A Systematic Review of the Applications of Deep Learning for the Interpretation of Positron Emission Tomography Images of Patients with Lymphoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Selection Process
2.4. Data Extraction Process
2.5. Study Quality Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias in Studies
3.4. Results of Included Studies
3.4.1. Detection
3.4.2. Classification
3.4.3. Differential Diagnosis
3.4.4. Metabolic Tumor Volume Estimation
3.4.5. Treatment Response Prediction
3.4.6. Survival Prediction
4. Discussion
4.1. General Interpretation of the Results
4.2. Limitations of the Included Studies
4.3. Limitations of the Review
4.4. Implications of the Results for Practice and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mugnaini, E.N.; Ghosh, N. Lymphoma. Prim. Care 2016, 43, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Munir, F.; Hardit, V.; Sheikh, I.N.; AlQahtani, S.; He, J.; Cuglievan, B.; Hosing, C.; Tewari, P.; Khazal, S. Classical Hodgkin Lymphoma: From Past to Future-A Comprehensive Review of Pathophysiology and Therapeutic Advances. Int. J. Mol. Sci. 2023, 24, 10095. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, M.B.; Belsky, J.A.; Milgrom, S.A.; Forlenza, C.J. The Pediatric Approach to Hodgkin Lymphoma. Semin. Hematol. 2024, 61, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Feng, J.; Yue, Y.; Cheng, W.; He, D.; Qi, S.; Zhang, G. A Hybrid Few-Shot Multiple-Instance Learning Model Predicting the Aggressiveness of Lymphoma in PET/CT Images. Comput. Methods Programs Biomed. 2024, 243, 107872. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Young, K.H. Therapeutic Vaccines for Aggressive B-Cell Lymphoma. Leuk. Lymphoma 2020, 61, 3038–3051. [Google Scholar] [CrossRef]
- Pavanello, F.; Steffanoni, S.; Ghielmini, M.; Zucca, E. Systemic Front Line Therapy of Follicular Lymphoma: When, to Whom and How. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016062. [Google Scholar] [CrossRef]
- Rong, J.; Haider, A.; Jeppesen, T.E.; Josephson, L.; Liang, S.H. Radiochemistry for Positron Emission Tomography. Nat. Commun. 2023, 14, 3257. [Google Scholar] [CrossRef] [PubMed]
- Berger, A. How Does It Work? Positron Emission Tomography. BMJ 2003, 326, 1449. [Google Scholar] [CrossRef]
- Shagam, J.Y. Positron Emission Tomography. Radiol. Technol. 2001, 72, 551–569; quiz 570–572. [Google Scholar] [PubMed]
- Ansell, S.M.; Armitage, J.O. Positron Emission Tomographic Scans in Lymphoma: Convention and Controversy. Mayo Clin. Proc. 2012, 87, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Pettit, R.W.; Fullem, R.; Cheng, C.; Amos, C.I. Artificial Intelligence, Machine Learning, and Deep Learning for Clinical Outcome Prediction. Emerg. Top. Life Sci. 2021, 5, 729–745. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- van der Laak, J.; Litjens, G.; Ciompi, F. Deep Learning in Histopathology: The Path to the Clinic. Nat. Med. 2021, 27, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Dey, P. The Emerging Role of Deep Learning in Cytology. Cytopathology 2021, 32, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, A.; Ghotbi, E.; Kazemi, F.; Shababi, A.; Jahan, S.C.; Mohseni, A.; Shababi, N. Artificial Intelligence in Radiology: What Is Its True Role at Present, and Where Is the Evidence? Radiol. Clin. N. Am. 2024, 62, 935–947. [Google Scholar] [CrossRef]
- Artesani, A.; Bruno, A.; Gelardi, F.; Chiti, A. Empowering PET: Harnessing Deep Learning for Improved Clinical Insight. Eur. Radiol. Exp. 2024, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S.; PROBAST Group. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1–W33. [Google Scholar] [CrossRef] [PubMed]
- Yousefirizi, F.; Klyuzhin, I.S.; Joo Hyun, O.; Harsini, S.; Tie, X.; Shiri, I.; Shin, M.; Lee, C.; Cho, S.Y.; Bradshaw, T.J.; et al. TMTV-Net: Fully Automated Total Metabolic Tumor Volume Segmentation in Lymphoma PET/CT Images—A Multi-Center Generalizability Analysis. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1937–1954. [Google Scholar] [CrossRef]
- Jiang, C.; Qian, C.; Jiang, Z.; Teng, Y.; Lai, R.; Sun, Y.; Ni, X.; Ding, C.; Xu, Y.; Tian, R. Robust Deep Learning-Based PET Prognostic Imaging Biomarker for DLBCL Patients: A Multicenter Study. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3949–3960. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Jiang, C.; Xie, K.; Ding, C.; Teng, Y.; Sun, J.; Gao, L.; Zhou, Z.; Ni, X. Prognosis Prediction of Diffuse Large B-Cell Lymphoma in 18F-FDG PET Images Based on Multi-Deep-Learning Models. IEEE J. Biomed. Health Inform. 2024, 28, 4010–4023. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Jain, P.; Lu, Y.; Macapinlac, H.; Wang, M.L.; Son, J.B.; Pagel, M.D.; Xu, G.; Ma, J. Computer-Aided Detection of Mantle Cell Lymphoma on 18F-FDG PET/CT Using a Deep Learning Convolutional Neural Network. Am. J. Nucl. Med. Mol. Imaging 2021, 11, 260–270. [Google Scholar] [PubMed]
- Weisman, A.J.; Kieler, M.W.; Perlman, S.B.; Hutchings, M.; Jeraj, R.; Kostakoglu, L.; Bradshaw, T.J. Convolutional Neural Networks for Automated PET/CT Detection of Diseased Lymph Node Burden in Patients with Lymphoma. Radiol. Artif. Intell. 2020, 2, e200016. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sarrami, A.; Wu, J.T.-Y.; Baratto, L.; Sharma, A.; Wong, K.C.L.; Singh, S.B.; Daldrup-Link, H.E.; Syeda-Mahmood, T. Multimodal Pediatric Lymphoma Detection Using PET and MRI. AMIA Annu. Symp. Proc. 2023, 2023, 736–743. [Google Scholar] [PubMed]
- Wang, M.; Jiang, H. PST-Radiomics: A PET/CT Lymphoma Classification Method Based on Pseudo Spatial-Temporal Radiomic Features and Structured Atrous Recurrent Convolutional Neural Network. Phys. Med. Biol. 2023, 68, 235014. [Google Scholar] [CrossRef]
- Aoki, H.; Miyazaki, Y.; Anzai, T.; Yokoyama, K.; Tsuchiya, J.; Shirai, T.; Shibata, S.; Sakakibara, R.; Mitsumura, T.; Honda, T.; et al. Deep Convolutional Neural Network for Differentiating between Sarcoidosis and Lymphoma Based on [18F]FDG Maximum-Intensity Projection Images. Eur. Radiol. 2024, 34, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, F.; Wang, R.; Qi, M.; Zhang, J.; Liu, X.; Song, S. End-to-End Deep Learning Radiomics: Development and Validation of a Novel Attention-Based Aggregate Convolutional Neural Network to Distinguish Breast Diffuse Large B-Cell Lymphoma from Breast Invasive Ductal Carcinoma. Quant. Imaging Med. Surg. 2023, 13, 6598–6614. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, B.; Li, Y.; Li, Y.; Ma, X. Computer-Aided Diagnostic Models to Classify Lymph Node Metastasis and Lymphoma Involvement in Enlarged Cervical Lymph Nodes Using PET/CT. Med. Phys. 2023, 50, 152–162. [Google Scholar] [CrossRef]
- Revailler, W.; Cottereau, A.S.; Rossi, C.; Noyelle, R.; Trouillard, T.; Morschhauser, F.; Casasnovas, O.; Thieblemont, C.; Gouill, S.L.; André, M.; et al. Deep Learning Approach to Automatize TMTV Calculations Regardless of Segmentation Methodology for Major FDG-Avid Lymphomas. Diagnostics 2022, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Weisman, A.J.; Kim, J.; Lee, I.; McCarten, K.M.; Kessel, S.; Schwartz, C.L.; Kelly, K.M.; Jeraj, R.; Cho, S.Y.; Bradshaw, T.J. Automated Quantification of Baseline Imaging PET Metrics on FDG PET/CT Images of Pediatric Hodgkin Lymphoma Patients. EJNMMI Phys. 2020, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Kuker, R.A.; Lehmkuhl, D.; Kwon, D.; Zhao, W.; Lossos, I.S.; Moskowitz, C.H.; Alderuccio, J.P.; Yang, F. A Deep Learning-Aided Automated Method for Calculating Metabolic Tumor Volume in Diffuse Large B-Cell Lymphoma. Cancers 2022, 14, 5221. [Google Scholar] [CrossRef]
- Blanc-Durand, P.; Jégou, S.; Kanoun, S.; Berriolo-Riedinger, A.; Bodet-Milin, C.; Kraeber-Bodéré, F.; Carlier, T.; Le Gouill, S.; Casasnovas, R.-O.; Meignan, M.; et al. Fully Automatic Segmentation of Diffuse Large B Cell Lymphoma Lesions on 3D FDG-PET/CT for Total Metabolic Tumour Volume Prediction Using a Convolutional Neural Network. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Chen, K.; Teng, Y.; Ding, C.; Zhou, Z.; Gao, Y.; Wu, J.; He, J.; He, K.; Zhang, J. Deep Learning-Based Tumour Segmentation and Total Metabolic Tumour Volume Prediction in the Prognosis of Diffuse Large B-Cell Lymphoma Patients in 3D FDG-PET Images. Eur. Radiol. 2022, 32, 4801–4812. [Google Scholar] [CrossRef] [PubMed]
- Ferrández, M.C.; Golla, S.S.V.; Eertink, J.J.; de Vries, B.M.; Lugtenburg, P.J.; Wiegers, S.E.; Zwezerijnen, G.J.C.; Pieplenbosch, S.; Kurch, L.; Hüttmann, A.; et al. An Artificial Intelligence Method Using FDG PET to Predict Treatment Outcome in Diffuse Large B Cell Lymphoma Patients. Sci. Rep. 2023, 13, 13111. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Udupa, J.K.; Chong, E.; Winchell, N.; Sun, C.; Zou, Y.; Schuster, S.J.; Torigian, D.A. Prediction of Lymphoma Response to CAR T Cells by Deep Learning-Based Image Analysis. PLoS ONE 2023, 18, e0282573. [Google Scholar] [CrossRef]
- Yuan, C.; Shi, Q.; Huang, X.; Wang, L.; He, Y.; Li, B.; Zhao, W.; Qian, D. Multimodal Deep Learning Model on Interim [18F]FDG PET/CT for Predicting Primary Treatment Failure in Diffuse Large B-Cell Lymphoma. Eur. Radiol. 2023, 33, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Jemaa, S.; Ounadjela, S.; Wang, X.; El-Galaly, T.C.; Kostakoglu, L.; Knapp, A.; Ku, G.; Musick, L.; Sahin, D.; Wei, M.C.; et al. Automated Lugano Metabolic Response Assessment in 18F-Fluorodeoxyglucose-Avid Non-Hodgkin Lymphoma with Deep Learning on 18F-Fluorodeoxyglucose-Positron Emission Tomography. J. Clin. Oncol. 2024, 42, 2966–2977. [Google Scholar] [CrossRef]
- Guo, R.; Hu, X.; Song, H.; Xu, P.; Xu, H.; Rominger, A.; Lin, X.; Menze, B.; Li, B.; Shi, K. Weakly Supervised Deep Learning for Determining the Prognostic Value of 18F-FDG PET/CT in Extranodal Natural Killer/T Cell Lymphoma, Nasal Type. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3151–3161. [Google Scholar] [CrossRef] [PubMed]
- Ngeow, J.Y.Y.; Quek, R.H.H.; Ng, D.C.E.; Hee, S.W.; Tao, M.; Lim, L.C.; Tan, Y.H.; Lim, S.T. High SUV Uptake on FDG-PET/CT Predicts for an Aggressive B-Cell Lymphoma in a Prospective Study of Primary FDG-PET/CT Staging in Lymphoma. Ann. Oncol. 2009, 20, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Bodet-Milin, C.; Kraeber-Bodéré, F.; Moreau, P.; Campion, L.; Dupas, B.; Le Gouill, S. Investigation of FDG-PET/CT Imaging to Guide Biopsies in the Detection of Histological Transformation of Indolent Lymphoma. Haematologica 2008, 93, 471–472. [Google Scholar] [CrossRef] [PubMed]
- Matasar, M.J.; Zelenetz, A.D. Overview of Lymphoma Diagnosis and Management. Radiol. Clin. N. Am. 2008, 46, 175–198. [Google Scholar] [CrossRef]
- Gümüştaş, S.; Inan, N.; Akansel, G.; Başyïğït, I.; Cïftçi, E. Differentiation of Lymphoma versus Sarcoidosis in the Setting of Mediastinal-Hilar Lymphadenopathy: Assessment with Diffusion-Weighted MR Imaging. Sarcoidosis Vasc. Diffuse Lung Dis. 2013, 30, 52–59. [Google Scholar]
- Jennings, W.C.; Baker, R.S.; Murray, S.S.; Howard, C.A.; Parker, D.E.; Peabody, L.F.; Vice, H.M.; Sheehan, W.W.; Broughan, T.A. Primary Breast Lymphoma: The Role of Mastectomy and the Importance of Lymph Node Status. Ann. Surg. 2007, 245, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.; Holzhausen, H.-J.; Wienke, A.; Schmidt, J.; Thomssen, C.; Arnold, D.; Ruschke, K.; Spielmann, R.-P. Primary and Secondary Breast Lymphoma: Prevalence, Clinical Signs and Radiological Features. Br. J. Radiol. 2012, 85, e195–e205. [Google Scholar] [CrossRef] [PubMed]
- Picasso, R.; Tagliafico, A.; Calabrese, M.; Martinoli, C.; Pistoia, F.; Rossi, A.; Zaottini, F.; Derchi, L. Primary and Secondary Breast Lymphoma: Focus on Epidemiology and Imaging Features. Pathol. Oncol. Res. 2020, 26, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.T.; Bhatti, R.M.; Glassman, L. Extranodal Lymphoma of the Breast. Radiol. Clin. N. Am. 2016, 54, 711–726. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.J.; Lee, J.; Kim, D.Y.; Kim, J.-S.; Shin, M.-S.; Noh, I.; Koh, J.S.; Kim, E.J.; Lee, S.-S. Utility and Limitations of Fine-Needle Aspiration Cytology in the Diagnosis of Lymphadenopathy. Diagnostics 2023, 13, 728. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Baba, S.; Endo, M.; Setsu, N.; Iida, K.; Fukushi, J.-I.; Kawaguchi, K.; Okada, S.; Bekki, H.; Isoda, T.; et al. Metabolic Tumor Volume by 18F-FDG PET/CT Can Predict the Clinical Outcome of Primary Malignant Spine/Spinal Tumors. Biomed. Res. Int. 2017, 2017, 8132676. [Google Scholar] [CrossRef] [PubMed]
- Cottereau, A.-S.; Versari, A.; Loft, A.; Casasnovas, O.; Bellei, M.; Ricci, R.; Bardet, S.; Castagnoli, A.; Brice, P.; Raemaekers, J.; et al. Prognostic Value of Baseline Metabolic Tumor Volume in Early-Stage Hodgkin Lymphoma in the Standard Arm of the H10 Trial. Blood 2018, 131, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Yu, T.; Pan, Z. Prognostic Value of the Baseline 18F-FDG PET/CT Metabolic Tumour Volume (MTV) and Further Stratification in Low-Intermediate (L-I) and High-Intermediate (H-I) Risk NCCNIPI Subgroup by MTV in DLBCL MTV Predict Prognosis in DLBCL. Ann. Nucl. Med. 2021, 35, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Meignan, M.; Cottereau, A.S.; Versari, A.; Chartier, L.; Dupuis, J.; Boussetta, S.; Grassi, I.; Casasnovas, R.-O.; Haioun, C.; Tilly, H.; et al. Baseline Metabolic Tumor Volume Predicts Outcome in High–Tumor-Burden Follicular Lymphoma: A Pooled Analysis of Three Multicenter Studies. JCO 2016, 34, 3618–3626. [Google Scholar] [CrossRef] [PubMed]
- Vergote, V.K.J.; Verhoef, G.; Janssens, A.; Woei-A-Jin, F.J.S.H.; Laenen, A.; Tousseyn, T.; Dierickx, D.; Deroose, C.M. [18F]FDG-PET/CT Volumetric Parameters Can Predict Outcome in Untreated Mantle Cell Lymphoma. Leuk. Lymphoma 2023, 64, 161–170. [Google Scholar] [CrossRef]
- Albano, D.; Re, A.; Tucci, A.; Giubbini, R.; Bertagna, F. Prognostic Role of ΔMTV and ΔTLG in Burkitt Lymphoma. Ann. Nucl. Med. 2019, 33, 280–287. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, J.; Liu, L.; Wang, Z.; Yu, B.; Xia, Z.; Zhang, Q.; Ji, D.; Liu, X.; Lv, F.; et al. Prognostic Significance of Clinical Characteristics and 18Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography Quantitative Parameters in Patients with Primary Mediastinal B-Cell Lymphoma. J. Int. Med. Res. 2022, 50, 3000605211063027. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, X.; Qin, H.; Zhao, Z.; Li, J.; Zhang, B.; Sang, S.; Wu, Y.; Deng, S. Prognostic Values of Baseline 18F-FDG PET/CT in Patients with Peripheral T-Cell Lymphoma. Biomed. Res. Int. 2020, 2020, 9746716. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wen, X.; Li, L.; Li, X.; Zhenchang, S.; Zhang, L.; Qiu, L.; Zhang, M. Prognostic Value of Total Metabolic Tumor Volume and Total Lesion Glycolysis Measured By 18F-FDG PET-CT in Patients with T-Cell Lymphoblastic Lymphoma. Blood 2019, 134, 2851. [Google Scholar] [CrossRef]
- Ferrández, M.C.; Golla, S.S.V.; Eertink, J.J.; Wiegers, S.E.; Zwezerijnen, G.J.C.; Heymans, M.W.; Lugtenburg, P.J.; Kurch, L.; Hüttmann, A.; Hanoun, C.; et al. Validation of an Artificial Intelligence-Based Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma. J. Nucl. Med. 2024, 65, 1802–1807. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Sun, A.; Wang, Y.; Liu, Y.; Lei, H. Development and Validation of Prediction Model for Overall Survival in Patients with Lymphoma: A Prospective Cohort Study in China. BMC Med. Inform. Decis. Mak. 2023, 23, 125. [Google Scholar] [CrossRef]
- Hasanabadi, S.; Aghamiri, S.M.R.; Abin, A.A.; Abdollahi, H.; Arabi, H.; Zaidi, H. Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis. Cancers 2024, 16, 3511. [Google Scholar] [CrossRef]
- Poletto, S.; Novo, M.; Paruzzo, L.; Frascione, P.M.M.; Vitolo, U. Treatment Strategies for Patients with Diffuse Large B-Cell Lymphoma. Cancer Treat. Rev. 2022, 110, 102443. [Google Scholar] [CrossRef] [PubMed]
- Sehn, L.H.; Berry, B.; Chhanabhai, M.; Fitzgerald, C.; Gill, K.; Hoskins, P.; Klasa, R.; Savage, K.J.; Shenkier, T.; Sutherland, J.; et al. The Revised International Prognostic Index (R-IPI) Is a Better Predictor of Outcome than the Standard IPI for Patients with Diffuse Large B-Cell Lymphoma Treated with R-CHOP. Blood 2007, 109, 1857–1861. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Suh, C.; Park, Y.H.; Ko, Y.H.; Bang, S.M.; Lee, J.H.; Lee, D.H.; Huh, J.; Oh, S.Y.; Kwon, H.-C.; et al. Extranodal Natural Killer T-Cell Lymphoma, Nasal-Type: A Prognostic Model from a Retrospective Multicenter Study. J. Clin. Oncol. 2006, 24, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US Lymphoid Malignancy Statistics by World Health Organization Subtypes. CA Cancer J. Clin. 2016, 66, 443–459. [Google Scholar] [CrossRef] [PubMed]
- van Doesum, J.A.; Niezink, A.G.H.; Huls, G.A.; Beijert, M.; Diepstra, A.; van Meerten, T. Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type: Diagnosis and Treatment. Hemasphere 2021, 5, e523. [Google Scholar] [CrossRef] [PubMed]
- Cottereau, A.-S.; Meignan, M.; Nioche, C.; Capobianco, N.; Clerc, J.; Chartier, L.; Vercellino, L.; Casasnovas, O.; Thieblemont, C.; Buvat, I. Risk Stratification in Diffuse Large B-Cell Lymphoma Using Lesion Dissemination and Metabolic Tumor Burden Calculated from Baseline PET/CT†. Ann. Oncol. 2021, 32, 404–411. [Google Scholar] [CrossRef]
- Girum, K.B.; Cottereau, A.-S.; Vercellino, L.; Rebaud, L.; Clerc, J.; Casasnovas, O.; Morschhauser, F.; Thieblemont, C.; Buvat, I. Tumor Location Relative to the Spleen Is a Prognostic Factor in Lymphoma Patients: A Demonstration from the REMARC Trial. J. Nucl. Med. 2024, 65, 313–319. [Google Scholar] [CrossRef]
- Girum, K.B.; Rebaud, L.; Cottereau, A.-S.; Meignan, M.; Clerc, J.; Vercellino, L.; Casasnovas, O.; Morschhauser, F.; Thieblemont, C.; Buvat, I. 18F-FDG PET Maximum-Intensity Projections and Artificial Intelligence: A Win-Win Combination to Easily Measure Prognostic Biomarkers in DLBCL Patients. J. Nucl. Med. 2022, 63, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-W.; Hong, J.-S.; Chiu, H.-Y.; Chao, H.-S.; Chen, Y.-M.; Wu, Y.-T. Standalone Deep Learning versus Experts for Diagnosis Lung Cancer on Chest Computed Tomography: A Systematic Review. Eur. Radiol. 2024, 34, 7397–7407. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-L.; Gong, T.-T.; Liu, F.-H.; Chen, H.-Y.; Xiao, Q.; Hou, Y.; Huang, Y.; Sun, H.-Z.; Shi, Y.; Gao, S.; et al. Artificial Intelligence Performance in Image-Based Ovarian Cancer Identification: A Systematic Review and Meta-Analysis. eClinicalMedicine 2022, 53, 101662. [Google Scholar] [CrossRef] [PubMed]
- Meignan, M.; Cottereau, A.-S.; Specht, L.; Mikhaeel, N.G. Total Tumor Burden in Lymphoma—An Evolving Strong Prognostic Parameter. Br. J. Radiol. 2021, 94, 20210448. [Google Scholar] [CrossRef] [PubMed]
- Tsilimigras, D.I.; Hyer, J.M.; Bagante, F.; Guglielmi, A.; Ruzzenente, A.; Alexandrescu, S.; Poultsides, G.; Sasaki, K.; Aucejo, F.; Pawlik, T.M. Resection of Colorectal Liver Metastasis: Prognostic Impact of Tumor Burden vs KRAS Mutational Status. J. Am. Coll. Surg. 2021, 232, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Iacovelli, R.; Lanoy, E.; Albiges, L.; Escudier, B. Tumour Burden Is an Independent Prognostic Factor in Metastatic Renal Cell Carcinoma. BJU Int. 2012, 110, 1747–1753. [Google Scholar] [CrossRef]
- Specht, L.; Nordentoft, A.M.; Cold, S.; Clausen, N.T.; Nissen, N.I. Tumor Burden as the Most Important Prognostic Factor in Early Stage Hodgkin’s Disease. Relations to Other Prognostic Factors and Implications for Choice of Treatment. Cancer 1988, 61, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, S.; Velasquez, W.S.; Tucker, S.L.; Fuller, L.M.; McLaughlin, P.W.; Manning, J.T.; North, L.B.; Cabanillas, F.C. Tumor Burden Assessment and Its Implication for a Prognostic Model in Advanced Diffuse Large-Cell Lymphoma. J. Clin. Oncol. 1986, 4, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Mozas, P.; Rivas-Delgado, A.; Rivero, A.; Dlouhy, I.; Nadeu, F.; Balagué, O.; González-Farré, B.; Baumann, T.; Giné, E.; Delgado, J.; et al. High Serum Levels of IL-2R, IL-6, and TNF-α Are Associated with Higher Tumor Burden and Poorer Outcome of Follicular Lymphoma Patients in the Rituximab Era. Leuk. Res. 2020, 94, 106371. [Google Scholar] [CrossRef] [PubMed]
- Magrath, I.; Lee, Y.J.; Anderson, T.; Henle, W.; Ziegler, J.; Simon, R.; Schein, P. Prognostic Factors in Burkitt’s Lymphoma: Importance of Total Tumor Burden. Cancer 1980, 45, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Buvat, I.; Nioche, C.; Ceriani, L.; Cottereau, A.-S.; Guerra, L.; Hicks, R.J.; Kanoun, S.; Kobe, C.; Loft, A.; et al. International Benchmark for Total Metabolic Tumor Volume Measurement in Baseline 18F-FDG PET/CT of Lymphoma Patients: A Milestone Toward Clinical Implementation. J. Nucl. Med. 2024, 65, 1343–1348. [Google Scholar] [CrossRef]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; Bouzbid, S.; et al. International Incidence of Childhood Cancer, 2001–2010: A Population-Based Registry Study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Law, M.W.-M.; Khong, P.-L. Whole-Body PET/CT Scanning: Estimation of Radiation Dose and Cancer Risk. Radiology 2009, 251, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Sher, A.C.; Seghers, V.; Paldino, M.J.; Dodge, C.; Krishnamurthy, R.; Krishnamurthy, R.; Rohren, E.M. Assessment of Sequential PET/MRI in Comparison with PET/CT of Pediatric Lymphoma: A Prospective Study. Am. J. Roentgenol. 2016, 206, 623–631. [Google Scholar] [CrossRef]
- Gatidis, S.; Schmidt, H.; Gücke, B.; Bezrukov, I.; Seitz, G.; Ebinger, M.; Reimold, M.; Pfannenberg, C.A.; Nikolaou, K.; Schwenzer, N.F.; et al. Comprehensive Oncologic Imaging in Infants and Preschool Children with Substantially Reduced Radiation Exposure Using Combined Simultaneous 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging: A Direct Comparison to 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography. Investig. Radiol. 2016, 51, 7–14. [Google Scholar] [CrossRef]
- Ng, C.K.C. Artificial Intelligence for Radiation Dose Optimization in Pediatric Radiology: A Systematic Review. Children 2022, 9, 1044. [Google Scholar] [CrossRef] [PubMed]
- Cabitza, F.; Campagner, A.; Soares, F.; García de Guadiana-Romualdo, L.; Challa, F.; Sulejmani, A.; Seghezzi, M.; Carobene, A. The Importance of Being External. Methodological Insights for the External Validation of Machine Learning Models in Medicine. Comput. Methods Programs Biomed. 2021, 208, 106288. [Google Scholar] [CrossRef]
- Ramspek, C.L.; Jager, K.J.; Dekker, F.W.; Zoccali, C.; van Diepen, M. External Validation of Prognostic Models: What, Why, How, When and Where? Clin. Kidney J. 2021, 14, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Chalkidis, G.; McPherson, J.P.; Beck, A.; Newman, M.G.; Guo, J.-W.; Sloss, E.A.; Staes, C.J. External Validation of a Machine Learning Model to Predict 6-Month Mortality for Patients with Advanced Solid Tumors. JAMA Netw. Open 2023, 6, e2327193. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.-M.; Papanikolaou, N.; Bick, U.; Illing, R.; Kahn, C.E.; Kalpathi-Cramer, J.; Matos, C.; Martí-Bonmatí, L.; Miles, A.; Mun, S.K.; et al. Artificial Intelligence and Machine Learning in Cancer Imaging. Commun. Med. 2022, 2, 133. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wang, Z.; Li, D.; Wang, Y.; Yang, G.; Zhao, Y.; Kong, Y.; Wang, R.; Wu, R.; Wang, Z. Low 18F-Fluorodeoxyglucose Dose Positron Emission Tomography Assisted by a Deep-Learning Image-Denoising Technique in Patients with Lymphoma. Quant. Imaging Med. Surg. 2024, 14, 111–122. [Google Scholar] [CrossRef]
- de Vries, B.M.; Golla, S.S.V.; Zwezerijnen, G.J.C.; Hoekstra, O.S.; Jauw, Y.W.S.; Huisman, M.C.; van Dongen, G.A.M.S.; Menke-van der Houven van Oordt, W.C.; Zijlstra-Baalbergen, J.J.M.; Mesotten, L.; et al. 3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body 18F-Fluorodeoxyglucose and 89Zr-Rituximab PET Scans. Diagnostics 2022, 12, 596. [Google Scholar] [CrossRef]
- Wang, Y.-R.J.; Baratto, L.; Hawk, K.E.; Theruvath, A.J.; Pribnow, A.; Thakor, A.S.; Gatidis, S.; Lu, R.; Gummidipundi, S.E.; Garcia-Diaz, J.; et al. Artificial Intelligence Enables Whole-Body Positron Emission Tomography Scans with Minimal Radiation Exposure. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2771–2781. [Google Scholar] [CrossRef] [PubMed]
- Thornton, A.; Lee, P. Publication Bias in Meta-Analysis: Its Causes and Consequences. J. Clin. Epidemiol. 2000, 53, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Shamszare, H.; Choudhury, A. Clinicians’ Perceptions of Artificial Intelligence: Focus on Workload, Risk, Trust, Clinical Decision Making, and Clinical Integration. Healthcare 2023, 11, 2308. [Google Scholar] [CrossRef]
- De Hert, S. Burnout in Healthcare Workers: Prevalence, Impact and Preventative Strategies. Local. Reg. Anesth. 2020, 13, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Dominic, C.; Gopal, D.P.; Sidhu, A. “It’s like Juggling Fire Daily”: Well-Being, Workload and Burnout in the British NHS—A Survey of 721 Physicians. Work 2021, 70, 395–403. [Google Scholar] [CrossRef]
- Gandhi, T.K.; Classen, D.; Sinsky, C.A.; Rhew, D.C.; Vande Garde, N.; Roberts, A.; Federico, F. How Can Artificial Intelligence Decrease Cognitive and Work Burden for Front Line Practitioners? JAMIA Open 2023, 6, ooad079. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, G.; Singh, S.; Pathania, M.; Gosavi, S.; Abhishek, S.; Parchani, A.; Dhar, M. Artificial Intelligence in Clinical Medicine: Catalyzing a Sustainable Global Healthcare Paradigm. Front. Artif. Intell. 2023, 6, 1227091. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Pachauri, P.; Akram, W.; Parvez, M.; Ahmad, S.; Yahya, Z. Enhancing Retinal Disease Diagnosis through AI: Evaluating Performance, Ethical Considerations, and Clinical Implementation. Inform. Health 2024, 1, 57–69. [Google Scholar] [CrossRef]
- Baltruschat, I.; Steinmeister, L.; Nickisch, H.; Saalbach, A.; Grass, M.; Adam, G.; Knopp, T.; Ittrich, H. Smart Chest X-Ray Worklist Prioritization Using Artificial Intelligence: A Clinical Workflow Simulation. Eur. Radiol. 2021, 31, 3837–3845. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting Cancer Outcomes with Radiomics and Artificial Intelligence in Radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Yu, H.; Park, S.-H.; Woo, D.; Lee, S.-J.; Chong, G.O.; Han, H.S.; Kim, J.-C. Comparing Deep Learning and Handcrafted Radiomics to Predict Chemoradiotherapy Response for Locally Advanced Cervical Cancer Using Pretreatment MRI. Sci. Rep. 2024, 14, 1180. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, L.; Jiao, X. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer. Acad. Radiol. 2023, 30, 1281–1287. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Katz, S.; Kontos, D.; Roshkovan, L. State of the Art: Radiomics and Radiomics-Related Artificial Intelligence on the Road to Clinical Translation. BJR Open 2024, 6, tzad004. [Google Scholar] [CrossRef] [PubMed]
- Dondolin, R.; Garrou, F.; Almasri, M.; Cosentino, C.; Talotta, D.; Bruna, R.; Maria Rivolta, G.; Nabki, J.; Al Deeban, B.; Bruscaggin, A.; et al. Integration of [18f]FDG-PET Radiomics with Liquid Biopsy Improves Outcome Prediction in Newly Diagnosed DLBCL Patients. Blood 2024, 144, 2980. [Google Scholar] [CrossRef]
- Yousefirizi, F.; Gowdy, C.; Klyuzhin, I.S.; Sabouri, M.; Tonseth, P.; Hayden, A.R.; Wilson, D.; Sehn, L.H.; Scott, D.W.; Steidl, C.; et al. Evaluating Outcome Prediction via Baseline, End-of-Treatment, and Delta Radiomics on PET-CT Images of Primary Mediastinal Large B-Cell Lymphoma. Cancers 2024, 16, 1090. [Google Scholar] [CrossRef] [PubMed]
- Cousin, F.; Louis, T.; Dheur, S.; Aboubakar, F.; Ghaye, B.; Occhipinti, M.; Vos, W.; Bottari, F.; Paulus, A.; Sibille, A.; et al. Radiomics and Delta-Radiomics Signatures to Predict Response and Survival in Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers 2023, 15, 1968. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Aerts, H.J.; Mak, R.H. Handcrafted versus Deep Learning Radiomics for Prediction of Cancer Therapy Response. Lancet Digit. Health 2019, 1, e106–e107. [Google Scholar] [CrossRef] [PubMed]
- Afshar, P.; Mohammadi, A.; Plataniotis, K.N.; Oikonomou, A.; Benali, H. From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Process. Mag. 2019, 36, 132–160. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical Image Analysis Using Deep Learning Algorithms. Front. Public. Health 2023, 11, 1273253. [Google Scholar] [CrossRef]
- Parekh, V.S.; Jacobs, M.A. Deep Learning and Radiomics in Precision Medicine. Expert. Rev. Precis. Med. Drug Dev. 2019, 4, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Jiang, Z. Artificial Intelligence Applications in Lymphoma Diagnosis and Management: Opportunities, Challenges, and Future Directions. J. Multidiscip. Healthc. 2024, 17, 5329–5339. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Kumar, A.; Matasar, M.J.; Schöder, H.; Rademaker, J. Imaging for Staging and Response Assessment in Lymphoma. Radiology 2015, 276, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, V.S.; Parmar, V.; Madabhushi, A. Towards Equitable AI in Oncology. Nat. Rev. Clin. Oncol. 2024, 21, 628–637. [Google Scholar] [CrossRef]
- Marey, A.; Arjmand, P.; Alerab, A.D.S.; Eslami, M.J.; Saad, A.M.; Sanchez, N.; Umair, M. Explainability, Transparency and Black Box Challenges of AI in Radiology: Impact on Patient Care in Cardiovascular Radiology. Egypt. J. Radiol. Nucl. Med. 2024, 55, 183. [Google Scholar] [CrossRef]
- Pahud de Mortanges, A.; Luo, H.; Shu, S.Z.; Kamath, A.; Suter, Y.; Shelan, M.; Pöllinger, A.; Reyes, M. Orchestrating Explainable Artificial Intelligence for Multimodal and Longitudinal Data in Medical Imaging. NPJ Digit. Med. 2024, 7, 195. [Google Scholar] [CrossRef]
- Abgrall, G.; Holder, A.L.; Chelly Dagdia, Z.; Zeitouni, K.; Monnet, X. Should AI Models Be Explainable to Clinicians? Crit. Care 2024, 28, 301. [Google Scholar] [CrossRef] [PubMed]
- Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The Role of Explainability in Creating Trustworthy Artificial Intelligence for Health Care: A Comprehensive Survey of the Terminology, Design Choices, and Evaluation Strategies. J. Biomed. Inform. 2021, 113, 103655. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic Accuracy of Deep Learning in Medical Imaging: A Systematic Review and Meta-Analysis. npj Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, J.; Yao, Q.; Li, H.; Zhao, M.; Zhou, S.K. Addressing Fairness Issues in Deep Learning-Based Medical Image Analysis: A Systematic Review. npj Digit. Med. 2024, 7, 286. [Google Scholar] [CrossRef]
Non-Hodgkin Lymphoma | Hodgkin Lymphoma |
---|---|
Aggressive types Diffuse large B cell lymphoma Primary mediastinal large B cell lymphoma Burkitt lymphoma Peripheral T cell lymphoma Anaplastic large cell lymphoma Others | Classical Nodular sclerosis Mixed cellularity Lymphocyte-rich Lymphocyte-depleted |
Indolent types Follicular lymphoma Small lymphocytic lymphoma Marginal zone lymphoma Lymphoplasmacytic lymphoma Cutaneous T cell lymphoma Others | Nodular lymphocyte-predominant |
Study | Number of Participants (Mean/Median Age in Years if Reported) | Imaging Modality | Medical Objective | DL Architecture | External Validation | Performance Metrics |
---|---|---|---|---|---|---|
Zhou et al., 2021 [24] | 142 (58) | PET/CT | Detection | An Xception-based U-Net | Yes | Se: 84.00% FPs/patient: 14 |
Weisman, Kieler et al., 2020 [25] | 90 (44.47) | PET/CT | Detection | An ensemble of 3D patch-based, multi-resolution pathway CNNs | No | Se: 85.00% FPs/patient: 4 |
Wang et al., 2023 [26] | 73 (16) | PET/MRI | Detection | A multimodal fusion algorithm | No | Se: 76.00% FDR: 10.00% |
Xu et al., 2024 [4] | 61 (56.49) | PET/CT | Classification | A hybrid few-shot multiple-instance learning model | No | AUC: 0.795 F1-score 1: 75.30% |
Wang and Jiang, 2023 [27] | 80 | PET/CT | Classification | A novel model based on SA-R2-Net and ResNet | No | AUC: 0.902 F1-score: 85.20% |
Aoki et al., 2024 [28] | 118 (60.95) | PET/CT | Differential diagnosis | A novel CNN model | No | AUC: 0.963 F1-score: 87.49% |
Chen et al., 2023 [29] | 236 (51.31) | PET/CT | Differential diagnosis | A novel attention-based aggregate CNN model | Yes | AUC: 0.788 F1-score: 70.90% |
Yang et al., 2023 [30] | 165 | PET/CT | Differential diagnosis | A DL-SVM model based on ResNet50 architecture | No | AUC: 0.948 F1-score: 81.80% |
Yousefirizi et al., 2024 [21] | 1418 | PET/CT | MTV estimation | A cascaded U-Net-based approach | Yes | R2: 0.89 |
Revailler et al., 2022 [31] | 2030 | PET/CT | MTV estimation | A 3D V-Net model | No | SCC: 0.92–0.98 |
Weisman, Kim et al., 2020 [32] | 100 (15.80) | PET/CT | MTV estimation | An ensemble of 3D patch-based, multi-resolution pathway CNNs | No | PCC: 0.88 |
Kuker et al., 2022 [33] | 100 | PET/CT | MTV estimation | A model built off of a pre-trained 2D dilated residual U-Net architecture | No | PCC: 0.82 ICC: 0.82 |
Blanc-Durand et al., 2021 [34] | 733 | PET/CT | MTV estimation | A 3D U-net architecture with two input channels | Yes | R2: 0.82 |
Jiang et al., 2022 [35] | 414 | PET | MTV estimation | A fully CNN with an nnU-Net architecture | Yes | R2: 0.94 |
Ferrández et al., 2023 [36] | 636 | PET/CT | Treatment response prediction | A dual-branch four-layer CNN | Yes | AUC: 0.74 |
Tong et al., 2023 [37] | 39 | PET | Treatment response prediction | Transfer learning using a pre-trained CNN model | No | AUC: 0.93 |
Yuan et al., 2023 [38] | 249 | PET/CT | Treatment response prediction | Conv-LSTM-based hybrid learning model optimized with a contrastive training objective | Yes | AUC: 0.925 F1-score: 54.55% |
Jemaa et al., 2024 [39] | 1418 | PET/CT | Treatment response prediction | A novel DL-based algorithm | Yes | Se: 85–97% Sp: 50–78% |
Jiang et al., 2023 [22] | 684 | PET/CT | Survival prediction | A multiparametric model with a DL component based on VGG19 and DenseNet121 | Yes | C-index for PFS: 0.760 C-index for OS: 0.770 |
Qian et al., 2024 [23] | 449 | PET/CT | Survival prediction | A multiparametric model with a DL component | Yes | C-index for PFS: 0.770 C-index for OS: 0.771 |
Guo et al., 2021 [40] | 167 | PET/CT | Survival prediction | A weekly supervised DL model based on ResNet18 | No | AUC: 0.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanavos, T.; Birbas, E.; Zanos, T.P. A Systematic Review of the Applications of Deep Learning for the Interpretation of Positron Emission Tomography Images of Patients with Lymphoma. Cancers 2025, 17, 69. https://doi.org/10.3390/cancers17010069
Kanavos T, Birbas E, Zanos TP. A Systematic Review of the Applications of Deep Learning for the Interpretation of Positron Emission Tomography Images of Patients with Lymphoma. Cancers. 2025; 17(1):69. https://doi.org/10.3390/cancers17010069
Chicago/Turabian StyleKanavos, Theofilos, Effrosyni Birbas, and Theodoros P. Zanos. 2025. "A Systematic Review of the Applications of Deep Learning for the Interpretation of Positron Emission Tomography Images of Patients with Lymphoma" Cancers 17, no. 1: 69. https://doi.org/10.3390/cancers17010069
APA StyleKanavos, T., Birbas, E., & Zanos, T. P. (2025). A Systematic Review of the Applications of Deep Learning for the Interpretation of Positron Emission Tomography Images of Patients with Lymphoma. Cancers, 17(1), 69. https://doi.org/10.3390/cancers17010069