Kinetics of IFNγ-Induced Cytokines and Development of Immune-Related Adverse Events in Patients Receiving PD-(L)1 Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Inclusion and Clinical Assessment
2.2. Sample Collection
2.3. Determination of Plasmatic Concentration of Cytokines
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics and Types of irAEs
3.2. Changes in the Levels of Cytokines during ICI Treatment According to irAE Severity
3.3. Interplay of Cytokines in irAE Samples, According to the Severity of the irAE
3.4. Clustering of irAE Samples Based on Cytokines and Their Association with Severity and Type of irAE
3.5. Pre-irAE Cytokine Levels as Predictive Markers for the Development of Serious irAEs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nixon, N.A.; Blais, N.; Ernst, S.; Kollmannsberger, C.; Bebb, G.; Butler, M.; Smylie, M.; Verma, S. Current landscape of immunotherapy in the treatment of solid tumours, with future opportunities and challenges. Curr. Oncol. 2018, 25, e373–e384. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Naidoo, J.; Murphy, C.; Atkins, M.B.; Brahmer, J.R.; Champiat, S.; Feltquate, D.; Krug, L.M.; Moslehi, J.; Pietanza, M.C.; Riemer, J.; et al. Society for Immunotherapy of Cancer (SITC) consensus definitions for immune checkpoint inhibitor-associated immune-related adverse events (irAEs) terminology. J. Immunother. Cancer 2023, 11, e006398. [Google Scholar] [CrossRef]
- von Itzstein, M.S.; Khan, S.; Gerber, D.E. Investigational Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Event Prediction and Diagnosis. Clin. Chem. 2020, 66, 779–793. [Google Scholar] [CrossRef]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Martínez-Sabadell, A.; Arenas, E.J.; Arribas, J. IFNγ Signaling in Natural and Therapy-Induced Antitumor Responses. Clin. Cancer Res. 2022, 28, 1243–1249. [Google Scholar] [CrossRef]
- Baechler, E.C.; Batliwalla, F.M.; Karypis, G.; Gaffney, P.M.; Ortmann, W.A.; Espe, K.J.; Shark, K.B.; Grande, W.J.; Hughes, K.M.; Kapur, V.; et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 2003, 100, 2610–2615. [Google Scholar] [CrossRef]
- Assassi, S.; Mayes, M.D.; Arnett, F.C.; Gourh, P.; Agarwal, S.K.; McNearney, T.A.; Chaussabel, D.; Oommen, N.; Fischbach, M.; Shah, K.R.; et al. Systemic Sclerosis and Lupus: Points in an Interferon-Mediated Continuum Shervin. Arthritis Rheum. 2010, 62, 589–598. [Google Scholar] [CrossRef]
- Kimoto, O.; Sawada, J.; Shimoyama, K.; Suzuki, D.; Nakamura, S.; Hayashi, H.; Ogawa, N. Activation of the interferon pathway in peripheral blood of patients with Sjögren’s syndrome. J. Rheumatol. 2011, 38, 310–316. [Google Scholar] [CrossRef]
- Perez, R.K.; Gordon, M.G.; Subramaniam, M.; Kim, M.C.; Hartoularos, G.C.; Targ, S.; Sun, Y.; Ogorodnikov, A.; Bueno, R.; Lu, A.; et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 2022, 376, eabf1970. [Google Scholar] [CrossRef]
- Kim, H.; De Jesus, A.A.; Brooks, S.R.; Liu, Y.; Huang, Y.; Vantries, R.; Montealegre Sanchez, G.A.; Rotman, Y.; Gadina, M.; Goldbach-Mansky, R. Development of a Validated Interferon Score Using NanoString Technology. J. Interf. Cytokine Res. 2018, 38, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Rice, G.I.; Melki, I.; Frémond, M.L.; Briggs, T.A.; Rodero, M.P.; Kitabayashi, N.; Oojageer, A.; Bader-Meunier, B.; Belot, A.; Bodemer, C.; et al. Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease. J. Clin. Immunol. 2016, 37, 123–132. [Google Scholar] [CrossRef]
- Groom, J. CXCR3 in T cell function. Bone 2008, 23, 620–631. [Google Scholar] [CrossRef]
- Tokunaga, R.; Zhang, W.; Naseem, M.; Puccini, A.; Berger, M.D.; Soni, S.; McSkane, M.; Baba, H.; Lenz, H.J. Target for Novel Cancer Therapy. Cancer Treat. Rev. 2018, 63, 40–47. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Wang, Q.; Jin, Z.; Shao, W.; Gao, Y.; Li, L.; Lin, K.; Zhu, L.; Wang, H.; et al. Tumor immunological phenotype signature-based high-throughput screening for the discovery of combination immunotherapy compounds. Sci. Adv. 2021, 7, eabd7851. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.T.; Ozga, A.J.; Servis, R.L.; Frederick, D.T.; Jennifer, A.; Fisher, D.E.; Freeman, G.J.; Boland, G.M.; Andrew, D. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti- PD-1 therapy. Immunity 2020, 50, 1498–1512. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Zhang, T.; Yang, X.; Zhong, J.; Wang, Y.; Chi, Y.; Wu, M.; An, T.; Li, J.; et al. Plasma cytokines interleukin-18 and C-X-C motif chemokine ligand 10 are indicative of the anti-programmed cell death protein-1 treatment response in lung cancer patients. Ann. Transl. Med. 2021, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Haratani, K.; Hayashi, H.; Chiba, Y.; Kudo, K.; Yonesaka, K.; Kato, R.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; Takeda, M.; et al. Association of immune-related adverse events with nivolumab efficacy in non-small cell lung cancer. JAMA Oncol. 2018, 4, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Indini, A.; Di Guardo, L.; Cimminiello, C.; Prisciandaro, M.; Randon, G.; De Braud, F.; Del Vecchio, M. Immune-related adverse events correlate with improved survival in patients undergoing anti-PD1 immunotherapy for metastatic melanoma. J. Cancer Res. Clin. Oncol. 2019, 145, 511–521. [Google Scholar] [CrossRef]
- Riudavets, M.; Mosquera, J.; Garcia-Campelo, R.; Serra, J.; Anguera, G.; Gallardo, P.; Sullivan, I.; Barba, A.; del Carpio, L.; Barnadas, A.; et al. Immune-Related Adverse Events and Corticosteroid Use for Cancer-Related Symptoms Are Associated with Efficacy in Patients with Non-small Cell Lung Cancer Receiving Anti-PD-(L)1 Blockade Agents. Front. Oncol. 2020, 10, 2020–2021. [Google Scholar] [CrossRef]
- Hu, W.; Wang, G.; Wang, Y.; Riese, M.J.; You, M. Uncoupling Therapeutic Efficacy from Immune-Related Adverse Events in Immune Checkpoint Blockade. iScience 2020, 23, 101580. [Google Scholar] [CrossRef]
- Zhou, X.; Yao, Z.; Yang, H.; Liang, N.; Zhang, X.; Zhang, F. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 2020, 18, 87. [Google Scholar] [CrossRef]
- Landy, E.; Carol, H.; Ring, A.; Canna, S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat. Rev. Rheumatol. 2024, 20, 33–47. [Google Scholar] [CrossRef]
- Sanjabi, S.; Oh, S.A.; Li, M.O. Regulation of the immune response by TGF-β: From conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol. 2017, 9, a022236. [Google Scholar] [CrossRef]
- Wu, Y.R.; Hsing, C.H.; Chiu, C.J.; Huang, H.Y.; Hsu, Y.H. Roles of IL-1 and IL-10 family cytokines in the progression of systemic lupus erythematosus: Friends or foes? IUBMB Life 2022, 74, 143–156. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef]
- National Cancer Institute (US). Common Terminology Criteria for Adverse Events (CTCAE); U.S. Department of Health and human Services: Washington, DC, USA, 2017. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf (accessed on 1 September 2018).
- Papachristou, N.; Barnaghi, P.; Cooper, B.; Kober, K.M.; Maguire, R.; Paul, S.M.; Hammer, M.; Wright, F.; Armes, J.; Furlong, E.P.; et al. Network Analysis of the Multidimensional Symptom Experience of Oncology. Sci. Rep. 2019, 9, 2258. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Feng, Y.; Wilson, A.; Chen, R. Changes in network centrality of psychopathology symptoms between the COVID-19 outbreak and after peak. Mol. Psychiatry 2020, 25, 3140–3149. [Google Scholar] [CrossRef]
- Tyan, K.; Baginska, J.; Brainard, M.; Giobbie-Hurder, A.; Severgnini, M.; Manos, M.; Haq, R.; Buchbinder, E.I.; Ott, P.A.; Hodi, F.S.; et al. Cytokine changes during immune-related adverse events and corticosteroid treatment in melanoma patients receiving immune checkpoint inhibitors. Cancer Immunol. Immunother. 2021, 70, 2209–2221. [Google Scholar] [CrossRef]
- Lim, S.Y.; Lee, J.H.; Gide, T.N.; Menzies, A.M.; Guminski, A.; Carlino, M.S.; Breen, E.J.; Yang, J.Y.H.; Ghazanfar, S.; Kefford, R.F.; et al. Circulating cytokines predict immune-related toxicity in melanoma patients receiving anti-PD-1–based immunotherapy. Clin. Cancer Res. 2019, 25, 1557–1563. [Google Scholar] [CrossRef]
- Khan, S.; Khan, S.A.; Luo, X.; Fattah, F.J.; Saltarski, J.; Gloria-McCutchen, Y.; Lu, R.; Xie, Y.; Li, Q.; Wakeland, E.; et al. Immune dysregulation in cancer patients developing immune-related adverse events. Br. J. Cancer 2019, 120, 63–68. [Google Scholar] [CrossRef]
- Valpione, S.; Pasquali, S.; Campana, L.G.; Piccin, L.; Mocellin, S.; Pigozzo, J.; Chiarion-Sileni, V. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J. Transl. Med. 2018, 16, 94. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, F.; Zhao, C.; Cheng, L.; Zhou, C.; Qiao, M.; Li, X.; Chen, X. Interleukin-10 Is a Promising Marker for Immune-Related Adverse Events in Patients With Non-Small Cell Lung Cancer Receiving Immunotherapy. Front. Immunol. 2022, 13, 840313. [Google Scholar] [CrossRef]
- Nuñez, N.G.; Berner, F.; Friebel, E.; Unger, S.; Wyss, N.; Gomez, J.M.; Purde, M.T.; Niederer, R.; Porsch, M.; Lichtensteiger, C.; et al. Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors. Med 2023, 4, 113–129.e7. [Google Scholar] [CrossRef]
- Peng, W.; Liu, C.; Xu, C.; Lou, Y.; Chen, J.; Yang, Y.; Yagita, H.; Overwijk, W.W.; Lizée, G.; Radvanyi, L.; et al. PD-1 blockade enhances T cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res. 2012, 72, 5209–5218. [Google Scholar] [CrossRef]
- Ashoori, M.D.; Suzuki, K.; Tokumaru, Y.; Ikuta, N.; Tajima, M.; Honjo, T.; Ohta, A. Inactivation of the PD-1-Dependent Immunoregulation in Mice Exacerbates Contact Hypersensitivity Resembling Immune-Related Adverse Events. Front. Immunol. 2021, 11, 618711. [Google Scholar] [CrossRef]
- Kim, S.T.; Chu, Y.; Misoi, M.; Suarez-Almazor, M.E.; Tayar, J.H.; Lu, H.; Buni, M.; Kramer, J.; Rodriguez, E.; Hussain, Z.; et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat. Commun. 2022, 13, 1970. [Google Scholar] [CrossRef]
- Hailemichael, Y.; Johnson, D.H.; Abdel-Wahab, N.; Foo, W.C.; Eddine-Bentebibel, S.; Daher, M.; Haymaker, C.; Wani, K.; Saberian, C. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 2022, 40, 509–523. [Google Scholar] [CrossRef]
- Hirani, D.V.; Thielen, F.; Mansouri, S.; Danopoulos, S.; Vohlen, C.; Haznedar-Karakaya, P.; Mohr, J.; Wilke, R.; Selle, J.; Grosch, T.; et al. CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia. Inflamm. Regen. 2023, 43, 52. [Google Scholar] [CrossRef]
- Satarkar, D.; Patra, C. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Front. Cell Dev. Biol. 2022, 10, 882017. [Google Scholar] [CrossRef]
- Cha, J.H.; Chan, L.C.; Li, C.W.; Hsu, J.L.; Hung, M.C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef]
- Colli, M.L.; Hill, J.L.E.; Marroquí, L.; Chaffey, J.; Santos, R.S.D.; Leete, P.; Coomans, A.; Paula, F.M.M.; de Beeck, A.O.; Castela, A.; et al. PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-α and-γ via IRF1 induction. EbioMedicine 2018, 36, 367–375. [Google Scholar] [CrossRef]
- Garcia-diaz, A.; Sanghoon, D.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, L.; Hugo, W.; Wang, X.; et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep. 2017, 19, 1189–1201. [Google Scholar] [CrossRef]
- Abiko, K.; Matsumura, N.; Hamanishi, J.; Horikawa, N.; Murakami, R.; Yamaguchi, K.; Yoshioka, Y.; Baba, T.; Konishi, I.; Mandai, M. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer 2015, 112, 1501–1509. [Google Scholar] [CrossRef]
- Gato-Cañas, M.; Zuazo, M.; Arasanz, H.; Ibañez-Vea, M.; Lorenzo, L.; Fernandez-Hinojal, G.; Vera, R.; Smerdou, C.; Martisova, E.; Arozarena, I.; et al. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Rep. 2017, 20, 1818–1829. [Google Scholar] [CrossRef]
- Yang, S.C.; Batra, R.K.; Hillinger, S.; Reckamp, K.L.; Strieter, R.M.; Dubinett, S.M.; Sharma, S. Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res. 2006, 66, 3205–3213. [Google Scholar] [CrossRef]
- Meadows, S.K.; Eriksson, M.; Barber, A.; Sentman, C.L. Human NK cell IFN-γ production is regulated by endogenous TGF-β. Int. Immunopharmacol. 2006, 6, 1020–1028. [Google Scholar] [CrossRef]
- Feun, L.G.; Li, Y.; Wu, C.; Wangpaichitr, M.; Jones, P.D.; Richman, S.P.; Madrazo, B.; Garcia-buitrago, M.; Martin, P.; Hosein, P.J. Phase 2 Study of Pembrolizumab and Circulating Biomarkers to Predict Anticancer Response in Advanced, Unresectable Hepatocellular Carcinoma. Cancer 2020, 125, 3603–3614. [Google Scholar] [CrossRef]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel Iii, E.E.; Koeppen, H.; Astarita, J.L.; Cubas, R.; et al. TGF-β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Esmailbeig, M.; Ghaderi, A. Interleukin-18: A regulator of cancer and autoimmune diseases. Eur. Cytokine Netw. 2017, 28, 127–140. [Google Scholar] [CrossRef]
- Timperi, E.; Focaccetti, C.; Gallerano, D.; Panetta, M.; Spada, S.; Gallo, E.; Visca, P.; Venuta, F.; Diso, D.; Prelaj, A.; et al. IL-18 receptor marks functional CD8+ T cells in non-small cell lung cancer. Oncoimmunology 2017, 6, e1328337. [Google Scholar] [CrossRef]
- Oikawa, Y.; Shimada, A.; Kasuga, A.; Morimoto, J.; Osaki, T.; Tahara, H.; Miyazaki, T.; Tashiro, F.; Yamato, E.; Miyazaki, J.I.; et al. Systemic Administration of IL-18 Promotes Diabetes Development in Young Nonobese Diabetic Mice. J. Immunol. 2003, 171, 5865–5875. [Google Scholar] [CrossRef]
- Gunderson, A.J.; Yamazaki, T.; McCarty, K.; Fox, N.; Phillips, M.; Alice, A.; Blair, T.; Whiteford, M.; O’Brien, D.; Ahmad, R.; et al. TGFβ suppresses CD8+ T cell expression of CXCR3 and tumor trafficking. Nat. Commun. 2020, 11, 1749. [Google Scholar] [CrossRef]
- Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [Google Scholar] [CrossRef]
All Patients, n = 134 | Serious irAE n = 14 | Mild irAE n = 12 | No irAE n = 15 | p-Value | |
---|---|---|---|---|---|
Sex male, n (%) | 95 (70.8) | 10 (71.4) | 9 (75) | 12 (80) | 0.86 |
Age, median (range) | 69 (37–89) | 68.5 (45–83) | 67 (60–70) | 67 (43–86) | 0.94 |
Smoker, n (%) | 75 (55.9) | 11 (78.5) | 7 (58.3) | 12 (80) | 0.38 |
PD-L1 expression, n (%) † | |||||
Negative (<1%) | 12 (18.8) | 2 (20) | 0 (0) | 1 (10) | 0.59 |
Low (1–49%) | 23 (35.9) | 5 (50) | 1 (25) | 4 (40) | |
High (>50%) | 29 (45.3) | 3 (30) | 3 (75) | 5 (50) | |
Tumour type, n (%) | |||||
NSCLC | 91 (67.9) | 9 (64.3) | 8 (66.7) | 10 (66.7) | 0.52 |
Melanoma | 20 (14.9) | 1 (7.1) | 3 (25) | 2 (13.3) | |
Renal | 10 (7.5) | 3 (21.4) | 0 (0) | 2 (13.3) | |
Head and neck | 9 (6.7) | 0 (0) | 1 (8.3) | 0 (0) | |
Urothelial | 4 (2.9) | 1 (7.1) | 0 (0) | 1 (6.7) | |
Line of treatment, n (%) | |||||
1st line | 64 (47.8) | 7(50) | 5 (41.7) | 8(53.3) | 0.96 |
≥2nd line | 57 (42.5) | 5 (35.7) | 5 (41.7) | 6 (40) | |
Adjuvant | 5 (3.7) | 1 (7.1) | 1 (8.3) | 1 (6.7) | |
Maintenance | 8 (5.9) | 1 (7.1) | 1 (8.3) | 0 (0) | |
ICI agent, n (%) | |||||
Anti-PD-1 | 91 (67.9) | 11 (78.5) | 9 (75) | 10 (66.7) | 0.75 |
Anti-PD-L1 | 43 (32.1) | 3 (21.4) | 3 (25) | 5 (33.3) | |
ICI schedule, n (%) | |||||
Monotherapy | 104 (77.6) | 9 (64.3) | 11 (91.7) | 13 (86.7) | 0.23 |
Combination with immunotherapy | 19 (14.2) | 4 (28.6) * | 0 (0) | 2 (13.3) ** | |
Combination with chemotherapy | 11 (8.2) | 1 (7.1) | 1 (8.3) | 0 (0) |
Number of Patients | Onset Time, Median Days (Range) | Number of Patients | Onset Time, Median Days (Range) | Number of Patients | Onset Time, Median Days (Range) | |
---|---|---|---|---|---|---|
Type of irAEs | All Grades (n = 81) | Serious Grades (n = 14) | Mild Grades (n = 12) | |||
Dermatological | ||||||
Rash | 11 | 14 (1–98) | 0 | _ | 2 | 25 (9–41) |
Pruritus | 24 | 42 (2–334) | 0 | _ | 3 | 42 (21–69) |
Colitis | 3 | 108 (18–297) | 1 | 108 | 0 | |
Endocrine | _ | |||||
Hypothyroidism | 9 | 46 (20–86) | 1 | 46 | 0 | _ |
Hyperthyroidism | 3 | 60 (42–206) | 1 | 206 | 0 | _ |
Hypophysitis | 1 | 80 | 0 | _ | 0 | _ |
Diabetes mellitus | 1 | 41 | 0 | _ | 0 | _ |
Pneumonitis | 6 | 83 (55–159) | 2 | 68 (55–81) | 4 | 109 (62–159) |
Hepatitis | 12 | 52 (6–364) | 9 | 63 (18–364) | 3 | 14 (6–201) |
Arthralgia | 4 | 31 (1–140) | 0 | _ | 0 | _ |
Other | ||||||
Mucositis | 2 | 158 (11–306) | 0 | _ | 0 | _ |
Xerosis | 2 | 14 (1–27) | 0 | _ | 0 | _ |
Vitiligo | 1 | 217 | 0 | _ | 0 | _ |
Psoriasis | 1 | 11 | 0 | _ | 0 | _ |
Neuropathy | 1 | 45 | 0 | _ | 0 | _ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alserawan, L.; Mulet, M.; Anguera, G.; Riudavets, M.; Zamora, C.; Osuna-Gómez, R.; Serra-López, J.; Barba Joaquín, A.; Sullivan, I.; Majem, M.; et al. Kinetics of IFNγ-Induced Cytokines and Development of Immune-Related Adverse Events in Patients Receiving PD-(L)1 Inhibitors. Cancers 2024, 16, 1759. https://doi.org/10.3390/cancers16091759
Alserawan L, Mulet M, Anguera G, Riudavets M, Zamora C, Osuna-Gómez R, Serra-López J, Barba Joaquín A, Sullivan I, Majem M, et al. Kinetics of IFNγ-Induced Cytokines and Development of Immune-Related Adverse Events in Patients Receiving PD-(L)1 Inhibitors. Cancers. 2024; 16(9):1759. https://doi.org/10.3390/cancers16091759
Chicago/Turabian StyleAlserawan, Leticia, Maria Mulet, Geòrgia Anguera, Mariona Riudavets, Carlos Zamora, Rubén Osuna-Gómez, Jorgina Serra-López, Andrés Barba Joaquín, Ivana Sullivan, Margarita Majem, and et al. 2024. "Kinetics of IFNγ-Induced Cytokines and Development of Immune-Related Adverse Events in Patients Receiving PD-(L)1 Inhibitors" Cancers 16, no. 9: 1759. https://doi.org/10.3390/cancers16091759
APA StyleAlserawan, L., Mulet, M., Anguera, G., Riudavets, M., Zamora, C., Osuna-Gómez, R., Serra-López, J., Barba Joaquín, A., Sullivan, I., Majem, M., & Vidal, S. (2024). Kinetics of IFNγ-Induced Cytokines and Development of Immune-Related Adverse Events in Patients Receiving PD-(L)1 Inhibitors. Cancers, 16(9), 1759. https://doi.org/10.3390/cancers16091759