A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. F-18 FDG PET/CT Image Acquisition and Radiomics Feature Extraction
2.3. Radiomics Feature Selection and Radiomics Score Calculation
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Radiomics Feature Selection
3.3. Radiomics Score Performance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Gosnell, J.E.; Roman, S.A. Geographic Influences in the Global Rise of Thyroid Cancer. Nat. Rev. Endocrinol. 2020, 16, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; McHenry, C.R. Thyroid Incidentaloma. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Fencl, P.; Belohlavek, O.; Skopalova, M.; Jaruskova, M.; Kantorova, I.; Simonova, K. Prognostic and Diagnostic Accuracy of [18F]FDG-PET/CT in 190 Patients with Carcinoma of Unknown Primary. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1783–1792. [Google Scholar] [CrossRef] [PubMed]
- Wartski, M.; Le Stanc, E.; Gontier, E.; Vilain, D.; Banal, A.; Tainturier, C.; Pecking, A.P.; Alberini, J.L. In Search of an Unknown Primary Tumour Presenting with Cervical Metastases: Performance of Hybrid FDG-PET-CT. Nucl. Med. Commun. 2007, 28, 365–371. [Google Scholar] [CrossRef]
- Hutchings, M.; Eigtved, A.I.; Specht, L. FDG-PET in the Clinical Management of Hodgkin Lymphoma. Crit. Rev. Oncol. Hematol. 2004, 52, 19–32. [Google Scholar] [CrossRef]
- Vogel, J.; Sekler, J.; Gückel, B.; Pfannenberg, C.; Nikolaou, K.; La Fougère, C.; Dittmann, H.; Reinert, C.P. How [18F]FDG-PET/CT Affects the Management of Patients with Differentiated Thyroid Carcinoma in Clinical Routines. Cancers 2024, 16, 588. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.-M.; Yang, J.; Park, J.-M.; Choi, J.-H.; Song, H.; Kim, B.-I.; Shin, U.-S.; Moon, S.M.; Cho, S.; Woo, S.-K. Prediction of Neoadjuvant Chemoradiotherapy Response in Rectal Cancer Patients Using Harmonized Radiomics of Multcenter 18F-FDG-PET Image. Cancers 2023, 15, 5662. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Song, B.I.; Kim, H.W.; Won, K.S.; Son, Y.G.; Ryu, S.W. Prognostic Value of Restaging F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography to Predict 3-Year Post-Recurrence Survival in Patients with Recurrent Gastric Cancer after Curative Resection. Korean J. Radiol. 2020, 21, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Kwon, R.; Kim, H.; Ahn, K.S.; Song, B.-I.; Lee, J.; Kim, H.W.; Won, K.S.; Lee, H.W.; Kim, T.-S.; Kim, Y.; et al. A Machine Learning-Based Clustering Using Radiomics of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography for the Prediction of Prognosis in Patients with Intrahepatic Cholangiocarcinoma. Diagnostics 2024, 14, 2245. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, Y.L.; Kim, H.K.; Choi, Y.S.; Kim, H.; Ahn, M.J.; Choi, J.Y. Prognostic Significance of Volumetric Parameters Based on FDG PET/CT in Patients with Lung Adenocarcinoma Undergoing Curative Surgery. Cancers 2023, 15, 4380. [Google Scholar] [CrossRef]
- Noortman, W.A.; Aide, N.; Vriens, D.; Arkes, L.S.; Slump, C.H.; Boellaard, R.; Goeman, J.J.; Deroose, C.M.; Machiels, J.-P.; Licitra, L.F.; et al. Development and External Validation of a PET Radiomic Model for Prognostication of Head and Neck Cancer. Cancers 2023, 15, 2681. [Google Scholar] [CrossRef]
- Clement, C.; Leclère, J.-C.; Maheo, C.; Le Pennec, R.; Le Gal, G.; Delcroix, O.; Robin, P.; Rousset, J.; Tissot, V.; Gueguen, A.; et al. Diagnostic Performance of 18F-FDG PET/CT According to Delay After Treatment to Detect Subclinical Recurrence of Head and Neck Squamous Cell Carcinoma. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2024, 65, 1181–1187. [Google Scholar] [CrossRef]
- Farrell, M.A.; McAdams, H.P.; Herndon, J.E.; Patz, E.F. Non-Small Cell Lung Cancer: FDG PET for Nodal Staging in Patients with Stage I Disease. Radiology 2000, 215, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Song, B.-I. A Machine Learning-Based Radiomics Model for the Prediction of Axillary Lymph-Node Metastasis in Breast Cancer. Breast Cancer Tokyo Jpn. 2021, 28, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Song, B.-I. Nomogram Using F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography for Preoperative Prediction of Lymph Node Metastasis in Gastric Cancer. World J. Gastrointest. Oncol. 2020, 12, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Song, B.-I.; Kim, H.W.; Won, K.S. Predictive Value of 18F-FDG PET/CT for Axillary Lymph Node Metastasis in Invasive Ductal Breast Cancer. Ann. Surg. Oncol. 2017, 24, 2174–2181. [Google Scholar] [CrossRef]
- Kim, B.H.; Na, M.A.; Kim, I.J.; Kim, S.-J.; Kim, Y.-K. Risk Stratification and Prediction of Cancer of Focal Thyroid Fluorodeoxyglucose Uptake during Cancer Evaluation. Ann. Nucl. Med. 2010, 24, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, S.-J.; Kim, I.-J.; Kim, K. Thyroid Incidentalomas on FDG PET/CT in Patients with Non-Thyroid Cancer—A Large Retrospective Monocentric Study. Onkologie 2013, 36, 260–264. [Google Scholar] [CrossRef]
- Cohen, M.S.; Arslan, N.; Dehdashti, F.; Doherty, G.M.; Lairmore, T.C.; Brunt, L.M.; Moley, J.F. Risk of Malignancy in Thyroid Incidentalomas Identified by Fluorodeoxyglucose-Positron Emission Tomography. Surgery 2001, 130, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Kim, W.B.; Ryu, J.S.; Gong, G.; Hong, S.J.; Shong, Y.K. 18F-Fluorodeoxyglucose Uptake in Thyroid from Positron Emission Tomogram (PET) for Evaluation in Cancer Patients: High Prevalence of Malignancy in Thyroid PET Incidentaloma. Laryngoscope 2005, 115, 1074–1078. [Google Scholar] [CrossRef]
- Li, W.; Zhu, Q.; Zhang, B.; Jiang, Y.; Yang, D. Ultrasound-guided fine needle aspiration in the diagnosis of thyroid nodule. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2010, 32, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Aras, A.; Karayıl, A.R. Optimal Surgical Approaches for Thyroid Cancer: A Comparative Analysis of Efficacy and Complications. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2024, 30, e942619. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yuan, Z.; Yuan, Z.; Yang, C.; Zhang, J.; Shou, Y.; Zhang, W.; Ping, Z.; Gao, X.; Liu, S. Diagnostic Value of Volume-Based Fluorine-18-Fluorodeoxyglucose PET/CT Parameters for Characterizing Thyroid Incidentaloma. Korean J. Radiol. 2018, 19, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-K.; Ding, H.-J.; Chen, K.-T.; Chen, Y.-L.; Liao, A.C.; Shen, Y.-Y.; Su, C.-T.; Kao, C.-H. Prevalence and Risk of Cancer of Focal Thyroid Incidentaloma Identified by 18F-Fluorodeoxyglucose Positron Emission Tomography for Cancer Screening in Healthy Subjects. Anticancer Res. 2005, 25, 1421–1426. [Google Scholar] [PubMed]
- Zhai, G.; Zhang, M.; Xu, H.; Zhu, C.; Li, B. The Role of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Whole Body Imaging in the Evaluation of Focal Thyroid Incidentaloma. J. Endocrinol. Investig. 2010, 33, 151–155. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Ha, S.; Choi, H.; Paeng, J.C.; Cheon, G.J. Radiomics in Oncological PET/CT: A Methodological Overview. Nucl. Med. Mol. Imaging 2019, 53, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Gherghe, M.; Lazar, A.M.; Mutuleanu, M.-D.; Stanciu, A.E.; Martin, S. Radiomics Analysis of [18F]FDG PET/CT Thyroid Incidentalomas: How Can It Improve Patients’ Clinical Management? A Systematic Review from the Literature. Diagnostics 2022, 12, 471. [Google Scholar] [CrossRef] [PubMed]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Shie, P.; Cardarelli, R.; Sprawls, K.; Fulda, K.G.; Taur, A. Systematic Review: Prevalence of Malignant Incidental Thyroid Nodules Identified on Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography. Nucl. Med. Commun. 2009, 30, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Bertagna, F.; Treglia, G.; Piccardo, A.; Giubbini, R. Diagnostic and Clinical Significance of F-18-FDG-PET/CT Thyroid Incidentalomas. J. Clin. Endocrinol. Metab. 2012, 97, 3866–3875. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.S.; Kim, S.-J. Prediction of Malignant Thyroid Nodules Using 18 F-FDG PET/CT-Based Radiomics Features in Thyroid Incidentalomas. Clin. Nucl. Med. 2023, 48, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Dondi, F.; Pasinetti, N.; Gatta, R.; Albano, D.; Giubbini, R.; Bertagna, F. Comparison between Two Different Scanners for the Evaluation of the Role of 18F-FDG PET/CT Semiquantitative Parameters and Radiomics Features in the Prediction of Final Diagnosis of Thyroid Incidentalomas. J. Clin. Med. 2022, 11, 615. [Google Scholar] [CrossRef] [PubMed]
- Romeo, V.; Clauser, P.; Rasul, S.; Kapetas, P.; Gibbs, P.; Baltzer, P.A.T.; Hacker, M.; Woitek, R.; Helbich, T.H.; Pinker, K. AI-Enhanced Simultaneous Multiparametric 18F-FDG PET/MRI for Accurate Breast Cancer Diagnosis. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Duman, A.; Sun, X.; Thomas, S.; Powell, J.R.; Spezi, E. Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme. Cancers 2024, 16, 3351. [Google Scholar] [CrossRef] [PubMed]
- Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A Deep Look into Radiomics. Radiol. Med. 2021, 126, 1296–1311. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Training Set (n = 106) | Internal Validation Set (n = 46) | External Validation Set (n = 58) | ||||||
---|---|---|---|---|---|---|---|---|---|
Benign (n = 65) | Malignant (n = 41) | p | Benign (n = 28) | Malignant (n = 18) | p | Benign (n = 47) | Malignant (n = 11) | p | |
Age (years) | 63.0 ± 11.4 | 61.5 ± 10.5 | 0.484 | 65.9 ± 9.2 | 60.3 ± 13.1 | 0.097 | 61.8 ± 12.9 | 64.9 ± 9.2 | 0.460 |
Sex | 1.000 | 0.694 | 1.000 | ||||||
Female | 45 (69.2%) | 28 (68.3%) | 19 (67.9%) | 14 (77.8%) | 37 (78.7%) | 9 (81.8%) | |||
Male | 20 (30.8%) | 13 (31.7%) | 9 (32.1%) | 4 (22.2%) | 10 (21.3%) | 2 (18.2%) | |||
Size (mm) | 18.8 ± 11.9 | 17.7 ± 11.6 | 0.639 | 18.8 ± 10.0 | 18.7 ± 12.6 | 0.982 | 20.9 ± 12.1 | 25.6 ± 31.7 | 0.635 |
SUVmax | 7.5 ± 7.3 | 10.0 ± 7.7 | 0.103 | 7.9 ± 6.7 | 8.2 ± 5.9 | 0.888 | 9.3 ± 5.5 | 11.1 ± 8.5 | 0.524 |
SUVmean | 3.5 ± 1.2 | 4.1 ± 1.4 | 0.034 | 3.6 ± 0.9 | 3.7 ± 1.1 | 0.646 | 4.1 ± 1.2 | 4.3 ± 1.0 | 0.686 |
MTV (mm3) | 482.4 ± 183.8 | 319.9 ± 85.2 | <0.001 | 466.3 ± 167.9 | 306.4 ± 94.8 | <0.001 | 503.5 ± 187.1 | 299.3 ± 110.9 | 0.458 |
TLG | 11,116.5 ± 24,145.5 | 13,784.6 ± 27,457.1 | 0.601 | 11,210.0 ± 19,462.6 | 6348.8 ± 7099.5 | 0.237 | 13,781.2 ± 19,780.2 | 51,231.9 ± 149,442.5 | 0.426 |
Study Set | Total Cases | FNA Positive (Bethesda V and VI) | FNA Negative (Bethesda I–IV) | Ti-RADS ≥ 4 | Ti-RADS < 4 | Malignant Cases (Histology) |
---|---|---|---|---|---|---|
Training Set | 106 | 44 | 62 | 94 | 12 | 41 |
Internal Validation | 46 | 19 | 27 | 40 | 6 | 18 |
External Validation | 58 | 12 | 46 | 48 | 10 | 11 |
Radiomics Features | Coefficients |
---|---|
Intercept | 0.338331853 |
log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis | 0.077752305 |
log-sigma-3-0-mm-3D_glrlm_RunLengthNonUniformityNormalized | 0.04486966 |
log-sigma-3-0-mm-3D_glrlm_ShortRunEmphasis | 0.002361339 |
wavelet-LHH_glrlm_LongRunLowGrayLevelEmphasis | −0.013308531 |
wavelet-LHH_glszm_GrayLevelNonUniformityNormalized | −0.035576602 |
wavelet-LHH_glszm_SmallAreaEmphasis | 0.00323665 |
wavelet-HLH_glrlm_ShortRunEmphasis | 0.129276943 |
wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis | −0.235840268 |
wavelet-HHL_gldm_LargeDependenceLowGrayLevelEmphasis | −0.048990086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, J.; Song, B.-I. A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner. Cancers 2025, 17, 331. https://doi.org/10.3390/cancers17020331
Lee J, Lee J, Song B-I. A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner. Cancers. 2025; 17(2):331. https://doi.org/10.3390/cancers17020331
Chicago/Turabian StyleLee, Junchae, Jinny Lee, and Bong-Il Song. 2025. "A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner" Cancers 17, no. 2: 331. https://doi.org/10.3390/cancers17020331
APA StyleLee, J., Lee, J., & Song, B.-I. (2025). A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner. Cancers, 17(2), 331. https://doi.org/10.3390/cancers17020331