An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Spices for the Prevention and Potential Treatment of GC
2.1. Tumeric
2.2. Ginger
2.3. Garlic
2.4. Black Cumin
2.5. Chili Pepper
2.6. Saffron
2.7. Black Pepper
2.8. Rosemary
2.9. Galangal
2.10. Coriander
2.11. Wasabi
2.12. Cinnamon
2.13. Oregano
2.14. Cardamom
2.15. Fenugreek
2.16. Caraway
2.17. Clove
2.18. Dill
2.19. Thyme
2.20. Piper Sarmentosum
2.21. Basil
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-FU | 5-fluorouracil |
6-MITC | 6-(methylsulfinyl)hexyl isothiocyanate |
ACC | Acetyl CoA synthase |
AGS | Gastric adenocarcinoma |
AITC | Allyl isothiocyanate |
AKT | Protein kinase B |
Akt | Serine/threonine-protein kinase |
ALP | Alkaline phosphatise; |
AMPK | AMP-activated protein kinase |
AP-1 | Activator protein 1 |
ARF | Alternative reading frame |
ARF | Reading frame |
ATF1 | Activating transcription factor 1 |
[B(a)P] | benzo(a)pyrene |
Bax | Bcl2-associated X protein |
Bcl-2 | B-cell lymphoma 2 |
BUN | Serum urea nitrogen |
CA | Cinnamaldehyde; |
CagA | Cytotoxic-associated gene A |
CasNPs | Casein nanoparticles |
CASP1 | Caspase-1 |
CASP3 | Caspase 3 |
CASP8 | Caspase 8 |
CASP9 | Caspase 9 |
CDH1 | Cadherin 1 |
CYR61 | Cysteine-rich angiogenic inducer 61 |
EBV | Epstein–Barr virus |
EBVaGC | EBV-associated gastric cancer |
EO | Essential oil |
ERK 1/2 | Extracellular signal-regulated kinase 1/2 |
FASN | Fatty acid synthase |
Foxm1 | Forkhead box protein M1 |
GC | Gastric cancer |
GCSCs | Gastric cancer stem cells |
Gli1 | GLI Family Zinc Finger 1 |
GSDMD | Gasdermin D |
GSDME | Gasdermin E |
GSH | Glutathione |
GST | Glutathione-S-transferases |
GSTP | Glutathione S-transferase P |
HATs | Histone acetyltransferases |
HDACs | Histone deacetylases |
HER2 | Human epidermal growth factor receptor 2 |
HIF-1α | Hypoxia-inducible factor 1-alpha |
HMGCR | 3-hydroxy-3-methylglutaryl-coenzyme A reductase |
IFN-γ | Interferon gamma |
IL | Interleukin |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
IP | Intraperitoneal |
JNK | C-Jun N-terminal kinases |
KIF2C | Kinesin superfamily member 2C |
KLF5 | Krueppel-like factor 5 |
LC3 B | Light chain 3 B |
LDH | Lactate dehydrogenase |
MAPK | Mitogen-activated protein kinase |
MESP1 | Mesoderm posterior 1 |
mir | MicroRNA |
MMP | Mitochondrial membrane potential |
MMP-2 | Matrix metalloproteinase-2 |
MMP-9 | Matrix metalloproteinase-9 |
MNNG | Methyl-N-Nitro-N-Nitrosoguanidine |
MyD88 | Myeloid differentiation primary response 88 |
MYL9 | Myosin regulatory light polypeptide 9 |
NCC | N-carboxymethyl chitosan |
NCC-SLN | Curcumin-loaded modified solid lipid nanoparticles |
NF-κB | Nuclear factor kappa B |
NLRP3 | NLR family pyrin domain containing 3 |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
NSAIDs | Non-steroidal anti-inflammatory drugs |
nsLTPs | Nonspecific lipid transfer proteins |
OxR | Oxaliplatin-resistant |
P-gp | P-glycoprotein |
p-JAK2/JAK2 | Janus associated kinase |
p38 MAPK | p38 mitogen-activated protein kinases |
PARP | Poly adenosine diphosphate-ribose polymerase |
PCNA | Proliferating cell nuclear antigen |
PDL-1 | Programmed death-ligand 1 |
PI3K | Phosphatidylinositol-3 kinase |
PI3K/Akt/mTOR | phosphatidylinositol-4,5-bisphosphate 3 kinase/protein kinase B/mechanistic target of rapamycin |
PIK3R3 | Phosphoinositide-3-kinase regulatory subunit 3 |
PIP | Piperine |
PKM2 | Pyruvate kinase muscle isozyme M2 |
PTT | partial thromboplastin time |
ROS | Reactive oxygen species |
RSK/CREB | ribosomal S6 kinase/cAMP response element binding protein |
RSK2 | ribosomal S6 kinase 2 |
SAE | Saffron aqueous extract |
SFN | Sulforaphane |
Shh | Sonic hedgehog homolog |
shRNA | Specific short hairpin RNA |
SMYD3 | SET and MYN-domain containing 3 |
SN-38 | 7-ethyl 10-hydroxy camptothecin |
SPREPB1 | Sterol regulatory element-binding protein |
STAT2 | Signal transducer and activator of transcription 2 |
STAT3 | Signal transducer and activator of transcription 3 |
TBX15 | T-box transcription factor 15 |
TGF-β | Transforming growth factor beta |
TIMP1 | Tissue inhibitor of metalloproteinases |
TLRs | Toll-like receptors |
TNF | Tumor necrosis factor |
TNF-α | Tumor necrosis factor α |
TP53 | Tumor suppressor protein p53 gene |
TPM4 | Tropomyosin 4 |
Uch-L1 | Ubiquitin carboxy-terminal hydrolase isozyme L1 |
uPA | Urokinase plasminogen activator |
uPAR | uPA receptor |
VacA | Vacuolating cytotoxin A |
VEGF | Vascular Endothelial Growth Factor |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Rahaman, A.; Singh, R.; Hui, Y.; Tu, C.; Liu, D.; Zhang, H.; Gong, X. Risk factors for gastric cancer: A comprehensive analysis of observational studies. Front. Public Health 2023, 10, 892468. [Google Scholar]
- Correa, P. Gastric Cancer. Overview. Gastroenterol. Clin. N. Am. 2013, 42, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Xiang, L.; Peppelenbosch, M.P.; Fuhler, G.M. Overlapping cytokines in H. pylori infection and gastric cancer: A tandem meta-analysis. Front. Immunol. 2023, 14, 1125658. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.G.; Peng, D.F.; Camargo, M.C.; Piazuelo, M.B.; Sicinschi, L.A.; Mera, R.; Romero-Gallo, J.; Delgado, A.G.; Bravo, L.E.; Wilson, K.T.; et al. Promoter DNA hypermethylation in gastric biopsies from subjects at high and low risk for gastric cancer. Int. J. Cancer 2010, 127, 2588–2597. [Google Scholar] [CrossRef]
- Hatakeyama, M. Helicobacter pylori and gastric carcinogenesis. J. Gastroenterol. 2009, 44, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.L.; Blanke, S.R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 2005, 3, 320–332. [Google Scholar] [CrossRef]
- Lima, Á.; Sousa, H.; Medeiros, R.; Nobre, A.; Machado, M. PD-L1 expression in EBV associated gastric cancer: A systematic review and meta-analysis. Discov. Oncol. 2022, 13, 19. [Google Scholar] [CrossRef]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef]
- Yusefi, A.R.; Lankarani, K.B.; Bastani, P.; Radinmanesh, M.; Kavosi, Z. Risk factors for gastric cancer: A systematic review. Asian Pac. J. Cancer Prev. 2018, 19, 591–603. [Google Scholar] [PubMed]
- Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021, 71, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Bornschein, J.; Rokkas, T.; Selgrad, M.; Malfertheiner, P. Gastric Cancer: Clinical Aspects, Epidemiology and Molecular Background Clinical Management-New Aspects Staging. Helicobacter 2011, 16, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.L.; He, Y.; Xu, R.H. Gastric cancer treatment: Recent progress and future perspectives. J. Hematol. Oncol. 2023, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Selgrad, M.; Bornschein, J.; Rokkas, T.; Malfertheiner, P. Clinical Aspects of Gastric Cancer and Helicobacter pylori—Screening, Prevention, and Treatment. Helicobacter 2010, 15, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cui, N.; Ye, J.; Yang, B.; Sun, Y.; Kuang, H. Curcumin’s prevention of inflammation-driven early gastric cancer and its molecular mechanism. Chin. Herb. Med. 2022, 14, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Kwiecien, S.; Magierowski, M.; Majka, J.; Ptak-Belowska, A.; Wojcik, D.; Sliwowski, Z.; Magierowska, K.; Brzozowski, T. Curcumin: A Potent Protectant against Esophageal and Gastric Disorders. Int. J. Mol. Sci. 2019, 20, 1477. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Khanbabaei, H.; Zandi, F.; Ahmadi, A.; Haftcheshmeh, S.M.; Johnston, T.P.; Sahebkar, A. Curcumin: A therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microb. Pathog. 2022, 166, 105552. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; De, R.; Mukhopadhyay, A.K. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases. World J. Gastroenterol. 2016, 22, 2736–2748. [Google Scholar] [CrossRef]
- Song, M.-Y.; Lee, D.-Y.; Park, S.-Y.; Seo, S.-A.; Hwang, J.-S.; Heo, S.-H.; Kim, E.-H. Steamed Ginger Extract Exerts Anti-inflammatory Effects in Helicobacter pylori-infected Gastric Epithelial Cells through Inhibition of NF-κB. J. Cancer Prev. 2021, 26, 289. [Google Scholar] [CrossRef]
- Gaus, K.; Huang, Y.; Israel, D.A.; Pendland, S.L.; Adeniyi, B.A.; Mahady, G.B. Standardized ginger (Zingiber officinale) extract reduces bacterial load and suppresses acute and chronic inflammation in Mongolian gerbils infected with cagA+ Helicobacter pylori. Pharm. Biol. 2009, 47, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Sathianarayanan, S.; Ammanath, A.V.; Biswas, R.; B, A.; Sukumaran, S.; Venkidasamy, B. A new approach against Helicobacter pylori using plants and its constituents: A review study. Microb. Pathog. 2022, 168, 105594. [Google Scholar] [CrossRef] [PubMed]
- Kodali, R.T.; Eslick, G.D. Meta-analysis: Does garlic intake reduce risk of gastric cancer? Nutr. Cancer 2015, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Keum, N.N.; Giovannucci, E.L.; Fuchs, C.S.; Bao, Y. Garlic intake and gastric cancer risk: Results from two large prospective US cohort studies. Int. J. Cancer 2018, 143, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Salem, E.M.; Yar, T.; Bamosa, A.O.; Al-Quorain, A.; Yasawy, M.I.; Alsulaiman, R.M.; Randhawa, M.A. Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter pylori in patients with non-ulcer dyspepsia. Saudi J. Gastroenterol. 2010, 16, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Hashem-Dabaghian, F.; Agah, S.; Taghavi-Shirazi, M.; Ghobadi, A. Combination of Nigella sativa and Honey in Eradication of Gastric Helicobacter pylori Infection. Iran. Red Crescent Med. J. 2016, 18, e23771. [Google Scholar] [CrossRef]
- Toyoda, T.; Shi, L.; Takasu, S.; Cho, Y.M.; Kiriyama, Y.; Nishikawa, A.; Ogawa, K.; Tatematsu, M.; Tsukamoto, T. Anti-Inflammatory Effects of Capsaicin and Piperine on Helicobacter pylori-Induced Chronic Gastritis in Mongolian Gerbils. Helicobacter 2016, 21, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Tharmalingam, N.; Kim, S.-H.; Park, M.; Woo, H.J.; Kim, H.W.; Yang, J.Y.; Rhee, K.-J.; Kim, J.B. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells. Infect. Agent. Cancer 2014, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Tharmalingam, N.; Park, M.; Lee, M.H.; Woo, H.J.; Kim, H.W.; Yang, J.Y.; Rhee, K.J.; Kim, J.B. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro. Am. J. Transl. Res. 2016, 8, 885. [Google Scholar]
- Wu, B.; Xu, C.; Ding, H.S.; Qiu, L.; Gao, J.X.; Li, M.; Xiong, Y.; Xia, H.; Liu, X. Galangin inhibits neointima formation induced by vascular injury via regulating the PI3K/AKT/mTOR pathway. Food Funct. 2022, 13, 12077–12092. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Pu, L.; Yu, L.; Xiong, F.; Sun, L.; Yu, Q.; Cao, X.; Chen, Y.; Peng, F.; et al. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother. Res. 2023, 37, 5700–5723. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.A.; Jeon, Y.K.; Nam, M.J. Galangin induces apoptosis in gastric cancer cells via regulation of ubiquitin carboxy-terminal hydrolase isozyme L1 and glutathione S-transferase P. Food Chem. Toxicol. 2012, 50, 684–688. [Google Scholar] [CrossRef]
- Zaidi, S.F.; Muhammad, J.S.; Shahryar, S.; Usmanghani, K.; Gilani, A.H.; Jafri, W.; Sugiyama, T. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells. J. Ethnopharmacol. 2012, 141, 403–410. [Google Scholar] [CrossRef]
- Skiba, M.A.; Szendzielorz, K.; Mazur, B.; Król, W. The inhibitory effect of flavonoids on interleukin-8 release by human gastric adenocarcinoma (AGS) cells infected with cag PAI (+) Helicobacter pylori. Cent. J. Immunol. 2016, 41, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xue, J.; Wei, F.; Zheng, G.; Cheng, M.; Liu, S. Chemopreventive effect of galangin against benzo(a)pyrene-induced stomach tumorigenesis through modulating aryl hydrocarbon receptor in Swiss albino mice. Hum. Exp. Toxicol. 2021, 40, 1434–1444. [Google Scholar] [CrossRef]
- Masuda, S.; Masuda, H.; Shimamura, Y.; Sugiyama, C.; Takabayashi, F. Improvement Effects of Wasabi (Wasabia japonica) Leaves and Allyl Isothiocyanate on Stomach Lesions of Mongolian Gerbils Infected with Helicobacter pylori. Nat. Prod. Commun. 2017, 12, 595–598. [Google Scholar] [CrossRef]
- Gunes-Bayir, A.; Guler, E.M.; Bilgin, M.G.; Ergun, I.S.; Kocyigit, A.; Dadak, A. Anti-Inflammatory and Antioxidant Effects of Carvacrol on N-Methyl- N’-Nitro- N-Nitrosoguanidine (MNNG) Induced Gastric Carcinogenesis in Wistar Rats. Nutrients 2022, 14, 2848. [Google Scholar] [CrossRef] [PubMed]
- Qiblawi, S.; Dhanarasu, S.; Faris, M.A.I. Chemopreventive Effect of Cardamom (Elettaria cardamomum L.) Against Benzo(α)Pyrene-Induced Forestomach Papillomagenesis in Swiss Albino Mice. J. Environ. Pathol. Toxicol. Oncol. 2015, 34, 95–104. [Google Scholar] [CrossRef]
- Aldakhil, T.; Alshammari, S.O.; Siraj, B.; El-Aarag, B.; Zarina, S.; Salehi, D.; Ahmed, A. The structural characterization and bioactivity assessment of nonspecific lipid transfer protein 1 (nsLTP1) from caraway (Carum carvi) seeds. BMC Complement. Med. Ther. 2023, 23, 254. [Google Scholar] [CrossRef]
- Mahboubi, M. Caraway as Important Medicinal Plants in Management of Diseases. Nat. Prod. Bioprospect. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Lv, L.; Yang, N.; Cao, Y.; Dang, J.; Cheng, L.; El-Sheikh, M.A.; Zhang, Y. d-Carvone inhibits the JAK/STAT3 signaling pathway and induced the apoptotic cell death in the human gastric cancer AGS cells. J. Biochem. Mol. Toxicol. 2021, 35, e22746. [Google Scholar] [CrossRef]
- Kaefer, C.M.; Milner, J.A. Herbs and Spices in Cancer Prevention and Treatment. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 361–382. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.P.; Li, S.; Li, H. Bin Spices for Prevention and Treatment of Cancers. Nutrients 2016, 8, 495. [Google Scholar] [CrossRef]
- Karimi, A.; Moradi, M.T.; Hashemi, L.; Alidadi, S.; Soltani, A. In vitro anti-proliferative activity of clove extract on human gastric carcinoma. Res. J. Pharmacogn. 2017, 4, 41–48. [Google Scholar]
- Babu, T.M.C.; Rammohan, A.; Baki, V.B.; Devi, S.; Gunasekar, D.; Rajendra, W. Development of novel HER2 inhibitors against gastric cancer derived from flavonoid source of Syzygium alternifolium through molecular dynamics and pharmacophore-based screening. Drug Des. Dev. Ther. 2016, 10, 3611. [Google Scholar] [CrossRef]
- Elbestawy, M.K.M.; El-Sherbiny, G.M.; Moghannem, S.A. Antibacterial, Antibiofilm and Anti-Inflammatory Activities of Eugenol Clove Essential Oil against Resistant Helicobacter pylori. Molecules 2023, 28, 2448. [Google Scholar] [CrossRef]
- Panezai, S.; Samad, A.; Naeem, M.; Ali, H.; Sadiq, M.B.; Achakzai, M.S.; Kakar, Z.; Akbar, A. Antibacterial Effects of Cinnamon Extract, Clove Oil and Antibiotics against Helicobacter pylori Isolated from Stomach Biopsies. Braz. Arch. Biol. Technol. 2021, 64, e21210089. [Google Scholar] [CrossRef]
- El-Shouny, W.A.; Ali, S.S.; Hegazy, H.M.; Abd Elnabi, M.K.; Ali, A.; Sun, J. Syzygium aromaticum L.: Traditional herbal medicine against cagA and vacA toxin genes-producing drug resistant Helicobacter pylori. J. Tradit. Complement. Med. 2020, 10, 366–377. [Google Scholar] [CrossRef]
- Caglak, E.; Karsli, B. Use of dill extracts as a natural preservative on shelf-life extension of rainbow trout croquettes during refrigerator storage. Food Sci. Nutr. 2023, 11, 7330–7340. [Google Scholar] [CrossRef]
- Oshaghi, E.A.; Khodadadi, I.; Tavilani, H.; Goodarzi, M.T. Aqueous Extract of Anethum graveolens L. has Potential Antioxidant and Antiglycation Effects. Iran. J. Med. Sci. 2016, 41, 328. [Google Scholar] [PubMed]
- Li, Z.; Xue, Y.; Li, M.; Guo, Q.; Sang, Y.; Wang, C.; Luo, C. The Antioxidation of Different Fractions of Dill (Anethum graveolens) and Their Influences on Cytokines in Macrophages RAW264.7. J. Oleo Sci 2018, 67, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Karimi, G.R.; Ameri, M. Effects of Anethum graveolens L. seed extracts on experimental gastric irritation models in mice. BMC Pharmacol. 2002, 2, 21. [Google Scholar] [CrossRef]
- Günes-Bayir, A.; Kiziltan, H.S.; Kocyigit, A.; Güler, E.M.; Karataş, E.; Toprak, A. Effects of natural phenolic compound carvacrol on the human gastric adenocarcinoma (AGS) cells in vitro. Anticancer Drugs 2017, 28, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-H.; Kim, Y.-S.; Kim, E.-K.; Hwang, J.-W.; Jeong, J.-H.; Dong, X.; Lee, J.-W.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Anticancer Effect of Thymol on AGS Human Gastric Carcinoma Cells. J. Microbiol. Biotechnol. 2016, 26, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Saleem, A.; Afzal, M.; Naveed, M.; Makhdoom, S.I.; Mazhar, M.; Aziz, T.; Khan, A.A.; Kamal, Z.; Shahzad, M.; Alharbi, M.; et al. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules 2022, 27, 8512. [Google Scholar] [CrossRef] [PubMed]
- Akmal, M.N.; Abdel Aziz, I.; Nur Azlina, M.F. Piper sarmentosum Roxb. methanolic extract prevents stress-induced gastric ulcer by modulating oxidative stress and inflammation. Front. Pharmacol. 2023, 13, 971443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, C.; Ren, Z.; Zhang, F.; Xu, J.; Zhang, X.; Zheng, H. Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin. Cancer Manag. Res. 2020, 12, 3795–3806. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Wang, C.; Yang, D.; Wei, Z.; Xu, J.; Hu, Z.; Zhang, Y.; Wang, W.; Yan, R.; Cai, Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol. 2018, 233, 4634–4642. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, D.Q.; Wisnieski, F.; Da Silva Mota, E.R.; Maia De Sousa, S.B.; Costa Da Silva, J.M.; Leal, M.F.; Gigek, C.O.; Santos, L.C.; Rasmussen, L.T.; Assumpção, P.P.; et al. Role of histone acetylation in gastric cancer: Implications of dietetic compounds and clinical perspectives. Epigenomics 2019, 11, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Fan, R.; Wang, L.; Cheng, S.; Li, H.; Jiang, J.; Geng, M.; Jin, Y.; Wu, Y. Expression and regulatory function of miRNA-34a in targeting survivin in gastric cancer cells. Tumour Biol. 2013, 34, 963–971. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S.; Liu, C.; Liu, X. Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells. Cancer Biother. Radiopharm. 2019, 34, 634–641. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, W.; Guo, Y.; Li, Z.; Chen, X.; Wang, Y.; Du, Y.; Zang, W.; Zhao, G. Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer. Tumour Biol. 2016, 37, 13177–13184. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, M.; Zou, Q.; Lin, W. Curcumin suppresses gastric cancer biological activity by regulation of miRNA-21: An in vitro study. Int. J. Clin. Exp. Pathol. 2018, 11, 5820. [Google Scholar]
- Luo, Y.; Chen, X.; Luo, L.; Zhang, Q.; Gao, C.; Zhuang, X.; Yuan, S.; Qiao, T. [6]-Gingerol enhances the radiosensitivity of gastric cancer via G2/M phase arrest and apoptosis induction. Oncol. Rep. 2018, 39, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zha, L.; Luo, L.; Chen, X.; Zhang, Q.; Gao, C.; Zhuang, X.; Yuan, S.; Qiao, T. [6]-Gingerol enhances the cisplatin sensitivity of gastric cancer cells through inhibition of proliferation and invasion via PI3K/AKT signaling pathway. Phytother. Res. 2019, 33, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Gupta, Y.K. Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale). J. Ethnopharmacol. 1998, 62, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lee, Y.G.; Dhandapani, S.; Baek, N.I.; Kim, K.P.; Cho, Y.E.; Xu, X.; Kim, Y.J. 8-paradol from ginger exacerbates PINK1/Parkin mediated mitophagy to induce apoptosis in human gastric adenocarcinoma. Pharmacol. Res. 2023, 187, 106610. [Google Scholar] [CrossRef] [PubMed]
- Arreola, R.; Quintero-Fabián, S.; Lopez-Roa, R.I.; Flores-Gutierrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuno-Sahagun, D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res. 2015, 2015, 401630. [Google Scholar] [CrossRef]
- Mondal, A.; Banerjee, S.; Bose, S.; Mazumder, S.; Haber, R.A.; Farzaei, M.H.; Bishayee, A. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol. Res. 2022, 175, 105837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ha, M.; Gong, Y.; Xu, Y.; Dong, N.; Yuan, Y. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways. Oncol. Rep. 2010, 24, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, Y.; Duan, W.; Feng, C.; He, X. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway. Mol. Med. Rep. 2015, 11, 2755–2760. [Google Scholar] [CrossRef]
- Ling, H.; Lu, L.F.; He, J.; Xiao, G.H.; Jiang, H.; Su, Q. Diallyl disulfide selectively causes checkpoint kinase-1 mediated G2/M arrest in human MGC803 gastric cancer cell line. Oncol. Rep. 2014, 32, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Das, R.; Emran, T.B.; Labib, R.K.; Noor, E.T.; Islam, F.; Sharma, R.; Ahmad, I.; Nainu, F.; Chidambaram, K.; et al. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential. Front. Pharmacol. 2022, 13, 943967. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H. Diallyl trisulfide induces apoptosis and mitotic arrest in AGS human gastric carcinoma cells through reactive oxygen species-mediated activation of AMP-activated protein kinase. Biomed. Pharmacother. 2017, 94, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Han, Y.M.; Kangwan, N.; Lee, S.Y.; Jung, M.K.; Kim, E.H.; Hahm, K.B. S-allyl cysteine alleviates nonsteroidal anti-inflammatory drug-induced gastric mucosal damages by increasing cyclooxygenase-2 inhibition, heme oxygenase-1 induction, and histone deacetylation inhibition. J. Gastroenterol. Hepatol. 2014, 29 (Suppl. S4), 80–92. [Google Scholar] [CrossRef] [PubMed]
- Kangwan, N.; Park, J.M.; Kim, E.H.; Hahm, K.B. Quality of healing of gastric ulcers: Natural products beyond acid suppression. World J. Gastrointest. Pathophysiol. 2014, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q.; Zhang, J.Y.; Ma, J.L.; Li, Z.X.; Zhang, L.; Zhang, Y.; Guo, Y.; Zhou, T.; Li, J.Y.; Shen, L.; et al. Effects of Helicobacter pylori treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: Follow-up of a randomized intervention trial. BMJ 2019, 366, l5016. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Z.X.; Zhang, J.Y.; Ma, J.L.; Zhang, L.; Zhang, Y.; Zhou, T.; Liu, W.D.; Han, Z.X.; Li, W.Q.; et al. Association Between Lifestyle Factors, Vitamin and Garlic Supplementation, and Gastric Cancer Outcomes: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e206628. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.L.; Zhang, L.; Brown, L.M.; Li, J.Y.; Shen, L.; Pan, K.F.; Liu, W.D.; Hu, Y.; Han, Z.X.; Crystal-Mansour, S.; et al. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J. Natl. Cancer Inst. 2012, 104, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.M.; Wang, X.F.; Huang, Q.X. Thymoquinone induces cytotoxicity and reprogramming of EMT in gastric cancer cells by targeting PI3K/Akt/mTOR pathway. J. Biosci. 2017, 42, 547–554. [Google Scholar] [CrossRef]
- He, P.; He, Y.; Ma, J.; Liu, Y.; Liu, C.; Baoping, Y.; Dong, W. Thymoquinone induces apoptosis and protective autophagy in gastric cancer cells by inhibiting the PI3K/Akt/mTOR pathway. Phytother. Res. 2023, 37, 3467–3480. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Wang, J.; Guo, X.F.; Liu, Z.; Dong, W.G. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro. World J. Gastroenterol. 2016, 22, 4149–4159. [Google Scholar] [CrossRef]
- Lei, X.; Lv, X.; Liu, M.; Yang, Z.; Ji, M.; Guo, X.; Dong, W. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem. Biophys. Res. Commun. 2012, 417, 864–868. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, J.Y.; Lee, S.M.; Jun, C.H.; Cho, S.B.; Park, C.H.; Joo, Y.E.; Kim, H.S.; Choi, S.K.; Rew, J.S. Capsaicin induces apoptosis and modulates MAPK signaling in human gastric cancer cells. Mol. Med. Rep. 2014, 9, 499–502. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, J.; Liu, D.; Zhao, T.; Lu, Z.; Zhu, L.; Cao, L.; Yang, J.; Jin, J.; Cai, Y. Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biol. Ther. 2016, 17, 1117–1125. [Google Scholar] [CrossRef]
- Luo, L.; Yan, J.; Wang, X.; Sun, Z. The correlation between chili pepper consumption and gastric cancer risk: A meta-analysis. Asia Pac. J. Clin. Nutr. 2021, 30, 130–139. [Google Scholar] [CrossRef]
- López-Carrillo, L.; López-Cervantes, M.; Robles-Díaz, G.; Ramírez-Espitia, A.; Mohar-Betancourt, A.; Meneses-García, A.; López-Vidal, Y.; Blair, A. Capsaicin consumption, Helicobacter pylori positivity and gastric cancer in Mexico. Int. J. Cancer 2003, 106, 277–282. [Google Scholar] [CrossRef]
- López-carnllo, L.; Avila, M.H.; Dubrow, R. Chili pepper consumption and gastric cancer in Mexico: A case-control study. Am. J. Epidemiol. 1994, 139, 263–271. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, P.; Zhao, J.; Guo, Q.; Fan, B.; Diao, Y.; Jin, Y.; Wu, J.; Zhang, C. Inhibitory Effect of Crocin Against Gastric Carcinoma via Regulating TPM4 Gene. Onco-Targets Ther. 2021, 14, 111–122. [Google Scholar] [CrossRef]
- Hoshyar, R.; Bathaie, S.Z.; Sadeghizadeh, M. Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA Cell Biol. 2013, 32, 50–57. [Google Scholar] [CrossRef]
- Bathaie, S.Z.; Hoshyar, R.; Miri, H.; Sadeghizadeh, M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem. Cell Biol. 2013, 91, 397–403. [Google Scholar] [CrossRef]
- Zang, M.; Hou, J.; Huang, Y.; Wang, J.; Ding, X.; Zhang, B.; Wang, Y.; Xuan, Y.; Zhou, Y. Crocetin suppresses angiogenesis and metastasis through inhibiting sonic hedgehog signaling pathway in gastric cancer. Biochem. Biophys. Res. Commun. 2021, 576, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sheng, H.; Zhao, Y.; Zhu, G. Piperine Inhibits Cell Proliferation and Induces Apoptosis of Human Gastric Cancer Cells by Downregulating Phosphatidylinositol 3-Kinase (PI3K)/Akt Pathway. Med. Sci. Monit. 2020, 26, e928403-1. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Khoi, P.N.; Yoon, H.J.; Lian, S.; Joo, Y.E.; Chay, K.O.; Kim, K.K.; Jung, Y. Do Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells. Mol. Cell. Biochem. 2015, 398, 147–156. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Liu, K.; Chen, H.; Yang, R.; Ma, X.; Kim, H.G.; Bode, A.M.; Kim, D.J.; Dong, Z. Carnosol suppresses patient-derived gastric tumor growth by targeting RSK2. Oncotarget 2018, 9, 34200–34212. [Google Scholar] [CrossRef]
- Shrestha, S.; Song, Y.W.; Kim, H.; Lee, D.S.; Cho, S.K. Sageone, a diterpene from Rosmarinus officinalis, synergizes with cisplatin cytotoxicity in SNU-1 human gastric cancer cells. Phytomedicine 2016, 23, 1671–1679. [Google Scholar] [CrossRef]
- Liang, X.; Wang, P.; Yang, C.; Huang, F.; Wu, H.; Shi, H.; Wu, X. Galangin Inhibits Gastric Cancer Growth Through Enhancing STAT3 Mediated ROS Production. Front. Pharmacol. 2021, 12, 646628. [Google Scholar] [CrossRef]
- In Vitro Effects and the Related Molecular Mechanism of Galangin and Quercetin on Human Gastric Cancer Cell Line (SGC-7901)—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29039326/ (accessed on 5 January 2024).
- Liang, X.H.; Yu, M.Z.; Shi, H.L.; Wu, X.J. Galangin enhances autophagy by inhibiting NF-κB pathway in gastric cancer MGC-803 cells. Zhongguo Zhong Yao Za Zhi 2021, 46, 4167–4174. [Google Scholar] [CrossRef]
- Rong, Y.; Liu, S.H.; Tang, M.Z.; Yang, X.J. Quercetin inhibits the proliferative effect of gastric cancer cells by activating the pyroptosis pathway. Asian J. Surg. 2023, 46, 5286–5288. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Xue, S. Mechanism of Quercetin as a Multidrug-resistant Reversing Compound in Oxaliplatin-resistant Gastric-cancer Cell Lines. Altern. Ther. Health Med. 2023, 29, 54–59. [Google Scholar]
- Mirazimi, S.M.A.; Dashti, F.; Tobeiha, M.; Shahini, A.; Jafari, R.; Khoddami, M.; Sheida, A.H.; EsnaAshari, P.; Aflatoonian, A.H.; Elikaii, F.; et al. Application of Quercetin in the Treatment of Gastrointestinal Cancers. Front. Pharmacol. 2022, 13, 860209. [Google Scholar] [CrossRef]
- Borska, S.; Chmielewska, M.; Wysocka, T.; Drag-Zalesinska, M.; Zabel, M.; Dziegiel, P. In vitro effect of quercetin on human gastric carcinoma: Targeting cancer cells death and MDR. Food Chem. Toxicol. 2012, 50, 3375–3383. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Liu, H.; Ge, J.; Yang, B.; Wang, Y.; Wang, W.; Wen, Y.; Zeng, S.; Chen, Q.; Huang, J.; et al. A study related to the treatment of gastric cancer with Xiang-Sha-Liu-Jun-Zi-Tang based on network analysis. Heliyon 2023, 9, e19546. [Google Scholar] [CrossRef]
- Shen, X.; Si, Y.; Wang, Z.; Wang, J.; Guo, Y.; Zhang, X. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling. Int. J. Mol. Med. 2016, 38, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, T.; Pugalendhi, P. Allyl isothiocyanate regulates oxidative stress, inflammation, cell proliferation, cell cycle arrest, apoptosis, angiogenesis, invasion and metastasis via interaction with multiple cell signaling pathways. Histochem. Cell Biol. 2023, 161, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.S.; Huang, W.N.; Yang, J.L.; Peng, S.F.; Liu, K.C.; Chen, J.C.; Hsia, T.C.; Huang, A.C. Allyl isothiocyanate inhibits cell migration and invasion in human gastric cancer AGS cells via affecting PI3K/AKT and MAPK signaling pathway in vitro. Environ. Toxicol. 2023, 38, 2287–2297. [Google Scholar] [CrossRef]
- Shih, Y.; Hsu, S.; Lai, K.; Chueh, F.; Huang, Y.; Kuo, C.; Chen, Y.; Chen, C.; Peng, S.; Huang, W.; et al. Allyl isothiocyanate induces DNA damage and inhibits DNA repair-associated proteins in a human gastric cancer cells in vitro. Environ. Toxicol. 2023, 39, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cao, W.; Yang, C.; Hong, L.; Geng, S.; Han, H.; Zhong, C. Isothiocyanates attenuate immune checkpoint blockage therapy in gastric cancer via induction of PD-L1 expression. J. Nutr. Biochem. 2023, 112, 109226. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Wu, L. na Sulforaphane Targets the TBX15/KIF2C Pathway to Repress Glycolysis and Cell Proliferation in Gastric Carcinoma Cells. Nutr. Cancer 2023, 75, 1263–1270. [Google Scholar] [CrossRef]
- Peng, Z.T.; Gu, P. Sulforaphane suppresses autophagy during the malignant progression of gastric carcinoma via activating miR-4521/PIK3R3 pathway. Hum. Exp. Toxicol. 2021, 40, S711–S720. [Google Scholar] [CrossRef]
- Manikandan, P.; Vinothini, G.; Vidya Priyadarsini, R.; Prathiba, D.; Nagini, S. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investig. New Drugs 2011, 29, 110–117. [Google Scholar] [CrossRef]
- Sarkar, A.; Bhattacharjee, S.; Mandal, D.P. Induction of Apoptosis by Eugenol and Capsaicin in Human Gastric Cancer AGS Cells-Elucidating the Role of p53. Asian Pac. J. Cancer Prev. 2015, 16, 6753–6759. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W. Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol. Sin. 2022, 43, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Balusamy, S.R.; Perumalsamy, H.; Huq, M.A.; Balasubramanian, B. Anti-proliferative activity of Origanum vulgare inhibited lipogenesis and induced mitochondrial mediated apoptosis in human stomach cancer cell lines. Biomed. Pharmacother. 2018, 108, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zheng, H.; Zhao, R.; Zhang, X.; Wang, Q. Diosgenin inhibits the proliferation of gastric cancer cells via inducing mesoderm posterior 1 down-regulation-mediated alternative reading frame expression. Hum. Exp. Toxicol. 2021, 40, S632–S645. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.J.; Tang, Q.J.; Zhang, C.A.; Qin, Z.F.; Pang, B.; Wei, P.K.; Liu, B.; Chou, Y.N. Anti-proliferation and anti-invasion effects of diosgenin on gastric cancer BGC-823 cells with HIF-1α shRNAs. Int. J. Mol. Sci. 2012, 13, 6521–6533. [Google Scholar] [CrossRef]
- Liu, S.; Rong, G.; Li, X.; Geng, L.; Zeng, Z.; Jiang, D.; Yang, J.; Wei, Y. Diosgenin and GSK126 Produce Synergistic Effects on Epithelial-Mesenchymal Transition in Gastric Cancer Cells by Mediating EZH2 via the Rho/ROCK Signaling Pathway. Onco-Targets Ther. 2020, 13, 5057–5067. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.G.; Zhan, L.B.; Feng, B.A.; Qu, M.Y.; Yu, L.H.; Xie, J.H. Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J. Gastroenterol. 2004, 10, 2140. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Das, S.; Rahaman, A.; Das Talukdar, A.; Bhattacharjee, S.; Mandal, D.P. Eugenol and capsaicin exhibit anti-metastatic activity via modulating TGF-β signaling in gastric carcinoma. Food Funct. 2020, 11, 9020–9034. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.; Pereira, R.B.; Pinto, N.F.S.; Coelho, C.M.M.; Fernandes, M.J.G.; Fortes, A.G.; Gonçalves, M.S.T.; Pereira, D.M. Eugenol β-Amino/β-Alkoxy Alcohols with Selective Anticancer Activity. Int. J. Mol. Sci. 2022, 23, 3759. [Google Scholar] [CrossRef]
- Perna, S.; Alawadhi, H.; Riva, A.; Allegrini, P.; Petrangolini, G.; Gasparri, C.; Alalwan, T.A.; Rondanelli, M. In Vitro and In Vivo Anticancer Activity of Basil (Ocimum spp.): Current Insights and Future Prospects. Cancers 2022, 14, 2375. [Google Scholar] [CrossRef]
- Gao, T.H.; Liao, W.; Lin, L.T.; Zhu, Z.P.; Lu, M.G.; Fu, C.M.; Xie, T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. Phytomedicine 2022, 102, 154090. [Google Scholar] [CrossRef] [PubMed]
- Barati, N.; Momtazi-Borojeni, A.A.; Majeed, M.; Sahebkar, A. Potential therapeutic effects of curcumin in gastric cancer. J. Cell. Physiol. 2019, 234, 2317–2328. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.M.; Lopes, T.; Oleastro, M.; Gato, I.V.; Floch, P.; Benejat, L.; Chaves, P.; Pereira, T.; Seixas, E.; Machado, J.; et al. Curcumin inhibits gastric inflammation induced by Helicobacter pylori infection in a mouse model. Nutrients 2015, 7, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res. 2018, 32, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med. 2003, 9, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Cas, M.D.; Ghidoni, R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.S.; Cho, C.W. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur. J. Pharm. Biopharm. 2017, 117, 132–140. [Google Scholar] [CrossRef]
- Barick, K.C.; Tripathi, A.; Dutta, B.; Shelar, S.B.; Hassan, P.A. Curcumin Encapsulated Casein Nanoparticles: Enhanced Bioavailability and Anticancer Efficacy. J. Pharm. Sci. 2021, 110, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wei, Y.; Lee, R.J.; Zhao, L. Liposomal curcumin and its application in cancer. Int. J. Nanomed. 2017, 12, 6027–6044. [Google Scholar] [CrossRef]
- Mohanty, C.; Das, M.; Sahoo, S.K. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv. 2012, 9, 1347–1364. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res. 2021, 35, 711–742. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, J.O.; Masuku, N.P.; Paimo, O.K.; Lebelo, S.L. Ginger from Farmyard to Town: Nutritional and Pharmacological Applications. Front. Pharmacol. 2021, 12, 779352. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Preventive and Protective Properties of Zingiber officinale (Ginger) in Diabetes Mellitus, Diabetic Complications, and Associated Lipid and Other Metabolic Disorders: A Brief Review. Evid.-Based Complement. Alternat. Med. 2012, 2012, 516870. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Ogino, M.; Yakushiji, K.; Suzuki, H.; Shiokawa, K.I.; Kikuchi, H.; Seto, Y.; Onoue, S. Ginger Extract-Loaded Solid Dispersion System with Enhanced Oral Absorption and Antihypothermic Action. J. Agric. Food Chem. 2017, 65, 1365–1370. [Google Scholar] [CrossRef] [PubMed]
- Londhe, V.Y.; Khogta, S.M.; Barve, K.H. Improved anti-arthritic activity of ginger extract, a traditional medicine, using novel drug delivery approach. J. Complement. Integr. Med. 2020, 18, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef] [PubMed]
- Shariare, M.H.; Khan, M.A.; Al-Masum, A.; Khan, J.H.; Uddin, J.; Kazi, M. Development of Stable Liposomal Drug Delivery System of Thymoquinone and Its In Vitro Anticancer Studies Using Breast Cancer and Cervical Cancer Cell Lines. Molecules 2022, 27, 6744. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Khan, A.M.; Karim, S.; Kamal, M.A.; Damanhouri, G.A.; Mirza, Z. Panacea seed “Nigella”: A review focusing on regenerative effects for gastric ailments. Saudi J. Biol. Sci. 2016, 23, 542–553. [Google Scholar] [CrossRef]
- Azlan, A.; Sultana, S.; Huei, C.S.; Razman, M.R. Antioxidant, Anti-Obesity, Nutritional and Other Beneficial Effects of Different Chili Pepper: A Review. Molecules 2022, 27, 898. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, M.; Zheng, X.; Lang, H. Association between chili pepper consumption and risk of gastrointestinal-tract cancers: A meta-analysis. Front. Nutr. 2022, 9, 935865. [Google Scholar] [CrossRef]
- Bley, K.; Boorman, G.; Mohammad, B.; McKenzie, D.; Babbar, S. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaicin. Toxicol. Pathol. 2012, 40, 847–873. [Google Scholar] [CrossRef] [PubMed]
- Merritt, J.C.; Richbart, S.D.; Moles, E.G.; Cox, A.J.; Brown, K.C.; Miles, S.L.; Finch, P.T.; Hess, J.A.; Tirona, M.T.; Valentovic, M.A.; et al. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol. Ther. 2022, 238, 108177. [Google Scholar] [CrossRef] [PubMed]
- José Bagur, M.; Alonso Salinas, G.L.; Jiménez-Monreal, A.M.; Chaouqi, S.; Llorens, S.; Martínez-Tomé, M.; Alonso, G.L. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2017, 23, 30. [Google Scholar] [CrossRef] [PubMed]
- Predieri, S.; Magli, M.; Gatti, E.; Camilli, F.; Vignolini, P.; Romani, A. Chemical Composition and Sensory Evaluation of Saffron. Foods 2021, 10, 2604. [Google Scholar] [CrossRef] [PubMed]
- Masi, E.; Taiti, C.; Heimler, D.; Vignolini, P.; Romani, A.; Mancuso, S. PTR-TOF-MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) from Italy and Iran. Food Chem. 2016, 192, 75–81. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, M.V.; López-Córcoles, H.; Alonso, G.L.; Pappas, C.S.; Polissiou, M.G.; Tarantilis, P.A. Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food Chem. 2017, 221, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Vakili, R.; Toroghian, M.; Torshizi, M.E. Saffron extract feed improves the antioxidant status of laying hens and the inhibitory effect on cancer cells (PC3 and MCF7) Growth. Vet. Med. Sci. 2022, 8, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Bathaie, S.Z.; Miri, H.; Mohagheghi, M.A.; Mokhtari-Dizaji, M.; Shahbazfar, A.A.; Hasanzadeh, H. Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat. Iran. J. Basic Med. Sci. 2013, 16, 27. [Google Scholar]
- Wu, Z.; Hui, J. Crocin reverses 1-methyl-3-nitroso-1-nitroguanidine (MNNG)-induced malignant transformation in GES-1 cells through the Nrf2/Hippo signaling pathway. J. Gastrointest. Oncol. 2020, 11, 1242–1252. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Q.; Shang, J.; Lu, L.; Chen, G. Crocin inhibits the migration, invasion, and epithelial-mesenchymal transition of gastric cancer cells via miR-320/KLF5/HIF-1α signaling. J. Cell. Physiol. 2019, 234, 17876–17885. [Google Scholar] [CrossRef]
- Shafiee, M.; Arekhi, S.; Omranzadeh, A.; Sahebkar, A. Saffron in the treatment of depression, anxiety and other mental disorders: Current evidence and potential mechanisms of action. J. Affect. Disord. 2018, 227, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Shakib, S.S.; Sameni, A.K.; Taghiabadi, E. Acute and Subacute Toxicity of Safranal, a Constituent of Saffron, in Mice and Rats. Iran. J. Pharm. Res. IJPR 2013, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Mohamadpour, A.H.; Ayati, Z.; Parizadeh, M.R.; Rajbai, O.; Hosseinzadeh, H. Safety Evaluation of Crocin (a constituent of saffron) Tablets in Healthy Volunteers. Iran. J. Basic Med. Sci. 2013, 16, 39. [Google Scholar]
- Modaghegh, M.H.; Shahabian, M.; Esmaeili, H.A.; Rajbai, O.; Hosseinzadeh, H. Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine 2008, 15, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Venugopala, K.N.; Jeewon, R.; Zengin, G.; Mahomoodally, M.F. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Crit. Rev. Food Sci. Nutr. 2019, 59, S210–S243. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.U.; Imran, M.; Nadeem, M.; Tufail, T.; Gondal, T.A.; Mubarak, M.S. Piperine: A review of its biological effects. Phytother. Res. 2021, 35, 680–700. [Google Scholar] [CrossRef] [PubMed]
- Prashant, A.; Rangaswamy, C.; Yadav, A.; Reddy, V.; Sowmya, M.; Madhunapantula, S. In vitro anticancer activity of ethanolic extracts of Piper nigrum against colorectal carcinoma cell lines. Int. J. Appl. Basic Med. Res. 2017, 7, 67–72. [Google Scholar] [CrossRef]
- Lasso, P.; Rojas, L.; Arévalo, C.; Urueña, C.; Murillo, N.; Nossa, P.; Sandoval, T.; Chitiva, L.C.; Barreto, A.; Costa, G.M.; et al. Piper nigrum extract suppresses tumor growth and enhances the antitumor immune response in murine models of breast cancer and melanoma. Cancer Immunol. Immunother. 2023, 72, 3279–3292. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yang, Y.; Sheng, Y.J.; Wang, J.; Ruan, S.; Han, C. Mechanism of piperine in affecting apoptosis and proliferation of gastric cancer cells via ROS-mitochondria-associated signalling pathway. J. Cell. Mol. Med. 2021, 25, 9513–9522. [Google Scholar] [CrossRef]
- Bastaki, M.; Aubanel, M.; Bauter, M.; Cachet, T.; Demyttenaere, J.; Diop, M.M.; Harman, C.L.; Hayashi, S.m.; Krammer, G.; Li, X.; et al. Absence of adverse effects following administration of piperine in the diet of Sprague-Dawley rats for 90 days. Food Chem. Toxicol. 2018, 120, 213–221. [Google Scholar] [CrossRef]
- Thiel, A.; Buskens, C.; Woehrle, T.; Etheve, S.; Schoenmakers, A.; Fehr, M.; Beilstein, P. Black pepper constituent piperine: Genotoxicity studies in vitro and in vivo. Food Chem. Toxicol. 2014, 66, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Ziegenhagen, R.; Heimberg, K.; Lampen, A.; Hirsch-Ernst, K.I. Safety Aspects of the Use of Isolated Piperine Ingested as a Bolus. Foods 2021, 10, 2121. [Google Scholar] [CrossRef]
- Chinta, G.; Periyasamy, L. Reversible Anti-Spermatogenic Effect of Piperine on Epididymis and Seminal Vesicles of Albino Rats. Drug Res. 2016, 66, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Chinta, G.; Coumar, M.S.; Periyasamy, L. Reversible Testicular Toxicity of Piperine on Male Albino Rats. Pharmacogn. Mag. 2017, 13, S525–S532. [Google Scholar] [CrossRef]
- Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine-The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Compr. Rev. Food Sci. Food Saf. 2017, 16, 124–140. [Google Scholar] [CrossRef]
- Ganesh Bhat, B.; Chandrasekhara, N. Studies on the metabolism of piperine: Absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology 1986, 40, 83–92. [Google Scholar] [CrossRef]
- Suresh, D.; Srinivasan, K. Studies on the in vitro absorption of spice principles--curcumin, capsaicin and piperine in rat intestines. Food Chem. Toxicol. 2007, 45, 1437–1442. [Google Scholar] [CrossRef]
- Allegra, A.; Tonacci, A.; Pioggia, G.; Musolino, C.; Gangemi, S. Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials. Nutrients 2020, 12, 1739. [Google Scholar] [CrossRef]
- Moore, J.; Yousef, M.; Tsiani, E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients 2016, 8, 731. [Google Scholar] [CrossRef]
- Karimi, N.; Rashedi, J.; Poor, B.M.; Arabi, S.; Ghorbani, M.; Tahmasebpour, N.; Asgharzadeh, M. Cytotoxic effect of rosemary extract on gastric adenocarcinoma (AGS) and esophageal squamous cell carcinoma (KYSE30) cell lines. Gastroenterol. Hepatol. Bed Bench 2017, 10, 102. [Google Scholar]
- Anadón, A.; Martínez-Larrañaga, M.R.; Martínez, M.A.; Ares, I.; García-Risco, M.R.; Señoráns, F.J.; Reglero, G. Acute oral safety study of rosemary extracts in rats. J. Food Prot. 2008, 71, 790–795. [Google Scholar] [CrossRef]
- Mandal, D.; Sarkar, T.; Chakraborty, R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl. Biochem. Biotechnol. 2023, 195, 1319–1513. [Google Scholar] [CrossRef]
- Ke, Y.; Geng, C.; Lin, L.; Zhao, M.; Rao, H. Pectin-type polysaccharide from galangal: An efficient emulsifier to construct the emulsion-based delivery system for galangal flavonoids. Int. J. Biol. Macromol. 2022, 221, 644–652. [Google Scholar] [CrossRef]
- Simon, A.; Nghiem, K.S.; Gampe, N.; Garádi, Z.; Boldizsár, I.; Backlund, A.; Darcsi, A.; Nedves, A.N.; Riethmüller, E. Stability Study of Alpinia galanga Constituents and Investigation of Their Membrane Permeability by ChemGPS-NP and the Parallel Artificial Membrane Permeability Assay. Pharmaceutics 2022, 14, 1967. [Google Scholar] [CrossRef]
- Tian, Y.; Jia, X.; Wang, Q.; Lu, T.; Deng, G.; Tian, M.; Zhou, Y. Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil. Pharmaceuticals 2022, 15, 1069. [Google Scholar] [CrossRef]
- Kazemi, S.; Asadi, F.; Barari, L.; Morakabati, P.; Jahani, M.; Kani, S.N.M.; Soorani, F.; Kolangi, F.; Memariani, Z. Quantification of Flavonoids in Alpinia officinarum Hance. via HPLC and Evaluation of its Cytotoxicity on Human Prostate Carcinoma (LNCaP) and Breast Carcinoma (MCF-7) Cells. Anticancer Agents Med. Chem. 2022, 22, 721–730. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Y.; Sun, M.; Xu, Y.; Chen, L. Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance. Molecules 2022, 27, 4308. [Google Scholar] [CrossRef]
- Tang, X.; Xu, C.; Yagiz, Y.; Simonne, A.; Marshall, M.R. Phytochemical profiles, and antimicrobial and antioxidant activities of greater galangal [Alpinia galanga (Linn.) Swartz.] flowers. Food Chem. 2018, 255, 300–308. [Google Scholar] [CrossRef]
- Yuandani; Jantan, I.; Haque, M.A.; Rohani, A.S.; Nugraha, S.E.; Salim, E.; Septama, A.W.; Juwita, N.A.; Khairunnisa, N.A.; Nasution, H.R.; et al. Immunomodulatory effects and mechanisms of the extracts and secondary compounds of Zingiber and Alpinia species: A review. Front. Pharmacol. 2023, 14, 1222195. [Google Scholar] [CrossRef]
- Hadjzadeh, M.A.R.; Ghanbari, H.; Keshavarzi, Z.; Tavakol-Afshari, J. The Effects of Aqueous Extract of Alpinia Galangal on Gastric Cancer Cells (AGS) and L929 Cells in Vitro. Iran. J. Cancer Prev. 2014, 7, 142. [Google Scholar]
- Ma, Y.L.; Zhao, F.; Yin, J.T.; Liang, C.J.; Niu, X.L.; Qiu, Z.H.; Zhang, L.T. Two Approaches for Evaluating the Effects of Galangin on the Activities and mRNA Expression of Seven CYP450. Molecules 2019, 24, 1171. [Google Scholar] [CrossRef]
- Rampogu, S.; Gajula, R.G.; Lee, K.W. A comprehensive review on chemotherapeutic potential of galangin. Biomed. Pharmacother. 2021, 141, 111808. [Google Scholar] [CrossRef]
- Zhang, C.R.; Dissanayake, A.A.; Kevseroǧlu, K.; Nair, M.G. Evaluation of coriander spice as a functional food by using in vitro bioassays. Food Chem. 2015, 167, 24–29. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Roselin, P.; Singh, K.K.; Zachariah, J.; Saxena, S.N. Postharvest Processing and Benefits of Black Pepper, Coriander, Cinnamon, Fenugreek, and Turmeric Spices. Crit. Rev. Food Sci. Nutr. 2016, 56, 1585–1607. [Google Scholar] [CrossRef]
- Shukla, S.; Gupta, S. Coriander. In Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine; World Scientific: Singapore, 2022; pp. 149–172. [Google Scholar] [CrossRef]
- Cherng, J.M.; Shieh, D.E.; Chiang, W.; Chang, M.Y.; Chiang, L.C. Chemopreventive effects of minor dietary constituents in common foods on human cancer cells. Biosci. Biotechnol. Biochem. 2007, 71, 1500–1504. [Google Scholar] [CrossRef]
- Mirza, M.A.; Mahmood, S.; Hilles, A.R.; Ali, A.; Khan, M.Z.; Zaidi, S.A.A.; Iqbal, Z.; Ge, Y. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications—A Review. Pharmaceuticals 2023, 16, 1631. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Z.; Zhu, J.; Liang, Q.; Zhou, H.; Li, J.; Fan, X.; Zhao, Z.; Pan, H.; Fei, B. Systematic Elucidation of the Mechanism of Quercetin against Gastric Cancer via Network Pharmacology Approach. BioMed Res. Int. 2020, 2020, 3860213. [Google Scholar] [CrossRef]
- Haghi, A.; Azimi, H.; Rahimi, R. A Comprehensive Review on Pharmacotherapeutics of Three Phytochemicals, Curcumin, Quercetin, and Allicin, in the Treatment of Gastric Cancer. J. Gastrointest. Cancer 2017, 48, 314–320. [Google Scholar] [CrossRef]
- Li, H.; Chen, C. Quercetin Has Antimetastatic Effects on Gastric Cancer Cells via the Interruption of uPA/uPAR Function by Modulating NF-κb, PKC-δ, ERK1/2, and AMPKα. Integr. Cancer Ther. 2018, 17, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Mlambo, R.; Shaw, I.; Seid, Y.; Shah, H.; He, Y.; Kpegah, J.K.S.K.; Tan, S.; Zhou, W.; He, B. Cryopreservation of bioflavonoid-rich plant sources and bioflavonoid-microcapsules: Emerging technologies for preserving bioactivity and enhancing nutraceutical applications. Front. Nutr. 2023, 10, 1232129. [Google Scholar] [CrossRef]
- Dos Santos Szewczyk, K.; Skowrońska, W.; Kruk, A.; Makuch-Kocka, A.; Bogucka-Kocka, A.; Miazga-Karska, M.; Grzywa-Celińska, A.; Granica, S. Chemical composition of extracts from leaves, stems and roots of wasabi (Eutrema japonicum) and their anti-cancer, anti-inflammatory and anti-microbial activities. Sci. Rep. 2023, 13, 9142. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Lee, T.H.; Ham, S.L.; Subedi, L.; Hong, S.M.; Kim, S.Y.; Choi, S.U.; Kim, C.S.; Lee, K.R. Anticancer and Anti-Neuroinflammatory Constituents Isolated from the Roots of Wasabia japonica. Antioxidants 2022, 11, 482. [Google Scholar] [CrossRef] [PubMed]
- Tarar, A.; Peng, S.; Cheema, S.; Peng, C.A. Anticancer Activity, Mechanism, and Delivery of Allyl Isothiocyanate. Bioengineering 2022, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.X.; Fukuda, M.; Fujii, M.; Fuke, Y. Transcriptional regulation of nicotinamide adenine dinucleotide phosphate: Quinone oxidoreductase in murine hepatoma cells by 6-(methylsufinyl)hexyl isothiocyanate, an active principle of wasabi (Eutrema wasabi Maxim). Cancer Lett. 2000, 161, 195–200. [Google Scholar] [CrossRef]
- Wang, Q.; Bao, Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic. Biol. Med. 2021, 167, 125–140. [Google Scholar] [CrossRef]
- Tanida, N.; Kawaura, A.; Takahashi, A.; Sawada, K.; Shimoyama, T. Suppressive effect of wasabi (pungent Japanese spice) on gastric carcinogenesis induced by MNNG in rats. Nutr. Cancer 1991, 16, 53–58. [Google Scholar] [CrossRef]
- Nakajima, R.; Kanou, M.; Tokushima, M.; Iwama, Y.; Yamana, K. Oral administration of 6-methylsulfinylhexyl isothiocyanate extracted from wasabi is safe and improves the fatigue and sleep of healthy volunteers. Biopsychosoc. Med. 2023, 17, 30. [Google Scholar] [CrossRef]
- Janczewski, Ł. Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity. Molecules 2022, 27, 1750. [Google Scholar] [CrossRef]
- Li, S.; Khoi, P.N.; Yin, H.; Sah, D.K.; Kim, N.H.; Lian, S.; Jung, Y. Do Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells. Int. J. Mol. Sci. 2022, 23, 5172. [Google Scholar] [CrossRef]
- Dong, Q.Q.; Wang, Q.T.; Wang, L.; Jiang, Y.X.; Liu, M.L.; Hu, H.J.; Liu, Y.; Zhou, H.; He, H.P.; Zhang, T.C.; et al. SMYD3-associated pathway is involved in the anti-tumor effects of sulforaphane on gastric carcinoma cells. Food Sci. Biotechnol. 2018, 27, 1165–1173. [Google Scholar] [CrossRef]
- Dutta, A.; Chakraborty, A. Cinnamon in Anticancer Armamentarium: A Molecular Approach. J. Toxicol. 2018, 2018, 8978731. [Google Scholar] [CrossRef]
- Günes-Bayir, A.; Kocyigit, A.; Güler, E.M.; Bilgin, M.G.; Ergün, İ.S.; Dadak, A. Effects of carvacrol on human fibroblast (WS-1) and gastric adenocarcinoma (AGS) cells in vitro and on Wistar rats in vivo. Mol. Cell. Biochem. 2018, 448, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Günes-Bayir, A.; Kocyigit, A.; Güler, E.M. In vitro effects of two major phenolic compounds from the family Lamiaceae plants on the human gastric carcinoma cells. Toxicol. Ind. Health 2018, 34, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Günes-Bayir, A.; Kocyigit, A.; Guler, E.M.; Dadak, A. In Vitro Hormetic Effect Investigation of Thymol on Human Fibroblast and Gastric Adenocarcinoma Cells. Molecules 2020, 25, 3270. [Google Scholar] [CrossRef]
- Ballester, P.; Cerdá, B.; Arcusa, R.; García-Muñoz, A.M.; Marhuenda, J.; Zafrilla, P. Antioxidant Activity in Extracts from Zingiberaceae Family: Cardamom, Turmeric, and Ginger. Molecules 2023, 28, 4024. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, C.; Mahurkar, N. In vitro cytotoxicity of cardamom oil, lemon oil, and jasmine oil on human skin, gastric, and brain cancer cell line. J. Cancer Res. Ther. 2021, 17, 62–68. [Google Scholar] [CrossRef] [PubMed]
- El Bairi, K.; Ouzir, M.; Agnieszka, N.; Khalki, L. Anticancer potential of Trigonella foenum graecum: Cellular and molecular targets. Biomed. Pharmacother. 2017, 90, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.L.; Wang, Q.; Zhang, X.Q.; Wang, M.; Hu, H.; Tang, J.J.; Yang, X.T.; Ran, Y.H.; Liu, H.H.; Song, Z.X.; et al. Anticancer Activity of Diosgenin and Its Molecular Mechanism. Chin. J. Integr. Med. 2023, 29, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.; Filipović, V.; Stanković, J.; Cvetković, M.; Đukanović, L. The Influence of Environmental Conditions on Carum carvi L. var. annum Seed Quality. Ratar. Povrt. 2015, 52, 91–96. [Google Scholar] [CrossRef]
- Naderi-Kalali, B.; Allameh, A.; Rasaee, M.J.; Bach, H.J.; Behechti, A.; Doods, K.; Kettrup, A.; Schramm, K.W. Suppressive effects of caraway (Carum carvi) extracts on 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin-dependent gene expression of cytochrome P450 1A1 in the rat H4IIE cells. Toxicol. In Vitro 2005, 19, 373–377. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wang, L.; Liu, D.W.; Tang, G.Y.; Zhang, H.Y. Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803. J. Med. Food 2014, 17, 955. [Google Scholar] [CrossRef]
- Kasetti, R.B.; Nabi, S.A.; Swapna, S.; Apparao, C. Cinnamic acid as one of the antidiabetic active principle(s) from the seeds of Syzygium alternifolium. Food Chem. Toxicol. 2012, 50, 1425–1431. [Google Scholar] [CrossRef]
- Rani, R.; Kumar, M. Plant Archives clove (Syzygium aromaticum): Beneficial effects on human health: A review. Jena Plant Arch. 2021, 21, 1967–1972. [Google Scholar] [CrossRef]
- Kashyap, D.; Baral, B.; Verma, T.P.; Sonkar, C.; Chatterji, D.; Jain, A.K.; Jha, H.C. Oral rinses in growth inhibition and treatment of Helicobacter pylori infection. BMC Microbiol. 2020, 20, 45. [Google Scholar] [CrossRef]
- Santin, J.R.; Lemos, M.; Klein-Júnior, L.C.; Machado, I.D.; Costa, P.; De Oliveira, A.P.; Tilia, C.; De Souza, J.P.; De Sousa, J.P.B.; Bastos, J.K.; et al. Gastroprotective activity of essential oil of the Syzygium aromaticum and its major component eugenol in different animal models. Naunyn-Schmiedeberg Arch. Pharmacol. 2011, 383, 149–158. [Google Scholar] [CrossRef]
- Capasso, R.; Pinto, L.; Vuotto, M.L.; Di Carlo, G. Preventive effect of eugenol on PAF and ethanol-induced gastric mucosal damage. Fitoterapia 2000, 71, S131–S137. [Google Scholar] [CrossRef]
- Hobani, Y.H.; Mohan, S.; Shaheen, E.; Abdelhaleem, A.; Faruque Ahmad, M.; Bhatia, S.; Abou-Elhamd, A.S. Gastroprotective effect of low dose Eugenol in experimental rats against ethanol induced toxicity: Involvement of antiinflammatory and antioxidant mechanism. J. Ethnopharmacol. 2022, 289, 115055. [Google Scholar] [CrossRef]
- Jahangir, M.A.; Taleuzzaman, M.; Beg, S.; Verma, S.; Gilani, S.J.; Alam, P. A Review of Eugenol-based Nanomedicine: Recent Advancements. Curr. Bioact. Compd. 2020, 17, 214–219. [Google Scholar] [CrossRef]
- Begum, S.N.; Ray, A.S.; Rahaman, C.H. A comprehensive and systematic review on potential anticancer activities of eugenol: From pre-clinical evidence to molecular mechanisms of action. Phytomedicine 2022, 107, 154456. [Google Scholar] [CrossRef]
- Mashraqi, A. Induction role of chitosan nanoparticles to Anethum graveolens extract against food-borne bacteria, oxidant, and diabetic activities in vitro. Front. Microbiol. 2023, 14, 1209524. [Google Scholar] [CrossRef]
- Sadeghian, S.; Neyestani, T.R.; Shirazi, M.H.; Ranjbarian, P. Bacteriostatic effect of dill, fennel, caraway and cinnamon extracts against Helicobacter pylori. J. Nutr. Environ. Med. 2005, 15, 47–55. [Google Scholar] [CrossRef]
- Mohsin, M.M.; Hanif, M.A.; Ayub, M.A.; Bhatti, I.A.; Jilani, M.I. Dill. In Medicinal Plants of South Asia Novel Sources for Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 231–239. [Google Scholar] [CrossRef]
- Noumi, E.; Ahmad, I.; Adnan, M.; Merghni, A.; Patel, H.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Ghannay, S.; Aouadi, K.; et al. GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum graveolens L. Essential Oil: Molecular Docking Study and In-Silico ADME Profiling. Plants 2023, 12, 1997. [Google Scholar] [CrossRef] [PubMed]
- Desta, K.T.; Kim, G.S.; El-Aty, A.M.A.; Raha, S.; Kim, M.B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H.C.; Shim, J.H.; et al. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC–ESI–MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B 2017, 1053, 1–8. [Google Scholar] [CrossRef]
- Sun, X.; Chen, W.; Dai, W.; Xin, H.; Rahmand, K.; Wang, Y.; Zhang, J.; Zhang, S.; Xu, L.; Han, T. Piper sarmentosum Roxb.: A review on its botany, traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol. 2020, 263, 112897. [Google Scholar] [CrossRef]
Spice | Active Compounds | Use in GC Prevention | Additional Information |
---|---|---|---|
Turmeric [16,17,18,19] | curcumin | exhibits anti-inflammatory, antioxidant properties; antibacterial properties are related to the inhibition of H. pylori infection; | - |
Ginger [20,21,22] | 6-gingerol 8-paradol | shows anti-inflammatory effects and inhibition of H. pylori infection; | - |
Garlic [23,24] | allicin | lack of strong evidence regarding the use of garlic in the prevention of GC | - |
Black cumin [25,26] | thymoquinone | shows activity against H. pylori infection | combination of black cumin with honey (12 also shows activity against H. pylori |
Black pepper [27,28,29] | piperine | inhibition of gastritis caused by H. pylori, reduction of the number of H. pylori colonies, inhibition of H. pylori adhesion to GC cells and reduction of their motility, inhibition of the translocation of H. pylori toxins | - |
Galangal [30,31,32,33,34,35] | galangin | exhibits anti-inflammatory, antioxidant, antimicrobial effects (inhibitory effect on H. pylori), | anticancer potential of galangin by inhibiting benzoapirene-induced gastric cancer development |
Coriander [33] | inhibitory effect on ROS and IL8 generation of coriander extract on H. pylori-infected AGS cells, | ||
Wasabi [36] | allyl isothiocyanate | reduction of symptoms associated with H. pylori infection | - |
Oregano [37] | thymol ρ-cymene γ-terpinene carvacrol | exhibits anti-inflammatory properties | reduction of expression cytokines (IL-1β, IL-6, and TNF-α), and other inflammatory mediators (VEGF and TGF-β) |
Cardamon [38] | 1,8-cineole, α-terpinyl acetate, nerolidol, sabinene, g-terpinene, α-pinene, methyl linoleate, α-terpineol, β-pinene, n-hexadecanoic acid, and limonene | reduction of tumor incidence and multiplicity | cardamon modulates phase II detoxifying enzymes, particularly GST, activates antioxidant enzymes, elevates GSH levels, and inhibits lipid peroxidation levels and LDH activity |
Caraway [4,39,40,41,42] | d-carvone, limonene, nsLTPs | exhibits antioxidant, anti-inflammatory, and anticancer effects, inhibit cell proliferation, increase ROS production, and induce apoptosis | - |
Clove [43,44,45,46,47,48] | eugenol, 5-hydroxy-7,4′-dimethoxy-6,8-di-C-methylflavone (eucalyptin), kaempferol 3-O-β-d-glucopyranoside, kaempferol 3-O-α-l-rhamnopyranoside | exhibits inhibitory effect on AGS gastric cancer cell proliferation, oxidant and cytotoxic effect on cancer cells, has antibacterial activity against H. pylori | - |
Dill [49,50,51,52] | carvone, d-limonene | antioxidant, anti-radicals, antisecretory and anti-ulcer effects, antimicrobial activity against H. pylori | - |
Thyme [53,54,55] | thymol, p-cymene, eugenol, carvacolic acid, chlorogenic acid, | exhibits genotoxic and cytotoxic effects on AGS cells, induces apoptosis in human AGS cells | - |
Piper sarmentosum [56] | volatile oil, alkaloids, sterols, and lignans | Piper sarmentosum supplementation significantly reduced the results of gastric lesions. Oral Piper sarmentosum supplementation supports protection against the occurrence of gastric lesions | - |
Spice | Active Compounds | Use in GC Treatment | Mechanism | Additional Information |
---|---|---|---|---|
Tumeric [57,58,59,60,61,62,63] | curcumin | inhibits proliferation, migration, inducts apoptosis | suppression of the Shh, Wnt, PI3K signaling pathways; activation of the P53 signaling pathway; epigenetic modification | epigenetic modifications involve upregulation of histone acetylation and deacetylation enzymes, upregulation of mir34, mir33b, downregulation of mir21 expression |
Ginger [64,65,66,67] | 6-gingerol 8-paradol | inhibits GC cell proliferation; induces apoptosis; increases the radiosensitivity of GC cells; increases the sensitivity of GC cells to cisplatin | 8-Paradol induces tumor cell apoptosis by promoting PINK1/Parkin-mediated mitophagy of cells | - |
Garlic [68,69,70,71,72,73,74,75,76,77,78,79] | allicin diallyl disulfide diallyl trisulfide s-allilocysteine | induces apoptosis, inhibits proliferation, and arrests GC cells in the G2/M phase of the cell cycle | allicin induces cytochrome release from mitochondria, hydroxylation of caspases, activation of p38 MAPK/caspase 3 pathway; diallyl disulfide is associated with the arrest of GC cells in the G2/M phase of the cell cycle; diallyl trisulfide activates AMPK | Garlic supplementation appears to have a beneficial effect on reducing the risk of death from GC; s-allilocysteine inhibits the activation of inflammatory mediators, which can be used to treat gastric ulcers |
Black cumin [80,81,82,83] | thymoquinone | inhibits proliferation and induces apoptosis | inhibition of PI3K/Akt/mTOR and STAT3 pathway; potentiation the effects of 5-fluorouracil | - |
Chili pepper [84,85,86,87,88] | capsaicin | inhibits proliferation and induces apoptosis of GC cells | increases production of caspase-3; reduces the expression of Bcl-2; reduces the expression of phosphorylated ERK 1/2, p38 MAPK, or JNK epigenetic modifications: restoring the activity of hMOF HATs | may increase the risk of GC |
Saffron [89,90,91,92] | crocin crocetin | inhibition of GC cell proliferation; stimulation of apoptosis stimulation of apoptosis inhibition of angiogenesis | reduction of expression TPM4 increase in Bax/Bcl-2 ratio and activation of caspases reduction of the Bcl-2/Bax ratio inhibition of the sonic hedgehog signaling pathway | - |
Black pepper [93,94] | piperine | inhibition of GC cell proliferation and induction of apoptosis inhibition of IL-6 | inhibition of the PI3K/Akt signaling pathway suppression of p38 MAPK and STAT3 | - |
Rosemary [95,96] | carnosol sageon | induction of apoptosis, inhibition of the growth of GC cells, reduction in the volume and weight of the gastric tumor induction of apoptosis | inhibition of the RSK/CREB signaling pathway loss of the MMP and activation of caspase proteins | - |
Galangal [31,32,97,98,99] | galangin | Induction of apoptosis inhibiting cell growth decreasing cell viability | decreased expression of Bcl-2 and CASP3, increased protein expression of cleaved CASP3 and cleaved PARP, reduced expression of PCNA and Ki67 mitochondrial pathway involving CASP8/Bid/Bax activation decreased expression of Bcl-2 and Bcl-xl, increased expression of Bax protein increased expression of CASP3, CASP9, and PARP polymerase, inhibition of ERK1/2 activity and stimulation of c-JNK reduction in the ratio of p-JAK2/JAK2 and p-STAT3/STAT3 and protein expression of Bcl-2, CASP3, and Ki67 increased protein expression of cleaved CASP3 and cleaved PARP suppression of NF-κB pathway and enhancement of autophagy modulation of STAT3 activation and increase in ROS | Increased expression of Uch-L1 while decreased expression of GSTP can suggest an antitumor effect of galangin by a particular mechanism |
Coriander [100,101,102,103,104,105] | quercetin | inhibiting cell growth induction of apoptosis | increased expression of pyroptosis proteins: GSDMD, GSDME, CASP1, NLRP3, and apoptosis markers CASP3 and PARP Affecting TP53, MYC, and TIMP1 CASP3 and CASP9 activation, Bcl-2 downregulation Bax, and cyt-c upregulation | Quercetin is suggested to have a positive effect on reducing the degree of resistance of gastric cancer cell lines to daunorubicin (EPG85-257RDB) or oxaliplatin (KATOIII/OxR) and increased efficacy of chemotherapy with irinotecan/SN-38 |
Wasabi [106,107,108,109,110,111] | allyl isothiocyanate sulforaphane | inhibition of cell migration and invasion decreasing cell viability inhibition of cancer cell activity inhibition of cancer cell proliferation induction of apoptosis | inhibition of PI3K/AKT, uPA, and MAPK signaling pathways; decreased MMP-2 and MMP-9 activity changes in the expression of DNA damage and repair proteins PDL-1 induction glycolysis inhibition involvement of miR-4521-dependent mediator | - |
Cinnamon [112,113,114] | eugenol cinnamaldehyde beta-caryophyllene beta-caryophyllene oxide | reduction of tumor growth, inhibition of GC cell proliferation induction of apoptosis inhibits the proliferation of GC cells and induces endoplasmic reticulum stress and autophagic cell death | antiproliferative effect of eugenol for NF-κB family members and the NF-κB target genes eugenol stimulates the expression of caspase-8 and caspase-3 cinnamaldehyde activates the PERK-CHOP signaling pathway, inhibits G9a binding on the Beclin-1 and LC3B promoter, and disrupts the Bcl-2–Beclin-1 interaction | decrease in substances responsible for cell cycle promotion and an increase in those responsible for cell cycle inhibition eugenol can stimulate caspase-8 and caspase-3 even when p53 is absent |
Oregano [37,53,115] | thymol carvacrol ρ-cymene γ-terpinene | inhibition of GC cell proliferation and migration (oregano oil) decrease in protein accumulation involved in the fatty acid and cholesterol biosynthesis pathway (oregano oil) carvacrol induces apoptosis via the mitochondrial pathway carvacrol exhibits pro-oxidant properties | reduction of expression HMGCR, ACC, SPREPB1, FASN reduction of the Bcl-2/Bax ratio and activation of caspase 9 ROS-generating effect | potential apoptotic activity of carvacrol at high doses |
Fenugreek [116,117,118] | steroidal sapogenins e.g., diosgenin, trigonelline, choline, gentianine and carpain, quercetin, luteolin, vitexin cinnamate, vicenin, and isovitexin, saponins | diosgenin: inhibition of GC cell proliferation inhibition of GC invasion decrease in the cell viability arrest of GC cells in the G0/G1 phase of the cell cycle induce apoptosis | reduction expression of MESP1, induction expression of ARF stimulation of expression of cell adhesion molecules, e.g., E-cadherin | |
Caraway [4,41,119] | d-carvone limonene | inhibits cell proliferation, increases ROS production, and induces apoptosis and loss of mitochondrial membrane potential In a study on nude mice with human gastric cancer implanted, d-limonene, a decrease in tumor weight and a decrease in the incidence of liver and peritoneal metastases were seen | downregulates the JAK/STAT2 signaling pathway in gastric cancer AGS cells and inhibits JAK/STAT3 signaling pathway in gastric cancer AGS cells exhibits cytotoxic effects in cells in the MGC803, induces apoptosis, has antioxidant effects, reduces MMP and lower Blc-2 expression, increases caspase-3 expression | this effect is stronger when d-limonene with berberine is used simultaneously |
Clove [44,45,113,120,121] | eugenol flavonoids: 5-hydroxy-7,4′-dimethoxy-6,8-di-C-methylflavone (eucalyptin), kaempferol 3-O-β-d-glucopyranoside, and kaempferol 3-O-α-l-rhamnopyranoside | shows an inhibitory effect on AGS gastric cancer cell proliferation inhibited the proliferation of human GC cells | induces apoptosis of cancer cells early; mainly causing a decrease in the S-phase population; induces caspase-8 and caspase-3 in the absence of p53; has anti-metastatic activities on AGS cell line independent of p53, P21, and SMAD4; inhibits the secretion of TGF-β type 2 isoform and intracellular expression of TGF-β. stops the G2/M phase of the cell cycle of human GC cells | Eugenol derivatives of β-aminoalcohol were more cytotoxic to A549 and AGS cells compared to β-alkoxyalcohol derivatives and the parent substance |
Thyme [53,54,55] | thymol carvacrol chlorogenic acid | exhibits genotoxic and cytotoxic effects on AGS cells inhibited cell proliferation-induced DNA damage, apoptosis, and ROS production shows affinity for GC target genes, strong anticancer activity against various cancer and non-cancer cell lines | induces apoptosis by producing ROS and regulates the cell cycle by prolonging the sub-G1 cellular phase in AGS cells, damages MMPs and activates proapoptotic proteins; Bax; PARP; and caspase-7, -8, and -9, increases in caspase-3 exhibits antiproliferative effects and induction of apoptosis, which are regulated by Bax, Bcl-2, caspase-3, and caspase-9 proteins | there are different data on the effect on Bcl-2 expression; depending on the study, thymol has no effect on Bcl-2 expression or causes a decrease in it |
Basil [122] | anthocyanin and flavonoid derivatives | cell death and inhibition of cell viability, cytotoxicity, antioxidant activity, apoptosis, reduced tumor growth, and cell cycle arrest | no exact data discovered | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostelecka, K.; Bryliński, Ł.; Komar, O.; Michalczyk, J.; Miłosz, A.; Biłogras, J.; Woliński, F.; Forma, A.; Baj, J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers 2024, 16, 1611. https://doi.org/10.3390/cancers16081611
Kostelecka K, Bryliński Ł, Komar O, Michalczyk J, Miłosz A, Biłogras J, Woliński F, Forma A, Baj J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers. 2024; 16(8):1611. https://doi.org/10.3390/cancers16081611
Chicago/Turabian StyleKostelecka, Katarzyna, Łukasz Bryliński, Olga Komar, Justyna Michalczyk, Agata Miłosz, Jan Biłogras, Filip Woliński, Alicja Forma, and Jacek Baj. 2024. "An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer" Cancers 16, no. 8: 1611. https://doi.org/10.3390/cancers16081611
APA StyleKostelecka, K., Bryliński, Ł., Komar, O., Michalczyk, J., Miłosz, A., Biłogras, J., Woliński, F., Forma, A., & Baj, J. (2024). An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers, 16(8), 1611. https://doi.org/10.3390/cancers16081611