New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Generation and Screening of ToTK1 Mutants
Deletion | MIC (nM) |
---|---|
pGEX-2T | >31600 |
wt ToTK1 | 31.6 |
ΔN5 | 10–31.6 |
ΔN10 | 10–31.6 |
ΔN15 | 10–31.6 |
ΔN19 | 10–31.6 |
ΔC5 | 31.6 |
ΔC10 | 10 |
ΔC15 | 10 |
ΔC20 | 5–10 |
ΔC25 | 5 |
ΔC30 | 10 |
ΔN19/C30 | 10 |
Amino acid position | 15 | 17 | 19 | 52 | 63 | 78 | 91 | 123 | 127 | 131 | 163 | 170 | 192 | 198 | 207 | 209 | 219 | MIC (nM) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pGEX-2T | >31,600 | |||||||||||||||||
wt ToTK1 | N | S | N | D | K | T | I | N | F | I | T | N | D | Q | S | N | H | 31.6 |
ToM3 | W | S | D | N | R | 10 | ||||||||||||
ToM4 | A | S | 10 | |||||||||||||||
ToM6 | D | 10 | ||||||||||||||||
ToM8 | T | R | 10 | |||||||||||||||
ToM5 | R | H | A | R | 10 | |||||||||||||
ToM1 | G | 10 | ||||||||||||||||
ToM7 | P | 10 | ||||||||||||||||
ToM2 | N | A | S | T | 10 |
2.2. ToTK1 Mutants
2.3. Characterization of ToTK1 Mutants
2.3.1. Expression and Purification of wt ToTK1 and Two ToTK1 Mutants
Enzyme | Mutation | Km (μM) | Vmax (nmol·min−1·mg−1) | Kcat (s−1) | Kcat/Km (M−1s−1) | Increase in specificity (-fold) |
---|---|---|---|---|---|---|
dThd | ||||||
Wt ToTK1 | wt | 0.4 ± 0.06 | 3660 ± 130 | 1.58 | 3.95 × 106 | |
ToTK1M4 | T78A; N123S | 1.3 ± 0.36 | 1600 ± 603 | 0.69 | 5.31 × 105 | |
ToTK1ΔC25 | deltaC25 | 1.6 ± 0.1 | 5170 ± 44 | 1.99 | 1.24 × 106 | |
dUrd | ||||||
Wt ToTK1 | wt | 17 ± 0.5 | 3400 ± 215 | 1.47 | 8.65 × 104 | |
ToTK1M4 | T78A; N123S | 15 ± 3.3 | 1900 ± 289 | 0.82 | 5.47 × 104 | |
ToTK1ΔC25 | deltaC25 | 27 ± 3.3 | 4000 ± 193 | 1.54 | 5.7 × 104 | |
AZT | ||||||
Wt ToTK1 | wt | 1.2 ± 0.04 | 3200 ± 24 | 1.38 | 1.15 × 106 | |
ToTK1M4 | T78A; N123S | 1.1 ± 0.1 | 740 ± 122 | 0.32 | 2.91 × 105 | 1.5 |
ToTK1ΔC25 | deltaC25 | 2 ± 0.06 | 2470 ± 190 | 0.95 | 4.75 × 105 | 1.2 |
2.3.2. Substrate Specificities of wt ToTK1 and Two ToTK1 Mutants
2.3.3. Inhibition of wt ToTK1 and Two ToTK1 Mutants by dTTP
Enzyme | Substrate (µM) | IC50 dTTP (µM) | |
---|---|---|---|
dThd | AZT | ||
Wt ToTK1 | 10 | 49.1 ± 1.7 (0.026) | 71.7 ± 11.1 (0.01) |
1 | 25.4 ± 11.7 | 26.8 ± 12.3 | |
ToTK1M4 | 10 | 55.6 ± 5.2 (1) | 63.8 ± 12.1 (0.77) |
1 | 55.6 ± 7.9 | 61.3 ± 6.9 | |
ToTK1ΔC25 | 10 | 65.2 ± 6.0 (0.021) | 93.9 ± 21.4 (0.016) |
1 | 49.3 ± 4.4 | 43.8 ± 2.8 |
Varied Substrate | dThd | AZT | ||
---|---|---|---|---|
Enzyme | Kic or Ki (µM) for dTTP | Type of inhibition | Kic or Ki (µM) for dTTP | Type of inhibition |
Wt ToTK1 | 4.6 | competitive | 11.1 | competitive |
ToTK1M4 | 55.6 | non-competitive | 62.6 | non-competitive |
ToTK1ΔC25 | 19.4 | competitive | 22.3 | competitive |
3. Experimental Section
3.1. Random Mutagenesis and Screening
3.2. N- and C-Terminal Deletions of ToTK1
3.3. Purification of Mutants and Enzyme Assays
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eriksson, S.; Munch-Petersen, B.; Johansson, K.; Eklund, H. Structure and function of cellular deoxyribonucleoside kinases. Cell. Mol. Life Sci. 2002, 59, 1327–1346. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, L.S.; Munch-Petersen, B.; Knecht, W. Non-viral deoxyribonucleoside kinases—Diversity and practical use. J. Genet. Genomics 2015. [Google Scholar] [CrossRef]
- Clausen, A.R.; Girandon, L.; Ali, A.; Knecht, W.; Rozpedowska, E.; Sandrini, M.P.B.; Andreasson, E.; Munch-Petersen, B.; Piskur, J. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in arabidopsis thaliana. FEBS J. 2012, 279, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, M.P.; Piskur, J. Deoxyribonucleoside kinases: Two enzyme families catalyze the same reaction. Trends Biochem. Sci. 2005, 30, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Birringer, M.S.; Claus, M.T.; Folkers, G.; Kloer, D.P.; Schulz, G.E.; Scapozza, L. Structure of a type II thymidine kinase with bound dTTP. FEBS Lett. 2005, 579, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Segura-Pena, D.; Lutz, S.; Monnerjahn, C.; Konrad, M.; Lavie, A. Binding of ATP to TK1-like enzymes is associated with a conformational change in the quaternary structure. J. Mol. Biol. 2007, 369, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Welin, M.; Kosinska, U.; Mikkelsen, N.-E.; Carnrot, C.; Zhu, C.; Wang, L.; Eriksson, S.; Munch-Petersen, B.; Eklund, H. Structures of thymidine kinase 1 of human and mycoplasmic origin. Proc. Natl. Acad. Sci. USA 2004, 101, 17970–17975. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Berenstein, D.; Munch-Petersen, B. Effect of valine 106 on structure-function relation of cytosolic human thymidine kinase—Kinetic properties and oligomerization pattern of nine substitution mutants of V106. Eur. J. Biochem. 2004, 271, 2248–2256. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Knecht, W.; Willer, M.; Rozpedowska, E.; Kristoffersen, P.; Clausen, A.R.; Munch-Petersen, B.; Almqvist, P.M.; Gojkovic, Z.; Piskur, J.; et al. Plant thymidine kinase 1: A novel efficient suicide gene for malignant glioma therapy. Neuro-Oncology 2010, 12, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Stedt, H.; Samaranayake, H.; Kurkipuro, J.; Wirth, G.; Christiansen, L.S.; Vuorio, T.; Maatta, A.M.; Piskur, J.; Yla-Herttuala, S. Tomato thymidine kinase-based suicide gene therapy for malignant glioma-an alternative for herpes simplex virus-1 thymidine kinase. Cancer Gene Ther. 2015, 22, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Moolten, F.L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: Paradigm for a prospective cancer control strategy. Cancer Res. 1986, 46, 5276–5281. [Google Scholar] [PubMed]
- Osaki, T.; Tanio, Y.; Tachibana, I.; Hosoe, S.; Kumagai, T.; Kawase, I.; Oikawa, S.; Kishimoto, T. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res. 1994, 54, 5258–5261. [Google Scholar] [PubMed]
- Nasu, Y.; Saika, T.; Ebara, S.; Kusaka, N.; Kaku, H.; Abarzua, F.; Manabe, D.; Thompson, T.C.; Kumon, H. Suicide gene therapy with adenoviral delivery of HSV-TK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol. Ther. 2007, 15, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Immonen, A.; Vapalahti, M.; Tyynela, K.; Hurskainen, H.; Sandmair, A.; Vanninen, R.; Langford, G.; Murray, N.; Yla-Herttuala, S. AdvHSV-TK gene therapy with intravenous ganciclovir improves survival in human malignant glioma: A randomised, controlled study. Mol. Ther. 2004, 10, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, S.; Li, X.L.; Guo, Y.; Zou, B.Y.; Xu, R.; Liao, H.; Zhao, H.Y.; Zhang, Y.; Guan, Z.Z.; et al. Phase I and biodistribution study of recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene and ganciclovir administration in patients with head and neck cancer and other malignant tumors. Cancer Gene Ther. 2009, 16, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Voges, J.; Reszka, R.; Gossmann, A.; Dittmar, C.; Richter, R.; Garlip, G.; Kracht, L.; Coenen, H.H.; Sturm, V.; Wienhard, K.; et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann. Neurol. 2003, 54, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Westphal, M.; Yla-Herttuala, S.; Martin, J.; Warnke, P.; Menei, P.; Eckland, D.; Kinley, J.; Kay, R.; Ram, Z. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma: A randomised, open-label, phase 3 trial. Lancet Oncol. 2013, 14, 823–833. [Google Scholar] [CrossRef]
- Rainov, N.G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 2000, 11, 2389–2401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Dong, X.; Sun, Y.; Cai, X.; Zheng, C.; He, A.; Xu, K.; Zheng, X. Cytotoxic effects of adenovirus- and lentivirus-mediated expression of Drosophila melanogaster deoxyribonucleoside kinase on Bcap37 breast cancer cells. Oncol. Rep. 2013, 29, 960–966. [Google Scholar] [PubMed]
- Zhu, Z.; Ma, S.; Zhao, L.; Sun, Z.; He, A.; Xu, H.; Zheng, X. Adenovirus-mediated Drosophila melanogaster deoxyribonucleoside kinase mutants combined with gemcitabine harbor a safe cancer treatment profile. Int. J. Oncol. 2011, 38, 745–753. [Google Scholar] [PubMed]
- Zhang, N.Q.; Zhao, L.; Ma, S.; Gu, M.; Zheng, X.Y. Potent anticancer effects of lentivirus encoding a Drosophila melanogaster deoxyribonucleoside kinase mutant combined with brivudine. Asian Pac. J. Cancer Prev. 2012, 13, 2121–2127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhao, L.; Ma, S.; Gu, M.; Zheng, X. Lentivirus-mediated expression of Drosophila melanogaster deoxyribonucleoside kinase driven by the htert promoter combined with gemcitabine: A potential strategy for cancer therapy. Int. J. Mol. Med. 2012, 30, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Réjiba, S.; Bigand, C.; Parmentier, C.; Hajri, A. Gemcitabine-based chemogene therapy for pancreatic cancer using Ad-dCK::UMK GDEPT and TS/RR siRNA strategies. Neoplasia 2009, 11, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Vernejoul, F.; Ghenassia, L.; Souque, A.; Lulka, H.; Drocourt, D.; Cordelier, P.; Pradayrol, L.; Pyronnet, S.; Buscail, L.; Tiraby, G. Gene therapy based on gemcitabine chemosensitization suppresses pancreatic tumor growth. Mol. Ther. 2006, 14, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Szatmari, T.; Huszty, G.; Desaknai, S.; Spasokoukotskaja, T.; Sasvari-Szekely, M.; Staub, M.; Esik, O.; Safrany, G.; Lumniczky, K. Adenoviral vector transduction of the human deoxycytidine kinase gene enhances the cytotoxic and radiosensitizing effect of gemcitabine on experimental gliomas. Cancer Gene Ther. 2008, 15, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Neschadim, A.; Wang, J.C.; Lavie, A.; Medin, J.A. Bystander killing of malignant cells via the delivery of engineered thymidine-active deoxycytidine kinase for suicide gene therapy of cancer. Cancer Gene Ther. 2012, 19, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Neschadim, A.; Wang, J.C.; Sato, T.; Fowler, D.H.; Lavie, A.; Medin, J.A. Cell fate control gene therapy based on engineered variants of human deoxycytidine kinase. Mol. Ther. 2012, 20, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Knecht, W.; Munch-Petersen, B.; Piskur, J. Identification of residues involved in the specificity and regulation of the highly efficient multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster. J. Mol. Biol. 2000, 301, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Knecht, W.; Rozpedowska, E.; le Breton, C.; Willer, M.; Gojkovic, Z.; Sandrini, M.P.; Joergensen, T.; Hasholt, L.; Munch-Petersen, B.; Piskur, J. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs. Gene Ther. 2007, 14, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Munch-Petersen, B.; Knecht, W.; Lenz, C.; Sondergaard, L.; Piskur, J. Functional expression of a multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster and its C-terminal deletion mutants. J. Biol. Chem. 2000, 275, 6673–6679. [Google Scholar] [CrossRef] [PubMed]
- Danesi, R.; Falcone, A.; Conte, P.F.; del Tacca, M. Pharmacokinetic optimisation of the treatment of cancer with high dose zidovudine. Clin. Pharmacokinet. 1998, 34, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Denny, W.A. Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene therapy). J. Biomed. Biotechnol. 2003, 2003, 48–70. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, L.S.; Department of Biology and Lund Protein Production Platform, Lund University, Lund, Sweden. Personal communication, 2015.
- Welin, M.; Skovgaard, T.; Knecht, W.; Zhu, C.Y.; Berenstein, D.; Munch-Petersen, B.; Piskur, J.; Eklund, H. Structural basis for the changed substrate specificity of Drosophila melanogaster deoxyribonucleoside kinase mutant N64D. FEBS J. 2005, 272, 3733–3742. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, M.P.B.; Clausen, A.R.; On, S.L.W.; Aarestrup, F.M.; Munch-Petersen, B.; Piskur, J. Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner. J. Antimicrob. Chemother. 2007, 60, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.B.; Munch-Petersen, B.; Piskur, J. Tomato thymidine kinase is subject to inefficient TTP feedback regulation. Nucleosides Nucleotides Nucleic Acids 2014, 33, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Traut, T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 1994, 140, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Wintergerst, U.; Rolinski, B.; Vocks-Hauck, M.; Wahn, V.; Debatin, K.M.; Notheis, G.; Grosch-Worner, I.; Goebel, F.D.; Roscher, A.A.; Belohradsky, B.H. Pharmacokinetics of orally administered zidovudine in HIV-infected children and adults. Infection 1995, 23, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Fjellstrom, O.; Akkaya, S.; Beisel, H.G.; Eriksson, P.O.; Erixon, K.; Gustafsson, D.; Jurva, U.; Kang, D.; Karis, D.; Knecht, W.; et al. Creating novel activated factor xi inhibitors through fragment based lead generation and structure aided drug design. PLoS ONE 2015, 10, e0113705. [Google Scholar] [CrossRef] [PubMed]
- Copeland, R. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Knecht, W.; Petersen, G.E.; Munch-Petersen, B.; Piskur, J. Deoxyribonucleoside kinases belonging to the thymidine kinase 2 (TK2)-like group vary significantly in substrate specificity, kinetics and feed-back regulation. J. Mol. Biol. 2002, 315, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, K.; Hiraga, S.; Yura, T. A deoxythymidine kinase deficient mutant of Escherichia coli. II. Mapping and transduction with phage phi80. Genetics 1967, 57, 643–654. [Google Scholar] [PubMed]
- Knecht, W.; Bergjohann, U.; Gonski, S.; Kirschbaum, B.; Loffler, M. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. Eur. J. Biochem. 1996, 240, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Munch-Petersen, B.; Gojkovic, Z.; Knecht, W. Jure Piskur (1960–2014). J. Genet. Genomics. 2014. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christiansen, L.S.; Egeblad, L.; Munch-Petersen, B.; Piškur, J.; Knecht, W. New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine. Cancers 2015, 7, 966-980. https://doi.org/10.3390/cancers7020819
Christiansen LS, Egeblad L, Munch-Petersen B, Piškur J, Knecht W. New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine. Cancers. 2015; 7(2):966-980. https://doi.org/10.3390/cancers7020819
Chicago/Turabian StyleChristiansen, Louise Slot, Louise Egeblad, Birgitte Munch-Petersen, Jure Piškur, and Wolfgang Knecht. 2015. "New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine" Cancers 7, no. 2: 966-980. https://doi.org/10.3390/cancers7020819
APA StyleChristiansen, L. S., Egeblad, L., Munch-Petersen, B., Piškur, J., & Knecht, W. (2015). New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine. Cancers, 7(2), 966-980. https://doi.org/10.3390/cancers7020819