Real-World Data Analysis of CDK4/6 Inhibitor Therapy—A Patient-Centric Single Center Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Outcome Measures
- PFS, which was defined as the time from beginning of the therapy until progression of disease.
- TTF, defined as the time from beginning of the therapy to discontinuation of the treatment for any reason, including progression of disease and treatment toxicity.
- Short-term treatment benefit: treatment period of 4 months or longer without discontinuation of any reason.
- Prolonged treatment benefit: treatment period of 10 months or longer without discontinuation of any reason.
2.3. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.1.1. Descriptive Analysis of the Patient Cohort
3.1.2. Tumor Biology Characteristics
3.1.3. Patient Characteristics
3.1.4. Tumor Stage at Diagnosis and Treatment History
3.1.5. Prior Treatments
3.2. Multivariate Proportional Hazards and Logistic Regression
3.2.1. Progression-Free Survival (PFS)
3.2.2. Time-to-Treatment Failure (TTF)
3.2.3. Therapeutic Benefit beyond 4 Months
3.2.4. Therapeutic Benefit beyond 10 Months
4. Discussion
4.1. PFS (Progression-Free Survival)—Discrepancies between RCTs (Randomized Controlled Trials) and Real-World Conditions
4.2. Time-to-Treatment Failure—An Objective and Patient-Centric Outcome Measure
4.3. Independent Predictors for Survival and Therapeutic Benefit
4.4. Implications for Future Research and Clinical Practice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Fahad Ullah, M. Breast Cancer: Current Perspectives on the Disease Status. Adv. Exp. Med. Biol. 2019, 1152, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Lester, S.C.; Bose, S.; Chen, Y.Y.; Connolly, J.L.; de Baca, M.E.; Fitzgibbons, P.L.; Hayes, D.F.; Kleer, C.; O’Malley, F.P.; Page, D.L.; et al. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch. Pathol. Lab. Med. 2009, 133, 1515–1538. [Google Scholar] [CrossRef] [PubMed]
- Li, C.I.; Uribe, D.J.; Daling, J.R. Clinical characteristics of different histologic types of breast cancer. Br. J. Cancer 2005, 93, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, G.K.; Zhao, X.; Band, H.; Band, V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther. 2010, 10, 955–960. [Google Scholar] [CrossRef]
- Hon, J.D.; Singh, B.; Sahin, A.; Du, G.; Wang, J.; Wang, V.Y.; Deng, F.M.; Zhang, D.Y.; Monaco, M.E.; Lee, P. Breast cancer molecular subtypes: From TNBC to QNBC. Am. J. Cancer Res. 2016, 6, 1864–1872. [Google Scholar]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Coates, A.S.; Winer, E.P.; Goldhirsch, A.; Gelber, R.D.; Gnant, M.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J. Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann. Oncol. 2015, 26, 1533–1546. [Google Scholar] [CrossRef]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Teshome, M.; Hunt, K.K. Neoadjuvant therapy in the treatment of breast cancer. Surg. Oncol. Clin. N. Am. 2014, 23, 505–523. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Pernas, S.; Tolaney, S.M.; Winer, E.P.; Goel, S. CDK4/6 inhibition in breast cancer: Current practice and future directions. Ther. Adv. Med. Oncol. 2018, 10, 1758835918786451. [Google Scholar] [CrossRef]
- Sherr, C.J.; Beach, D.; Shapiro, G.I. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov. 2016, 6, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Crown, J.P.; Lang, I.; Boer, K.; Bondarenko, I.M.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): A randomised phase 2 study. Lancet Oncol. 2015, 16, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Ro, J.; André, F.; Loi, S.; Verma, S.; Iwata, H.; Harbeck, N.; Loibl, S.; Huang Bartlett, C.; Zhang, K.; et al. Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2015, 373, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Blackwell, K.L.; André, F.; Winer, E.P.; et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1738–1748. [Google Scholar] [CrossRef]
- Goetz, M.P.; Toi, M.; Campone, M.; Sohn, J.; Paluch-Shimon, S.; Huober, J.; Park, I.H.; Trédan, O.; Chen, S.C.; Manso, L.; et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J. Clin. Oncol. 2017, 35, 3638–3646. [Google Scholar] [CrossRef]
- Slamon, D.J.; Fasching, P.A.; Hurvitz, S.; Chia, S.; Crown, J.; Martín, M.; Barrios, C.H.; Bardia, A.; Im, S.A.; Yardley, D.A.; et al. Rationale and trial design of NATALEE: A Phase III trial of adjuvant ribociclib + endocrine therapy versus endocrine therapy alone in patients with HR+/HER2- early breast cancer. Ther. Adv. Med. Oncol. 2023, 15, 17588359231178125. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.; Martin, M.; Di Leo, A.; Im, S.A.; Awada, A.; Forrester, T.; Frenzel, M.; Hardebeck, M.C.; Cox, J.; Barriga, S.; et al. MONARCH 3 final PFS: A randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Piezzo, M.; Chiodini, P.; Riemma, M.; Cocco, S.; Caputo, R.; Cianniello, D.; Di Gioia, G.; Di Lauro, V.; Rella, F.D.; Fusco, G.; et al. Progression-Free Survival and Overall Survival of CDK 4/6 Inhibitors Plus Endocrine Therapy in Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 6400. [Google Scholar] [CrossRef] [PubMed]
- Awada, A.; Gligorov, J.; Jerusalem, G.; Preusser, M.; Singer, C.; Zielinski, C. CDK4/6 inhibition in low burden and extensive metastatic breast cancer: Summary of an ESMO Open-Cancer Horizons pro and con discussion. ESMO Open 2019, 4, e000565. [Google Scholar] [CrossRef] [PubMed]
- Di Leo, A.; O’Shaughnessy, J.; Sledge, G.W., Jr.; Martin, M.; Lin, Y.; Frenzel, M.; Hardebeck, M.C.; Smith, I.C.; Llombart-Cussac, A.; Goetz, M.P.; et al. Prognostic characteristics in hormone receptor-positive advanced breast cancer and characterization of abemaciclib efficacy. NPJ Breast Cancer 2018, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, A.; Ettl, J.; Lüftner, D.; Beckmann, M.W.; Belleville, E.; Fasching, P.A.; Fehm, T.N.; Geberth, M.; Häberle, L.; Hadji, P.; et al. Initial experience with CDK4/6 inhibitor-based therapies compared to antihormone monotherapies in routine clinical use in patients with hormone receptor positive, HER2 negative breast cancer—Data from the PRAEGNANT research network for the first 2 years of drug availability in Germany. Breast 2020, 54, 88–95. [Google Scholar] [CrossRef]
- Tripathy, D.; Blum, J.L.; Rocque, G.B.; Bardia, A.; Karuturi, M.S.; Cappelleri, J.C.; Liu, Y.; Zhang, Z.; Davis, K.L.; Wang, Y. POLARIS: A prospective, multicenter, noninterventional study assessing palbociclib in hormone receptor-positive advanced breast cancer. Future Oncol. 2020, 16, 2475–2485. [Google Scholar] [CrossRef]
- Cramer, J.A.; Roy, A.; Burrell, A.; Fairchild, C.J.; Fuldeore, M.J.; Ollendorf, D.A.; Wong, P.K. Medication compliance and persistence: Terminology and definitions. Value Health 2008, 11, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Petrakova, K.; Blackwell, K.L.; Winer, E.P.; et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann. Oncol. 2018, 29, 1541–1547. [Google Scholar] [CrossRef]
- Badaoui, S.; Kichenadasse, G.; Rowland, A.; Sorich, M.J.; Hopkins, A.M. Patient-Reported Outcomes Predict Progression-Free Survival of Patients with Advanced Breast Cancer Treated with Abemaciclib. Oncologist 2021, 26, 562–568. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S. Targeted Therapy for Premenopausal Women with HR(+), HER2(-) Advanced Breast Cancer: Focus on Special Considerations and Latest Advances. Clin. Cancer Res. 2018, 24, 5206–5218. [Google Scholar] [CrossRef] [PubMed]
- Cristofanilli, M.; Turner, N.C.; Bondarenko, I.; Ro, J.; Im, S.A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016, 17, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Harb, W.A. Management of patients with hormone receptor-positive breast cancer with visceral disease: Challenges and treatment options. Cancer Manag. Res. 2015, 7, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Lo, P.C.; Dahlberg, S.E.; Nishino, M.; Johnson, B.E.; Sequist, L.V.; Jackman, D.M.; Jänne, P.A.; Oxnard, G.R. Delay of treatment change after objective progression on first-line erlotinib in epidermal growth factor receptor-mutant lung cancer. Cancer 2015, 121, 2570–2577. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, E.; Koliou, G.A.; Vozikis, A.; Rapti, V.; Nikolakopoulos, A.; Boutis, A.; Christopoulou, A.; Kontogiorgos, I.; Karageorgopoulou, S.; Lalla, E.; et al. Real-world clinical outcome and toxicity data and economic aspects in patients with advanced breast cancer treated with cyclin-dependent kinase 4/6 (CDK4/6) inhibitors combined with endocrine therapy: The experience of the Hellenic Cooperative Oncology Group. ESMO Open 2020, 5, e000774. [Google Scholar] [CrossRef] [PubMed]
- Miron, A.I.; Anghel, A.V.; Barnonschi, A.A.; Mitre, R.; Liscu, H.D.; Găinariu, E.; Pătru, R.; Coniac, S. Real-World Outcomes of CDK4/6 Inhibitors Treatment in Metastatic Breast Cancer in Romania. Diagnostics 2023, 13, 1938. [Google Scholar] [CrossRef] [PubMed]
- Low, J.L.; Lim, E.; Bharwani, L.; Wong, A.; Wong, K.; Ow, S.; Lim, S.E.; Lee, M.; Choo, J.; Lim, J.; et al. Real-world outcomes from use of CDK4/6 inhibitors in the management of advanced/metastatic breast cancer in Asia. Ther. Adv. Med. Oncol. 2022, 14, 17588359221139678. [Google Scholar] [CrossRef]
- KovaČ, A.; Matos, E.; Kuhar, C.G.; Čakš, M.; Ovčariček, T.; Mencinger, M.; Humar, M.; Borštnar, S. Efficacy and safety of selective cyclin-dependent kinases 4/6 inhibitors in hormone-receptor-positive, HER2-negative advanced breast cancer—Results from a real-world setting. Cancer Treat. Res. Commun. 2020, 25, 100201. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.M.; Nordstrom, B.L.; McLaurin, K.K.; Dalvi, T.B.; McCutcheon, S.C.; Bennett, J.C.; Murphy, B.R.; Singhal, P.K.; McCrea, C.; Shinde, R.; et al. A Real-World Evidence Study of CDK4/6 Inhibitor Treatment Patterns and Outcomes in Metastatic Breast Cancer by Germline BRCA Mutation Status. Oncol. Ther. 2021, 9, 575–589. [Google Scholar] [CrossRef]
- Witkiewicz, A.K.; Schultz, E.; Wang, J.; Hamilton, D.; Levine, E.; O’Connor, T.; Knudsen, E.S. Determinants of response to CDK4/6 inhibitors in the real-world setting. NPJ Precis. Oncol. 2023, 7, 90. [Google Scholar] [CrossRef]
- Palleschi, M.; Maltoni, R.; Ravaioli, S.; Vagheggini, A.; Mannozzi, F.; Fanini, F.; Pirini, F.; Tumedei, M.M.; Barzotti, E.; Cecconetto, L.; et al. Ki67 and PR in Patients Treated with CDK4/6 Inhibitors: A Real-World Experience. Diagnostics 2020, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhu, Y.; Liu, X.; Liao, X.; He, J.; Niu, L. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer 2019, 19, 1091. [Google Scholar] [CrossRef] [PubMed]
- Behrouzi, R.; Armstrong, A.C.; Howell, S.J. CDK4/6 inhibitors versus weekly paclitaxel for treatment of ER+/HER2- advanced breast cancer with impending or established visceral crisis. Breast Cancer Res. Treat. 2023, 202, 83–95. [Google Scholar] [CrossRef]
- Yang, L.; Xue, J.; Yang, Z.; Wang, M.; Yang, P.; Dong, Y.; He, X.; Bao, G.; Peng, S. Side effects of CDK4/6 inhibitors in the treatment of HR+/HER2- advanced breast cancer: A systematic review and meta-analysis of randomized controlled trials. Ann. Palliat. Med. 2021, 10, 5590–5599. [Google Scholar] [CrossRef]
- Villa, F.; Crippa, A.; Pelizzoni, D.; Ardizzoia, A.; Scartabellati, G.; Corbetta, C.; Cipriani, E.; Lavitrano, M.; Ardizzoia, A. Progression after First-Line Cyclin-Dependent Kinase 4/6 Inhibitor Treatment: Analysis of Molecular Mechanisms and Clinical Data. Int. J. Mol. Sci. 2023, 24, 14427. [Google Scholar] [CrossRef] [PubMed]
- Peairs, K.S.; Barone, B.B.; Snyder, C.F.; Yeh, H.C.; Stein, K.B.; Derr, R.L.; Brancati, F.L.; Wolff, A.C. Diabetes mellitus and breast cancer outcomes: A systematic review and meta-analysis. J. Clin. Oncol. 2011, 29, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Sacaan, A.I.; Thibault, S.; Hong, M.; Kondegowda, N.G.; Nichols, T.; Li, R.; Rosselot, C.; Evering, W.; Fenutria, R.; Vitsky, A.; et al. CDK4/6 Inhibition on Glucose and Pancreatic Beta Cell Homeostasis in Young and Aged Rats. Mol. Cancer Res. 2017, 15, 1531–1541. [Google Scholar] [CrossRef]
- Rane, S.G.; Dubus, P.; Mettus, R.V.; Galbreath, E.J.; Boden, G.; Reddy, E.P.; Barbacid, M. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat. Genet. 1999, 22, 44–52. [Google Scholar] [CrossRef]
- Tsibulak, I.; Hagenbuchner, J.; Ausserlechner, M.; Kögl, J.; Marth, C.; Zeimet, A.; Fiegl, H. 713 Palbociclib and metformin show anticancer efficacy in high grade serous ovarian cancer. Int. J. Gynecol. Cancer 2021, 31 (Suppl. S3), A263–A264. [Google Scholar] [CrossRef]
- Hu, Q.; Peng, J.; Jiang, L.; Li, W.; Su, Q.; Zhang, J.; Li, H.; Song, M.; Cheng, B.; Xia, J.; et al. Metformin as a senostatic drug enhances the anticancer efficacy of CDK4/6 inhibitor in head and neck squamous cell carcinoma. Cell Death Dis. 2020, 11, 925. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Wardley, A.M.; Zambelli, S.; Hilton, J.F.; Troso-Sandoval, T.A.; Ricci, F.; Im, S.A.; Kim, S.B.; Johnston, S.R.; Chan, A.; et al. Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): A randomised, open-label, phase 2 trial. Lancet Oncol. 2020, 21, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Hurvitz, S.A.; Martin, M.; Press, M.F.; Chan, D.; Fernandez-Abad, M.; Petru, E.; Rostorfer, R.; Guarneri, V.; Huang, C.S.; Barriga, S.; et al. Potent Cell-Cycle Inhibition and Upregulation of Immune Response with Abemaciclib and Anastrozole in neoMONARCH, Phase II Neoadjuvant Study in HR(+)/HER2(-) Breast Cancer. Clin. Cancer Res. 2020, 26, 566–580. [Google Scholar] [CrossRef] [PubMed]
- Kalinsky, K.; Accordino, M.K.; Chiuzan, C.; Mundi, P.S.; Sakach, E.; Sathe, C.; Ahn, H.; Trivedi, M.S.; Novik, Y.; Tiersten, A.; et al. Randomized Phase II Trial of Endocrine Therapy with or without Ribociclib After Progression on Cyclin-Dependent Kinase 4/6 Inhibition in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer: MAINTAIN Trial. J. Clin. Oncol. 2023, 41, 4004–4013. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, T.Y.; Kim, G.M.; Kang, S.Y.; Park, I.H.; Kim, J.H.; Lee, K.E.; Ahn, H.K.; Lee, M.H.; Kim, H.J.; et al. Palbociclib plus exemestane with gonadotropin-releasing hormone agonist versus capecitabine in premenopausal women with hormone receptor-positive, HER2-negative metastatic breast cancer (KCSG-BR15-10): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2019, 20, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
Variable | Median |
---|---|
Age at metastatic disease (years) | 58 (28–86) |
Age at start of CDK4/6 inhibitor (years) | 66 (33–90) |
ER at any time (%) | 95 (0–100) |
PR at any time (%) | 62.5 (0–95) |
Ki67 at any time (%) | 30 (3–80) |
Time between metastasis until CDK4/6 therapy (months) | 5 (0–155) |
Number of metastatic sites | 2 (0–5) |
PFS (months) | 12 (1–39) |
TTF (months) | 8.5 (1–39) |
Variable | Total = 86 n (%) |
---|---|
Therapeutic Status | |
Ongoing | 28 (32.6) |
Failure due to progression | 40 (46.5%) |
Failure due to AE | 15 (17.4%) |
Failure due to both | 3 (3.5%) |
Treatment Benefit | |
≥4 months | 57 (66.3%) |
≥10 months | 42 (48.8%) |
Occurence of AE | |
At any time | 49 (57.0%) |
Early (<4 months) | 35 (40.7%) |
CDKi therapy | |
First line | 39 (45.4%) |
Further lines | 47 (54.7%) |
CDKi substance * | |
Palbociclib | 74 (86.1%) |
Ribociclib | 13 (15.1%) |
Abemaciclib | 5 (5.8%) |
Pausing or switching of CDKi | |
Pause | 32 (37.2%) |
Switch | 5 (5.8%) |
Previous diagnosis of primary breast cancer | |
Yes | 57 (66.3%) |
No | 29 (33.7%) |
Recurrence at the time or before metastatic disease | |
No primary breast cancer | 29 (33.7%) |
Yes | 15 (17.4%) |
No | 42 (48.8%) |
Grading at any time | |
1 | 1 (1.2%) |
2 | 56 (65.1%) |
3 | 27 (31.4%) |
missing | 2 (2.3%) |
Previous treatment at any time | |
Operation | 61 (70.9%) |
Mastectomy | 33 (38.4%) |
Axillary Dissection | 39 (45.4%) |
Radiation | 71 (82.6%) |
Chemotherapy | 59 (68.6%) |
Antihormonal therapy | 47 (54.7%) |
Metastatic Sites | |
1 | 30 (34.9%) |
2 | 26 (30.2%) |
3 | 18 (20.9%) |
≥4 | 12 (14.0%) |
Localization of metastasis | |
Bone | 71 (82.6%) |
Pulmonal/pleural | 34 (39.5%) |
Hepatic | 27 (31.4%) |
Nodal | 25 (29.1%) |
Skin | 7 (8.1%) |
Brain | 6 (7.0%) |
Peritoneal | 3 (3.5%) |
Other | 10 (11.6%) |
Bone-only | 21 (24.4%) |
Visceral | 52 (60.5%) |
Relevant Comorbidities | 56 (65.1%) |
Cardiovascular Diseases | 45 (52.3%) |
| 33 (38.4%) |
| 12 (14.0%) |
| 11 (12.8%) |
| 7 (8.1%) |
Non-cardiovascular diseases | 18 (20.9%) |
| 11 (12.8%) |
| 4 (4.7%) |
Variable | N (%) | Median CDKi Duration (Months)/ Rate of Treatment Benefit | Hazard/Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|---|---|
PFS | |||||
PR | per 10% increase | HR: 0.880 | 0.978–0.996 | 0.006 | |
Metastatic sites | |||||
Multiple | 30 (34.9%) | 5.5 (1–30) | HR: 2.557 | 1.135–5.763 | 0.024 |
Single | 50 (65.1%) | 10 (1–39) | |||
Presence of hepatic metastasis | |||||
Yes | 27 (31.4%) | 4 (1–39) | HR: 2.009 | 1.034–3.903 | 0.040 |
No | 59 (68.6%) | 8.5 (1–20) | |||
TTF | |||||
PR | per 10% increase | HR: 0.858 | 0.792–0.929 | 0.0002 | |
Metastatic sites | |||||
Multiple | 30 (34.9%) | 5.5 (1–30) | HR: 3.290 | 1.699–6.369 | 0.0004 |
Single | 50 (65.1%) | 10 (1–39) | |||
Occurrence of UAE at any time | |||||
Yes | 49 (57.0%) | 6 (1–25) | HR: 2.346 | 1.318–4.176 | 0.0037 |
No | 37 (43.0%) | 10 (2–39) | |||
Diabetes | |||||
Yes | 11 (12.8%) | 3 (1–39) | HR: 2.882 | 1.346–6.171 | 0.007 |
No/unclear | 75 (87.2%) | 7 (1–20) | |||
Treatment Benefit ≥ 4 months | |||||
PR | per 10% increase | OR: 1.220 | 1.047–1.423 | 0.011 | |
Occurrence of early AE | |||||
Yes | 35 (40.7%) | 35.1% (20/35) | OR: 0.213 | 0.063–0.716 | 0.012 |
No | 51 (59.3%) | 64.9% (37/51) | |||
Pausing of CDKi | |||||
Yes | 32 (37.2%) | 81.5% (26/32) | OR: 6.725 | 1.742–25.963 | 0.006 |
No | 54 (62.8%) | 57.4% (31/54) | |||
Time between metastasis until CDKi therapy | |||||
<median (5 m) | 41 (47.7%) | 78.1% (32/41) | OR: 3.485 | 1.150–10.564 | 0.027 |
≥median (5 m) | 45 (52.3%) | 55.6% (25/45) | |||
Treatment Benefit ≥ 10 months | |||||
Grading | per increase of 1 grade | OR: 0.155 | 0.045–0.534 | 0.003 | |
Metastatic sites | |||||
Multiple | 30 (34.9%) | 37.5% (21/30) | OR: 0.237 | 0.077–0.723 | 0.011 |
Single | 50 (65.1%) | 70.0% (21/50) | |||
Occurrence of AE at any time | |||||
Yes | 49 (57.0%) | 36.7% (18/49) | OR: 0.284 | 0.101–0.794 | 0.017 |
No | 37 (43.0%) | 64.9% (24/37) | |||
CDKi switch | |||||
Yes | 5 (5.8%) | 80.0% (4/5) | OR: 14.267 | 1.089–186.96 | 0.043 |
No | 81 (94.2%) | 46.9% (38/81) |
Study | PALOMA-2 | MONALEESA-2 | MONARCH-3 | Present RWE Study |
---|---|---|---|---|
ECOG | 0–1 | 0–1 | 0–2 | No specified limitation |
postmenopausal | 100% | 100% | 100% | 80% |
first-line CDKi | 100% | 100% | 100% | 45% |
endocrine backbone | Letrozol | Letrozol | Letrozol | Letrozol or Fulvestrant |
prior neoadjuvant or adjuvant chemotherapy | 48% | 49% | 38% | 69% |
prior chemotherapy in metastatic disease | none | none | none | 36% |
metastatic spread | Visceral: 48% Bone-only: 23% | Liver or lung: 54% Bone-only: 21% | Visceral: 53% Bone-only: 21% | Visceral: 61% Bone-only: 24% |
dose reduction | 67% | 58% | 47% | 23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, I.; Berner, K.; Mathis, M.; Hensgen, C.; Mayer, S.; Erbes, T.; Juhasz-Böss, I.; Asberger, J. Real-World Data Analysis of CDK4/6 Inhibitor Therapy—A Patient-Centric Single Center Study. Cancers 2024, 16, 1760. https://doi.org/10.3390/cancers16091760
Ge I, Berner K, Mathis M, Hensgen C, Mayer S, Erbes T, Juhasz-Böss I, Asberger J. Real-World Data Analysis of CDK4/6 Inhibitor Therapy—A Patient-Centric Single Center Study. Cancers. 2024; 16(9):1760. https://doi.org/10.3390/cancers16091760
Chicago/Turabian StyleGe, Isabell, Kai Berner, Marlene Mathis, Catherine Hensgen, Sebastian Mayer, Thalia Erbes, Ingolf Juhasz-Böss, and Jasmin Asberger. 2024. "Real-World Data Analysis of CDK4/6 Inhibitor Therapy—A Patient-Centric Single Center Study" Cancers 16, no. 9: 1760. https://doi.org/10.3390/cancers16091760
APA StyleGe, I., Berner, K., Mathis, M., Hensgen, C., Mayer, S., Erbes, T., Juhasz-Böss, I., & Asberger, J. (2024). Real-World Data Analysis of CDK4/6 Inhibitor Therapy—A Patient-Centric Single Center Study. Cancers, 16(9), 1760. https://doi.org/10.3390/cancers16091760