich, G.M.; Chen, T.C.; Giannotta, S.L.; Wang, K.; Mack, W.J. Molecular genetics of meningiomas: A systematic review of the current literature and potential basis for future treatment paradigms. Neurosurg. Focus. 2011, 30, E7. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.R.; Gill, C.M.; Nayyar, N.; D’Andrea, M.R.; Thiede, C.; Juratli, T.A.; Schackert, G.; Borger, D.R.; Santagata, S.; Frosch, M.P.; et al. Targeted sequencing of SMO and AKT1 in anterior skull base meningiomas. J. Neurosurg. 2017, 127, 438–444. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Horowitz, P.M.; Santagata, S.; Jones, R.T.; McKenna, A.; Getz, G.; Ligon, K.L.; Palescandolo, E.; Van Hummelen, P.; Ducar, M.D.; et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat. Genet. 2013, 45, 285–289. [Google Scholar] [CrossRef]
- Domingues, P.; Gonzalez-Tablas, M.; Otero, A.; Pascual, D.; Ruiz, L.; Miranda, D.; Sousa, P.; Goncalves, J.M.; Lopes, M.C.; Orfao, A.; et al. Genetic/molecular alterations of meningiomas and the signaling pathways targeted. Oncotarget 2015, 6, 10671–10688. [Google Scholar] [CrossRef] [PubMed]
- Berghoff, A.S.; Hielscher, T.; Ricken, G.; Furtner, J.; Schrimpf, D.; Widhalm, G.; Rajky, U.; Marosi, C.; Hainfellner, J.A.; von Deimling, A.; et al. Prognostic impact of genetic alterations and methylation classes in meningioma. Brain Pathol. 2022, 32, e12970. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Rumeau, C.; Gallet, P.; Jankowski, R. Olfactory exploration: State of the art. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Rumeau, C.; Nguyen, D.T.; Jankowski, R. How to assess olfactory performance with the Sniffin’ Sticks test ((R)). Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Katotomichelakis, M.; Balatsouras, D.; Tripsianis, G.; Tsaroucha, A.; Homsioglou, E.; Danielides, V. Normative values of olfactory function testing using the ‘sniffin’ sticks’. Laryngoscope 2007, 117, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.Y.; Suh, S.; Ryoo, I.; Park, A.; Noh, K.J.; Shim, H.; Seol, H.Y. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: A validation study. Neuroradiology 2017, 59, 461–469. [Google Scholar] [CrossRef]
- Joe, B.N.; Fukui, M.B.; Meltzer, C.C.; Huang, Q.S.; Day, R.S.; Greer, P.J.; Bozik, M.E. Brain tumor volume measurement: Comparison of manual and semiautomated methods. Radiology 1999, 212, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Lazow, M.A.; Nievelstein, M.T.; Lane, A.; Bandopadhayhay, P.; DeWire-Schottmiller, M.; Fouladi, M.; Glod, J.W.; Greiner, R.J.; Hoffman, L.M.; Hummel, T.R.; et al. Volumetric endpoints in diffuse intrinsic pontine glioma: Comparison to cross-sectional measures and outcome correlations in the International DIPG/DMG Registry. Neuro Oncol. 2022, 24, 1598–1608. [Google Scholar] [CrossRef] [PubMed]
- Spears, C.P. Volume doubling measurement of spherical and ellipsoidal tumors. Med. Pediatr. Oncol. 1984, 12, 212–217. [Google Scholar] [CrossRef]
- Juratli, T.A.; Prilop, I.; Saalfeld, F.C.; Herold, S.; Meinhardt, M.; Wenzel, C.; Zeugner, S.; Aust, D.E.; Barker, F.G., 2nd; Cahill, D.P.; et al. Sporadic multiple meningiomas harbor distinct driver mutations. Acta Neuropathol. Commun. 2021, 9, 8. [Google Scholar] [CrossRef]
- Reilly, K.M. Brain tumor susceptibility: The role of genetic factors and uses of mouse models to unravel risk. Brain Pathol. 2009, 19, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Cho, D.Y.; Przytycka, T.M. Understanding Genotype-Phenotype Effects in Cancer via Network Approaches. PLoS Comput. Biol. 2016, 12, e1004747. [Google Scholar] [CrossRef]
- Frias-Gomes, C.; Sousa, A.C.; Rolim, I.; Henriques, A.R.; Branco, F.; Janeiro, A.; Malveiro, S.; Dario, A.R.; Oliveira, M.H.; Borralho, P.; et al. Phenotype-Genotype Correlation in Colorectal Cancer: A Real-Life Study. GE Port. J. Gastroenterol. 2022, 29, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Boetto, J.; Bielle, F.; Sanson, M.; Peyre, M.; Kalamarides, M. SMO mutation status defines a distinct and frequent molecular subgroup in olfactory groove meningiomas. Neuro Oncol. 2017, 19, 345–351. [Google Scholar] [CrossRef]
- Shusterman, D. Individual factors in nasal chemesthesis. Chem. Senses 2002, 27, 551–564. [Google Scholar] [CrossRef]
- Lie, G.; Wilson, A.; Campion, T.; Adams, A. What’s that smell? A pictorial review of the olfactory pathways and imaging assessment of the myriad pathologies that can affect them. Insights Imaging 2021, 12, 7. [Google Scholar] [CrossRef]
- Ahmeti, H.; Caliebe, A.; Rocken, C.; Jansen, O.; Mehdorn, M.H.; Synowitz, M. Impact of peritumoral brain edema on pre- and postoperative clinical conditions and on long-term outcomes in patients with intracranial meningiomas. Eur. J. Med. Res. 2023, 28, 40. [Google Scholar] [CrossRef]
- Kim, B.W.; Kim, M.S.; Kim, S.W.; Chang, C.H.; Kim, O.L. Peritumoral brain edema in meningiomas: Correlation of radiologic and pathologic features. J. Korean Neurosurg. Soc. 2011, 49, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Stoecklein, V.M.; Wunderlich, S.; Papazov, B.; Thon, N.; Schmutzer, M.; Schinner, R.; Zimmermann, H.; Liebig, T.; Ricke, J.; Liu, H.; et al. Perifocal Edema in Patients with Meningioma is Associated with Impaired Whole-Brain Connectivity as Detected by Resting-State fMRI. AJNR Am. J. Neuroradiol. 2023, 44, 814–819. [Google Scholar] [CrossRef]
- Cohen-Gadol, A.A.; Zikel, O.M.; Koch, C.A.; Scheithauer, B.W.; Krauss, W.E. Spinal meningiomas in patients younger than 50 years of age: A 21-year experience. J. Neurosurg. 2003, 98, 258–263. [Google Scholar] [CrossRef]
- Maiuri, F.; Mariniello, G.; de Divitiis, O.; Esposito, F.; Guadagno, E.; Teodonno, G.; Barbato, M.; Del Basso De Caro, M. Progesterone Receptor Expression in Meningiomas: Pathological and Prognostic Implications. Front. Oncol. 2021, 11, 611218. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Cameron, E.L. Sex differences and reproductive hormone influences on human odor perception. Physiol. Behav. 2009, 97, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Pinto, A.V.; Santos, R.M.; Coutinho, R.A.; Oliveira, L.M.; Santos, G.B.; Alho, A.T.; Leite, R.E.; Farfel, J.M.; Suemoto, C.K.; Grinberg, L.T.; et al. Sexual dimorphism in the human olfactory bulb: Females have more neurons and glial cells than males. PLoS ONE 2014, 9, e111733. [Google Scholar] [CrossRef] [PubMed]
- Lillqvist, M.; Claeson, A.S.; Zakrzewska, M.; Andersson, L. Comparable responses to a wide range of olfactory stimulation in women and men. Sci. Rep. 2023, 13, 9059. [Google Scholar] [CrossRef] [PubMed]
- Oleszkiewicz, A.; Schriever, V.A.; Croy, I.; Hahner, A.; Hummel, T. Updated Sniffin’ Sticks normative data based on an extended sample of 9139 subjects. Eur. Arch. Otorhinolaryngol. 2019, 276, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Lester, S.; Cornacchia, L.; Corbier, C.; Taylor, M.A.; Ayed, C.; Yang, N.; Lim, M.; Linforth, R.; Fisk, I. Identification of aroma compounds in a commonly prescribed oral nutritional supplement and associated changes in olfactory abilities with human ageing. Sci. Rep. 2021, 11, 16518. [Google Scholar] [CrossRef] [PubMed]
- Sorokowska, A.; Schriever, V.A.; Gudziol, V.; Hummel, C.; Hahner, A.; Iannilli, E.; Sinding, C.; Aziz, M.; Seo, H.S.; Negoias, S.; et al. Changes of olfactory abilities in relation to age: Odor identification in more than 1400 people aged 4 to 80 years. Eur. Arch. Otorhinolaryngol. 2015, 272, 1937–1944. [Google Scholar] [CrossRef]
- Cha, H.; Kim, S.; Son, Y. Associations between Cognitive Function, Depression, and Olfactory Function in Elderly People with Dementia in Korea. Front. Aging Neurosci. 2021, 13, 799897. [Google Scholar] [CrossRef]
- Cha, H.; Kim, S.; Seo, M.S.; Kim, H.S. Effects of olfactory stimulation on cognitive function and behavior problems in older adults with dementia: A systematic literature review. Geriatr. Nurs. 2021, 42, 1210–1217. [Google Scholar] [CrossRef]
- Mi, Y.; Ma, X.; Du, S.; Du, C.; Li, X.; Tan, H.; Zhang, J.; Zhang, Q.; Shi, W.; Zhang, G.; et al. Olfactory function changes and the predictive performance of the Chinese Smell Identification Test in patients with mild cognitive impairment and Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1068708. [Google Scholar] [CrossRef]
- Zou, Y.M.; Lu, D.; Liu, L.P.; Zhang, H.H.; Zhou, Y.Y. Olfactory dysfunction in Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2016, 12, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Constanthin, P.E.; Gondar, R.; Fellrath, J.; Wyttenbach, I.M.; Tizi, K.; Weman, L.; Vayssiere, P.; Schaller, K.; Meling, T.R. Neuropsychological Outcomes after Surgery for Olfactory Groove Meningiomas. Cancers 2021, 13, 2520. [Google Scholar] [CrossRef] [PubMed]
Parameter | ∑ | AKT1 | SMO/SUFU | AKT1-/SMO-Wild-Type (WT) | p-Value | |
---|---|---|---|---|---|---|
All patients | (n (%)) | 22 | 7 (32) | 10 (46) | 5 (23) | |
Sex | (n (%)) | |||||
Female | 16 (73) | 5 | 7 | 4 | 0.915 * | |
Male | 6 (27) | 2 | 3 | 1 | ||
Age | (n (%)) | |||||
≤65 Years | 9 (41) | 2 | 4 | 3 | 0.549 * | |
>65 Years | 13 (59) | 5 | 6 | 2 | ||
Tumour volume (median (range) cm3) | 25 (2–48) | 22 (4–45) | 22 (2–39) | 42 (28–48) | 0.038 ** | |
AKT1 vs. AKT1/SMO-WT | 0.149 *** | |||||
SMO/SUFU vs. AKT1/SMO-WT | 0.005 *** | |||||
Tumour volume | (n (%)) | |||||
≤25 cm3 | 9 (41) | 4 | 5 | --- | 0.102 * | |
>25 cm3 | 13 (59) | 3 | 5 | 5 | ||
Ethmoid cell infiltration | (n (%)) | |||||
Yes | 6 (32) | |||||
No | 13 (68) | |||||
PSH | (n (%)) | |||||
Yes | 15 (75) | 3 | 9 | 3 | 0.048 * | |
No | 5 (25) | 4 | 1 | --- | ||
Osseous-contrast enhancement [n (%)] | ||||||
Yes | 5 (28) | 2 | 2 | 1 | 0.961 * | |
No | 13 (72) | 5 | 6 | 2 | ||
Perifocal oedema | (n (%)) | |||||
Yes | 12 (71) | 5 | 6 | 1 | 0.624 * | |
No | 5 (29) | 1 | 3 | 1 | ||
Preoperative (Median (range)) | ||||||
Threshold available | 1.0 (0–10) | 1.4 (1.0–4.3) | 1.0 (0–10.0) | 1.0 (0–1.3) | 0.245 ** | |
Discrimination available | 7.0 (4–13) | 8.5 (5.0–11.0) | 7.0 (4.0–13.0) | 6.0 (4.0–12.0) | 0.494 ** | |
Identification available | 6.0 (2–16) | 9.0 (5.0–14.0) | 3.5 (2.0–16.0) | 6.0 (3.0–10.0) | 0.123 ** | |
TDI | 13.0 (6–35) | 13.0 (11.5–28.8) | 13.0 (6.0–34.8) | 13.0 (8.0–22.0) | 0.458 ** | |
Olfactory performance, Sniffin’ Sticks | ||||||
Normosmia | (n (%)) | 2 (10) | 1 | 1 | --- | 0.844 |
Hyposmia | 6 (30) | 2 | 2 | 2 | ||
Anosmia | 12 (60) | 4 | 6 | 2 |
Threshold available, all patients (n = 21); 1 (1–10) (median (range)) | |||
Gender | Female (n = 15) | Male (n = 6) | p-value |
1 (1–10) | 1 (1–2) | 0.381 | |
Age | ≤65 Years (n = 8) | >65 Years (n = 13) | |
1 (1–6) | 1 (1–10) | 0.677 | |
WHO Grade | Grade 1 (n = 20) | Grade 2 (n = 1) | |
1 (1–10) | |||
Tumour volume | ≤25 cm3 (n = 9) | >25 cm3 (n = 12) | |
2 (1–10) | 1 (1–3.5) | 0.181 | |
Ethmoid cell infiltration | Yes (n = 6) | No (n = 12) | |
1 (1–10) | 1 (1–6) | 0.883 | |
PSH | Yes (n = 15) | No (n = 4) | |
1 (1–10) | 3 (1–6) | 0.086 | |
Osseous enhancement | Yes (n = 5) | No (n = 12) | |
1 (1–2) | 1 (1–6) | 0.823 | |
Perifocal oedema | Yes (n = 5) | No (n = 11) | |
4 (1–10) | 1 (1–4) | 0.038 | |
Discrimination available, all patients (n = 21); 7(4–13) (median (range)) | |||
Gender | Female (n = 15) | Male (n = 6) | p-value |
8 (4–13) | 5 (4–10) | 0.055 | |
Age | ≤ 65 Years (n = 8) | >65 Years (n = 13) | |
6 (4–13) | 8 (4–12) | 0.145 | |
WHO grade | Grade 1 (n = 20) | Grade 2 (n = 1) | |
7.5(4–13) | |||
Tumour volume | ≤25 cm3 (n = 9) | >25 cm3 (n = 12) | |
8 (4–13) | 7 (4–12) | 0.591 | |
Ethmoid cell infiltration | Yes (n = 6) | no (n = 12) | |
4 (4–10) | 7.5 (5–13) | 0.059 | |
PSH | Yes (n = 15) | no (n = 4) | |
7 (4–10) | 10.5 (5–13) | 0.055 | |
Osseous enhancement | Yes (n = 5) | no (n = 12) | |
4 (4–10) | 7.5 (4–13) | 0.151 | |
Perifocal oedema | Yes (n = 5) | no (n = 11) | |
9 (4–13) | 7 (4–11) | 0.229 | |
Identification available (n = 21); 6(2–16) (median (range)) | |||
Gender | Female (n = 15) | Male (n = 6) | p-value |
6 (2–16) | 3.5 (3–14) | 0.326 | |
Age | ≤65 Years (n = 8) | >65 Years (n = 13) | |
4.5 (3–16) | 7 (2–14) | 0.273 | |
WHO grade | Grade 1 (n = 20) | Grade 2 (n = 1) | |
6 (3–16) | |||
Tumour volume | ≤25 cm3 (n = 9) | >25 cm3 (n = 12) | |
7 (2–16) | 4.5 (3–10) | 0.062 | |
Ethmoid cell infiltration | Yes (n = 6) | No (n = 12) | |
3 (2–14) | 6 (3–16) | 0.154 | |
PSH | Yes (n = 15) | No (n = 4) | |
4 (2–11) | 14 (7–16) | 0.006 | |
Osseous enhancement | Yes (n = 5) | No (n = 12) | |
3 (3–14) | 6 (2–16) | 0.423 | |
Perifocal oedema | Yes (n = 5) | No (n = 11) | |
8 (3–16) | 4 (2–14) | 0.134 | |
TDI available (n = 22); 13(6–35) (median (Range)) | |||
Gender | Female (n = 16) | Male (n = 6) | p-value |
14 (6–35) | 9.5 (8–26) | 0.109 | |
Age | ≤65 Years (n = 9) | >65 Years (n = 13) | |
11.5 (8–35) | 15.5 (6–29) | 0.105 | |
WHO grade | Grade 1 (n = 20) | Grade 2 (n = 2) | |
13 (8–35) | |||
Tumour volume | ≤25 cm3 (n = 9) | >25 cm3 (n = 13) | |
25 (6–35) | 13 (8–22) | 0.146 | |
Ethmoid cell infiltration | Yes (n = 6) | No (n = 13) | |
8 (6–26) | 13 (9–35) | 0.121 | |
PSH | Yes (n = 15) | No (n = 5) | |
13 (6–25) | 26 (11.5–35) | 0.058 | |
Osseous enhancement | Yes (n = 5) | No (n = 13) | |
8 (8–26) | 13 (6–35) | 0.212 | |
Perifocal oedema | Yes (n = 5) | No (n = 12) | |
25 (8–35) | 13 (6–29) | 0.136 |
Multivariate Linear Regression Analysis: Independent Variables in All Models: AKT1_Mut, SMO_SUFU, AKT1-/SMO-wild-type (WT), age 65, sex, volume (≤25/>25 cm3), ethmoid cell infiltration_(yes/no), PSH_yes (yes/no), osseous enhancement_yes (yes/no), perifocal oedema_yes (yes/no) | |||||||
Threshold | 95.0% KI | ||||||
Coefficient | b | SE | β | T | p | LB | UB |
PSH (no/yes) | −2.639 | 0.658 | −0.508 | −4.012 | 0.001 | −4.061 | −1.218 |
Osseous enhancement (no/yes) | −2.142 | 0.770 | −0.389 | −2.783 | 0.016 | −3.805 | −0.480 |
Age (≤65/>65 years) | −1.589 | 0.682 | −0.329 | −2.330 | 0.037 | −3.062 | −0.116 |
Comment n = 21; R2 = 0.864; Adj. R2 = 0.790; F (7, 13) = 11.749; p < 0.001 | |||||||
Discrimination | |||||||
Sex (female/male) | −2.672 | 1.037 | −0.453 | −2.576 | 0.019 | −4.851 | −0.493 |
PSH (no/yes) | −3.078 | 1.037 | −0.522 | −2.967 | 0.008 | −5.257 | −0.899 |
Comment n = 21; R2 = 0.446; Adj. R2 = 0.384; F (2, 18) = 7.242; p = 0.005 | |||||||
Identification | |||||||
PSH (no/yes) | −7.169 | 1.204 | −0.818 | −5.952 | <0.001 | −9.723 | −4.616 |
Perifocal oedema (no/yes) | −3.264 | 1.239 | −0.412 | −2.634 | 0.018 | −5.890 | −0.637 |
Comment n = 21; R2 = 0.744; Adj. R2 = 0.680; F (4, 16) = 11.620; p < 0.001 | |||||||
TDI | |||||||
PSH (no/yes) | −9.748 | 2.801 | −0.598 | −3.481 | 0.003 | −15.632 | −3.864 |
Perifocal oedema (no/yes) | −8.991 | 3.076 | −0.590 | −2.922 | 0.009 | −15.454 | −2.527 |
Comment n = 22; R2 = 0.527; Adj. R2 = 0.448; F (3, 18) = 6.679; p = 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podlesek, D.; Beyer, F.; Alkhatib, M.; Daubner, D.; Hijazi, M.M.; Juratli, J.H.; Weise, S.; Eyüpoglu, I.Y.; Schackert, G.; Juratli, T.A.; et al. Correlation of Molecular Status with Preoperative Olfactory Function in Olfactory Groove Meningioma. Cancers 2024, 16, 1595. https://doi.org/10.3390/cancers16081595
Podlesek D, Beyer F, Alkhatib M, Daubner D, Hijazi MM, Juratli JH, Weise S, Eyüpoglu IY, Schackert G, Juratli TA, et al. Correlation of Molecular Status with Preoperative Olfactory Function in Olfactory Groove Meningioma. Cancers. 2024; 16(8):1595. https://doi.org/10.3390/cancers16081595
Chicago/Turabian StylePodlesek, Dino, Friederike Beyer, Majd Alkhatib, Dirk Daubner, Mido Max Hijazi, Jerry Hadi Juratli, Susanne Weise, Ilker Y. Eyüpoglu, Gabriele Schackert, Tareq A. Juratli, and et al. 2024. "Correlation of Molecular Status with Preoperative Olfactory Function in Olfactory Groove Meningioma" Cancers 16, no. 8: 1595. https://doi.org/10.3390/cancers16081595
APA StylePodlesek, D., Beyer, F., Alkhatib, M., Daubner, D., Hijazi, M. M., Juratli, J. H., Weise, S., Eyüpoglu, I. Y., Schackert, G., Juratli, T. A., & Hummel, T. (2024). Correlation of Molecular Status with Preoperative Olfactory Function in Olfactory Groove Meningioma. Cancers, 16(8), 1595. https://doi.org/10.3390/cancers16081595