Ultra-High Dose Oral ω3 Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), or Oxidation-Resistant Deuterated DHA Block Tumorigenesis in a MYCN-Driven Neuroblastoma Model
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diets and Oils
2.2. Cell Lines and Mice
2.3. Plasmids
2.4. Mouse Oral Gavage and Injection Procedures
2.4.1. Experiment 1
2.4.2. Experiment 2
2.5. Fatty Acid Analysis
2.6. RT-qPCR
2.7. Statistical Analysis
2.8. Ethics
3. Results
3.1. Mouse Diet and Gavage Oils
3.2. Dosing
3.3. ARA and EPA Have Opposing Effects on Tumor Formation in a Syngeneic Neuroblastoma Model
3.4. Both DHA and D-DHA Block Tumor Formation
3.5. Tumor and Tissue Fatty Acid Accumulation
3.6. DHA and D-DHA Dosing Suppressed Liver ARA
3.7. HUFA Biosynthetic Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, E.A.; Abdessalam, S.; Aldrink, J.H.; Austin, M.; Heaton, T.E.; Bruny, J.; Ehrlich, P.; Dasgupta, R.; Baertschiger, R.M.; Lautz, T.B.; et al. Update on neuroblastoma. J. Pediatr. Surg. 2019, 54, 383–389. [Google Scholar] [CrossRef]
- Allen-Rhoades, W.; Whittle, S.B.; Rainusso, N. Pediatric Solid Tumors of Infancy: An Overview. Pediatr. Rev. 2018, 39, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Bartolucci, D.; Montemurro, L.; Raieli, S.; Lampis, S.; Pession, A.; Hrelia, P.; Tonelli, R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers 2022, 14, 4421. [Google Scholar] [CrossRef]
- Jacobson, J.; Clark, R.; Chung, D. High-Risk Neuroblastoma: A Surgical Perspective. Children 2023, 10, 388. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pérez, M.V.; Henley, A.B.; Arsenian-Henriksson, M. The MYCN Protein in Health and Disease. Genes 2017, 8, 113. [Google Scholar] [CrossRef]
- Tao, L.; Mohammad, M.A.; Milazzo, G.; Moreno-Smith, M.; Patel, T.D.; Zorman, B.; Badachhape, A.; Hernandez, B.E.; Wolf, A.B.; Zeng, Z.; et al. MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma. Nat. Commun. 2022, 13, 3728. [Google Scholar] [CrossRef] [PubMed]
- Dyall, S.C.; Balas, L.; Bazan, N.G.; Brenna, J.T.; Chiang, N.; da Costa Souza, F.; Dalli, J.; Durand, T.; Galano, J.-M.; Lein, P.J.; et al. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog. Lipid Res. 2022, 86, 101165. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, N.; Lupien, L.; Kuemmerle, N.B.; Kinlaw, W.B.; Swinnen, J.V.; Smans, K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 2013, 52, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 2016, 16, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Huang, J. The expanded role of fatty acid metabolism in cancer: New aspects and targets. Precis. Clin. Med. 2019, 2, 183–191. [Google Scholar] [CrossRef]
- Sheeter, D.A.; Garza, S.; Park, H.G.; Benhamou, L.-R.E.; Badi, N.R.; Espinosa, E.C.; Kothapalli, K.S.D.; Brenna, J.T.; Powers, J.T. Unsaturated Fatty Acid Synthesis Is Associated with Worse Survival and Is Differentially Regulated by MYCN and Tumor Suppressor microRNAs in Neuroblastoma. Cancers 2024, 16, 1590. [Google Scholar] [CrossRef]
- Narayanan, B.; Narayanan, N.; Reddy, B. Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int. J. Oncol. 2001, 19, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Xiong, A.; Yu, W.; Tiwary, R.; Sanders, B.G.; Kline, K. Distinct roles of different forms of vitamin E in DHA-induced apoptosis in triple-negative breast cancer cells. Mol. Nutr. Food Res. 2012, 56, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.S.; Wang, P.; Yamabe, N.; Fukui, M.; Jay, T.; Zhu, B.T. Docosahexaenoic Acid Induces Apoptosis in MCF-7 Cells In Vitro and In Vivo via Reactive Oxygen Species Formation and Caspase 8 Activation. PLoS ONE 2010, 5, e10296. [Google Scholar] [CrossRef]
- D’Eliseo, D.; Velotti, F. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy. J. Clin. Med. 2016, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Knapp, H.R.; FitzGerald, G.A. The Antihypertensive Effects of Fish Oil. N. Engl. J. Med. 1989, 320, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.D. When Brains Collide: What Every Athlete and Parent Should Know About the Prevention and Treatment of Concussion and Head Injuries; Lioncrest Publishing: Carson, NV, USA, 2016. [Google Scholar]
- Glueck, C.J.; Khan, N.; Riaz, M.; Padda, J.; Khan, Z.; Wang, P. Titrating lovaza from 4 to 8 to 12 grams/day in patients with primary hypertriglyceridemia who had triglyceride levels >500 mg/dl despite conventional triglyceride lowering therapy. Lipids Health Dis. 2012, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- James, G.; Bohannan, W.; Adewunmi, E.; Schmidt, K.; Park, H.G.; Shchepinov, M.S.; Agbaga, M.-P.; Brenna, J.T. Pharmacokinetics and metabolism in mouse retina of bis-allylic deuterated docosahexaenoic acid (D-DHA), a new dry AMD drug candidate. Exp. Eye Res. 2022, 222, 109193. [Google Scholar] [CrossRef]
- Liu, Y.; Bell, B.A.; Song, Y.; Zhang, K.; Anderson, B.; Axelsen, P.H.; Bohannan, W.; Agbaga, M.; Park, H.G.; James, G.; et al. Deuterated docosahexaenoic acid protects against oxidative stress and geographic atrophy-like retinal degeneration in a mouse model with iron overload. Aging Cell 2022, 21, e13579. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Foskolou, I.P.; Stellas, D.; Rozani, I.; Lavigne, M.D.; Politis, P.K. Prox1 suppresses the proliferation of neuroblastoma cells via a dual action in p27-Kip1 and Cdc25A. Oncogene 2013, 32, 947–960. [Google Scholar] [CrossRef]
- Feuerecker, B.; Seidl, C.; Pirsig, S.; Bruchelt, G.; Senekowitsch-Schmidtke, R. DCA promotes progression of neuroblastoma tumors in nude mice. Am. J. Cancer Res. 2015, 5, 812–820. [Google Scholar] [PubMed]
- Dickey, A.; Schleicher, S.; Leahy, K.; Hu, R.; Hallahan, D.; Thotala, D.K. GSK-3β inhibition promotes cell death, apoptosis, and in vivo tumor growth delay in neuroblastoma Neuro-2A cell line. J. Neurooncol. 2011, 104, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, D.; Guo, L.; Fang, S.; Wang, Y.; Xing, R. Androgen Receptor Regulates the Growth of Neuroblastoma Cells in vitro and in vivo. Front. Neurosci. 2017, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Benhamou, L.-R.E.; Powers, J.T. Noncoding RNA elements within MYCN mRNA are potent autonomous drivers of oncogenesis. BioRxiv 2025. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Z.; Liu, C. Identification and verification of the role of crucial genes through which methionine restriction inhibits the progression of colon cancer cells. Oncol. Lett. 2022, 24, 274. [Google Scholar] [CrossRef]
- Garcés, R.; Mancha, M. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 1993, 211, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Metherel, A.H.; Irfan, M.; Klingel, S.L.; Mutch, D.M.; Bazinet, R.P. Compound-specific isotope analysis reveals no retroconversion of DHA to EPA but substantial conversion of EPA to DHA following supplementation: A randomized control trial. Am. J. Clin. Nutr. 2019, 110, 823–831. [Google Scholar] [CrossRef]
- Yeh, J.M.; Hanmer, J.; Ward, Z.J.; Leisenring, W.M.; Armstrong, G.T.; Hudson, M.M.; Stovall, M.; Robison, L.L.; Oeffinger, K.C.; Diller, L. Chronic Conditions and Utility-Based Health-Related Quality of Life in Adult Childhood Cancer Survivors. J. Natl. Cancer Inst. 2016, 108, 4–7. [Google Scholar] [CrossRef]
- Oeffinger, K.C.; Mertens, A.C.; Sklar, C.A.; Kawashima, T.; Hudson, M.M.; Meadows, A.T.; Friedman, D.L.; Marina, N.; Hobbie, W.; Kadan-Lottick, N.S.; et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 2006, 355, 1572–1582. [Google Scholar] [CrossRef]
- Lagarde, M.; Sicard, B.; Guichardant, M.; Felisi, O.; Dechavanne, M. Fatty acid composition in native and cultured human endothelial cells. In Vitro 1984, 20, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Garza, S.; James, G.; Park, H.G.; Baker, P.R.S.; Brenna, J.T. Analysis of Intact In Vivo Peroxidized Phospholipids from Bovine Retina via LC-MS/MS and GC-MS/MS Using Autoxidized Retina Reference Standards. Anal. Chem. 2024, 96, 15406–15413. [Google Scholar] [CrossRef] [PubMed]
- Shchepinov, M.S. Polyunsaturated Fatty Acid Deuteration against Neurodegeneration. Trends Pharmacol. Sci. 2020, 41, 236–248. [Google Scholar] [CrossRef]
- So, W.; Liu, W.; Leung, K. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1 Cells. Nutrients 2015, 7, 6956–6973. [Google Scholar] [CrossRef] [PubMed]
- West, L.; Yin, Y.; Pierce, S.R.; Fang, Z.; Fan, Y.; Sun, W.; Tucker, K.; Staley, A.; Zhou, C.; Bae-Jump, V. Docosahexaenoic acid (DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. Am. J. Cancer Res. 2020, 10, 4450–4463. [Google Scholar] [PubMed]
- Iuchi, K.; Ema, M.; Suzuki, M.; Yokoyama, C.; Hisatomi, H. Oxidized unsaturated fatty acids induce apoptotic cell death in cultured cells. Mol. Med. Rep. 2019, 19, 2767–2773. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Porter, N.A. New Insights Regarding the Autoxidation of Polyunsaturated Fatty Acids. Antioxid. Redox Signal 2005, 7, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Hashmi, M.F. Partial Pressure of Oxygen; StatPearls: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Zenewicz, L.A. Oxygen Levels and Immunological Studies. Front. Immunol. 2017, 8, 324. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Nath, P.V.; Mai, V.Q.; Shakir, M.K.M.; Hoang, T.D. Treatment of Severe Hypertriglyceridemia During Pregnancy with High Doses of Omega-3 Fatty Acid and Plasmapheresis. AACE Clin. Case Rep. 2021, 7, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Kadhim, K.; Bawamia, B.; Cartlidge, T.; Farag, M.; Alkhalil, M. Bleeding Risk in Patients Receiving Omega-3 Polyunsaturated Fatty Acids: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Am. Heart Assoc. 2024, 13, e032390. [Google Scholar] [CrossRef] [PubMed]
Condition | Gavage Volume (μL/day) | HUFA Dose (mg/day) | HUFA Dose (mg/kg) | Cal/Day | %Cal | Human Equivalent (cal/day) | Human Equivalent (g/day) |
---|---|---|---|---|---|---|---|
Control | 0 | 0 | 0 | 0 | 0% | 0 | 0 |
ARA (Exp1) | 75 | 30 | 746 | 0.27 | 1.7% | 41 | 4.6 |
ARA | 125 | 50 | 1243 | 0.45 | 2.7% | 54 | 6.0 |
DHA | 125 | 103 | 2578 | 0.93 | 5.5% | 110 | 12.2 |
D-DHA | 125 | 125 | 3125 | 1.13 | 6.6% | 131 | 14.6 |
EPA (Exp 1) | 75 | 66 | 1643 | 0.59 | 0.% | 71 | 7.6 |
EPA | 125 | 110 | 2739 | 0.98 | 5.8% | 116 | 12.9 |
ARA-EPA | 150 | 95 | 2363 | 0.85 | 5.0% | 101 | 11.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, V.; Li, Y.N.; Benhamou, L.-R.E.; Park, H.G.; Raleigh, M.; Brenna, J.T.; Powers, J.T. Ultra-High Dose Oral ω3 Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), or Oxidation-Resistant Deuterated DHA Block Tumorigenesis in a MYCN-Driven Neuroblastoma Model. Cancers 2025, 17, 362. https://doi.org/10.3390/cancers17030362
Patel V, Li YN, Benhamou L-RE, Park HG, Raleigh M, Brenna JT, Powers JT. Ultra-High Dose Oral ω3 Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), or Oxidation-Resistant Deuterated DHA Block Tumorigenesis in a MYCN-Driven Neuroblastoma Model. Cancers. 2025; 17(3):362. https://doi.org/10.3390/cancers17030362
Chicago/Turabian StylePatel, Vishwa, Yan Ning Li, Lorraine-Rana E. Benhamou, Hui Gyu Park, Mariya Raleigh, J. Thomas Brenna, and John T. Powers. 2025. "Ultra-High Dose Oral ω3 Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), or Oxidation-Resistant Deuterated DHA Block Tumorigenesis in a MYCN-Driven Neuroblastoma Model" Cancers 17, no. 3: 362. https://doi.org/10.3390/cancers17030362
APA StylePatel, V., Li, Y. N., Benhamou, L.-R. E., Park, H. G., Raleigh, M., Brenna, J. T., & Powers, J. T. (2025). Ultra-High Dose Oral ω3 Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), or Oxidation-Resistant Deuterated DHA Block Tumorigenesis in a MYCN-Driven Neuroblastoma Model. Cancers, 17(3), 362. https://doi.org/10.3390/cancers17030362