Association between Genetic Variants in DNA Double-Strand Break Repair Pathways and Risk of Radiation Therapy-Induced Pneumonitis and Esophagitis in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. SNP Selection and Genotyping
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Patients
3.2. Association between Individual SNPs and Esophagitis Risk
3.3. Association between Individual SNPs and Pneumonitis Risk
3.4. Cumulative Effects for Esophagitis or Pneumonitis Risk
3.5. In Silico SNP Function Prediction
3.6. Gene-Based Analysis
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chang-Claude, J.; Popanda, O.; Tan, X.L.; Kropp, S.; Helmbold, I.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.L.; Wenz, F.; Schmezer, P.; et al. Association between polymorphisms in the DNA repair genes, XRCC1, APE1, and XPD and acute side effects of radiotherapy in breast cancer patients. Clin. Cancer Res. 2005, 11, 4802–4809. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, C.R.; Rosenstein, B.S.; Marks, L.B. Predicting toxicity from radiation therapy—It's genetic, right? Cancer 2012, 118, 3450–3454. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, M.H.; Cai, X.W.; Shedden, K.; Hayman, J.A.; Yuan, S.; Ritter, T.; Ten Haken, R.K.; Lawrence, T.S.; Kong, F.M. Combining physical and biologic parameters to predict radiation-induced lung toxicity in patients with non-small-cell lung cancer treated with definitive radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e217–e222. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Liao, Z.; Huang, Y.J.; Liu, Z.; Yuan, X.; Gomez, D.; Wang, L.E.; Wei, Q. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy. PLoS ONE 2011, 6, e20055. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.B.; Wu, Y.L.; Yang, X.N.; Zhong, W.Z.; Xie, D.; Guan, X.Y.; Fischer, D.; Kolberg, H.C.; Kruger, S.; Stuerzbecher, H.W. High-level expression of RAD51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br. J. Cancer 2005, 93, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, K.; Scuric, Z.; Schiestl, R.H.; Okamoto, N.; Takahashi, A.; Ohnishi, T. SiRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat. Res. 2006, 166, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, T.; Urade, M.; Yamamoto, Y.; Furuyama, J. Increased expression of human DNA repair genes, XRCC1, XRCC3 and RAD51, in radioresistant human KB carcinoma cell line N10. Oral Oncol. 1998, 34, 524–528. [Google Scholar] [CrossRef]
- Tambini, C.E.; Spink, K.G.; Ross, C.J.; Hill, M.A.; Thacker, J. The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair 2010, 9, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, C.R.; Jackson, I.L.; Langdon, S.; Owzar, K.; Hubbs, J.; Vujaskovic, Z.; Das, S.; Marks, L.B. Analysis of single nucleotide polymorphisms and radiation sensitivity of the lung assessed with an objective radiologic endpoin. Clin. Lung Cancer 2013, 14, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, L.; Bi, N.; Ji, W.; Tan, W.; Zhao, L.; Yu, D.; Wu, C.; Wang, L.; Lin, D. Association of P53 and ATM polymorphisms with risk of radiation-induced pneumonitis in lung cancer patients treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, M.; Bi, N.; Fang, M.; Sun, T.; Ji, W.; Tan, W.; Zhao, L.; Yu, D.; Lin, D.; et al. ATM polymorphisms are associated with risk of radiation-induced pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Liao, Z.; Liu, Z.; Wang, L.E.; O’Reilly, M.; Gomez, D.; Li, M.; Komaki, R.; Wei, Q. Genetic variants of the nonhomologous end joining gene LIG4 and severe radiation pneumonitis in nonsmall cell lung cancer patients treated with definitive radiotherapy. Cancer 2012, 118, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, M.A.; Komaki, R.; Liao, Z.; Gu, J.; Chang, J.Y.; Ye, Y.; Lu, C.; Stewart, D.J.; Minna, J.D.; Roth, J.A.; et al. Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer. PLoS ONE 2010, 5, e12402. [Google Scholar] [CrossRef] [PubMed]
- Trotti, A.; Colevas, A.D.; Setser, A.; Rusch, V.; Jaques, D.; Budach, V.; Langer, C.; Murphy, B.; Cumberlin, R.; Coleman, C.N.; et al. CTCAE v3.0: Development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 2003, 13, 176–181. [Google Scholar] [CrossRef]
- Chang, J.Y.; Liu, H.; Balter, P.; Komaki, R.; Liao, Z.; Welsh, J.; Mehran, R.J.; Roth, J.A.; Swisher, S.G. Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer. Radiat. Oncol. 2012, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Senan, S.; Tsujino, K.; Barriger, R.B.; Rengan, R.; Moreno, M.; Bradley, J.D.; Kim, T.H.; Ramella, S.; Marks, L.B. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: An international individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Spitz, M.R.; Lee, J.J.; Lippman, S.M.; Ye, Y.; Yang, H.; Khuri, F.R.; Kim, E.; Gu, J.; Lotan, R.; et al. Novel susceptibility loci for second primary tumors/recurrence in head and neck cancer patients: Large-scale evaluation of genetic variants. Cancer Prev. Res. 2009, 2, 617–624. [Google Scholar] [CrossRef] [PubMed]
- The International HapMap Consortium. The International HapMap Project. Nature 2003, 426, 789–796. [Google Scholar]
- Pu, X.; Hildebrandt, M.A.; Lu, C.; Roth, J.A.; Stewart, D.J.; Zhao, Y.; Heist, R.S.; Ye, Y.; Chang, D.W.; Su, L.; et al. Inflammation-related genetic variations and survival in patients with advanced non-small cell lung cancer receiving first-line chemotherapy. Clin. Pharmacol. Therap. 2014, 96, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.D.; Handsaker, R.E.; Pulit, S.; Nizzari, M.M.; O'Donnell, C.J.; de Bakker, P.I.W. SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008, 24, 2938–2939. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.D.; Kellis, M. HapploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variant. Nuvleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed]
- Reumers, J.; Schymkowitz, J.; Ferkinghoff-Borg, J.; Stricher, F.; Serrano, L.; Rousseau, F. Snpeffect: A database mapping molecular phenotypic effects of human non-synonymous coding snps. Nucleic Acids Res. 2005, 33, D527–D532. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the sift algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.; Melamud, E.; Moult, J. SNPS3D: Candidate gene and snp selection for association studies. BMC Bioinform. 2006, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; McRae, A.F.; Nyholt, D.R.; Medland, S.E.; Wray, N.R.; Brown, K.M.; Investigators, A.; Hayward, N.K.; Montgomery, G.W.; Visscher, P.M.; et al. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 2010, 87, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Gravel, S.; Chapman, J.R.; Magill, C.; Jackson, S.P. DNA helicases SGS1 and BLM promote DNA double-strand break resection. Genes Dev. 2008, 22, 2767–2772. [Google Scholar] [CrossRef] [PubMed]
- Nimonkar, A.V.; Genschel, J.; Kinoshita, E.; Polaczek, P.; Campbell, J.L.; Wyman, C.; Modrich, P.; Kowalczykowski, S.C. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 2011, 25, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Grabarz, A.; Guirouilh-Barbat, J.; Barascu, A.; Pennarun, G.; Genet, D.; Rass, E.; Germann, S.M.; Bertrand, P.; Hickson, I.D.; Lopez, B.S. A role for BLM in double-strand break repair pathway choice: Prevention of ctip/mre11-mediated alternative nonhomologous end-joining. Cell Rep. 2013, 5, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.K.; Hickson, I.D. Recq helicases: Multifunctional genome caretakers. Nat. Rev. Cancer 2009, 9, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Broberg, K.; Huynh, E.; Schlawicke Engstrom, K.; Bjork, J.; Albin, M.; Ingvar, C.; Olsson, H.; Hoglund, M. Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study. BMC Cancer 2009, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Bartek, J.; Mailand, N. Topping up atr activity. Cell 2006, 124, 888–890. [Google Scholar] [CrossRef] [PubMed]
- Forma, E.; Brzezianska, E.; Krzeslak, A.; Chwatko, G.; Jozwiak, P.; Szymczyk, A.; Smolarz, B.; Romanowicz-Makowska, H.; Rozanski, W.; Brys, M. Association between the c.*229c>t polymorphism of the topoisomerase iibeta binding protein 1 (TopBP1) gene and breast cancer. Mol. Biol. Rep. 2013, 40, 3493–3502. [Google Scholar] [CrossRef] [PubMed]
- Forma, E.; Wojcik-Krowiranda, K.; Jozwiak, P.; Szymczyk, A.; Bienkiewicz, A.; Brys, M.; Krzeslak, A. Topoisomerase iibeta binding protein 1 c.*229c>t (rs115160714) gene polymorphism and endometrial cancer risk. Pathol. Oncol. Res. 2014, 20, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sengupta, S.; Yang, Q.; Linke, S.P.; Yanaihara, N.; Bradsher, J.; Blais, V.; McGowan, C.H.; Harris, C.C. BLM helicase facilitates Mus81 endonuclease activity in human cells. Cancer Res. 2005, 65, 2526–2531. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Liao, Z.; Liu, Z.; Xu, T.; Wang, Q.; Liu, H.; Komaki, R.; Gomez, D.; Wang, L.E.; Wei, Q. ATM polymorphisms predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Liao, Z.; Liu, Z.; Wang, L.E.; Gomez, D.; Komaki, R.; Wei, Q. Functional polymorphisms of base excision repair genes XRCC1 and APEX1 predict risk of radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e67–e73. [Google Scholar] [CrossRef] [PubMed]
Variable | Discovery Phase, n (%) | Validation Phase, n (%) |
---|---|---|
Age, mean (SD) | 62.9 (10.1) | 63.9 ( 9.9) |
Pack year, mean (SD) | 52.2 (28.5) | 52.6 (28.5) |
DLCO percentage, mean (SD) | 66.6 (20.8) | 65.9 (19.8) |
FEV1 percentage, mean (SD) | 71.5 (18.1) | 66.7 (21.1) |
PTV volume (cm3) ,mean (SD) | 729.9 (491.4) | 655.5 (384.8) |
Mean esophagus dose, mean (SD) | 29.8 (13.1) | 27.5 (10.8) |
Mean lung dose, mean (SD) | 18.0 (8.3) | 16.0 ( 5.6) |
Median total dose (range) | 63 (34.8–126) | 60 (10.9–83.8) |
Sex | ||
Male | 129 (52) | 95 (56) |
Female | 121 (48) | 75 (44) |
Clinical stage | ||
I | 43 (17) | 2 (1) |
II | 40 (16) | 9 (5) |
IIIA | 92 (37) | 113 (66) |
IIIB | 75 (30) | 46 (27) |
Histology | ||
Adenocarcinoma | 90 (36) | 68 (40) |
Large cell carcinoma | 13 (5.2) | 8 (4.7) |
Squamous cell carcinoma | 84 (33.6) | 63 (37) |
Other | 63 (25.2) | 31 (18.2) |
Performance status | ||
0 | 72 (29) | 41 (24) |
1 | 117 (47) | 73 (43) |
2–4 | 23 (9) | 22 (13) |
Treatment modality | ||
Radiation | 65 (26) | 110 (65) |
Concurrent chemoradiation | 185 (74) | 60 (35) |
Platinum-based only | 77 (41.6) | 21 (35) |
Platinum plus taxane | 108 (58.4) | 39 (65) |
Radiation Type | ||
2D | 74 (30) | 51 (30) |
3D | 105 (42) | 40 (24) |
IMRT | 58 (23) | 69 (41) |
Proton | 13 (5) | 10 (6) |
Esophagitis | ||
No | 106 (43) | 104 (62) |
Yes | 143 (57) | 65 (38) |
Pneumonitis | ||
No | 147 (63) | 91 (61) |
Yes | 87 (37) | 58 (39) |
Total | 250 | 170 |
SNP | Gene | Allele | Model | Discovery | Validation | Meta | ||||
---|---|---|---|---|---|---|---|---|---|---|
OR # (95% CI) | p Value | OR # (95% CI) | p value | OR (95% CI) | p Value | P-het | ||||
rs7165790 & | BLM | A > G | add | 0.59 (0.37–0.97) | 0.037 | 0.45 (0.22–0.94) | 0.032 | 0.54 (0.36–0.82) | 0.003 | 0.462 |
rs8176257 ^ | BRCA1 | C > A | rec | 5.42 (1.47–20.03) | 0.011 | 3.18 (0.75–13.49) | 0.116 | 4.27 (1.62–11.24) | 0.003 | 0.592 |
rs2270132 ^ | BLM | A > C | dom | 2.59 (1.27–5.26) | 0.009 | 1.75 (0.65–4.74) | 0.268 | 2.27 (1.27–4.04) | 0.005 | 0.533 |
rs12516 * | BRCA1 | G > A | rec | 3.89 (1.12–13.54) | 0.032 | 3.31 (0.79–13.79) | 0.100 | 3.63 (1.42–9.28) | 0.007 | 0.866 |
rs1799966 ^ | BRCA1 | A > G | rec | 3.89 (1.12–13.54) | 0.032 | 3.31 (0.79–13.79) | 0.100 | 3.63 (1.42–9.28) | 0.007 | 0.866 |
rs4873772 * | PRKDC | G > A | rec | 7.17 (1.77–29.05) | 0.006 | 1.28 (0.30–5.46) | 0.743 | 3.06 (0.56–16.62) | 0.027 | 0.094 |
rs1822744 * | TOPBP1 | A > G | add | 1.86 (1.1–3.13) | 0.021 | 1.24 (0.69–2.24) | 0.473 | 1.55 (1.05–2.3) | 0.027 | 0.317 |
rs11078671 * | RPA1 | C > A | rec | 4.17 (1.19–14.61) | 0.026 | 1.69 (0.5–5.71) | 0.400 | 2.62 (1.08–6.36) | 0.031 | 0.311 |
rs401549 ^ | BLM | A > G | add | 1.91 (1.14–3.2) | 0.013 | 1.08 (0.54–2.17) | 0.821 | 1.51 (0.87–2.62) | 0.034 | 0.197 |
rs1776139 * | EXO1 | A > C | dom | 0.45 (0.21–0.98) | 0.044 | 0.69 (0.28–1.68) | 0.414 | 0.54 (0.3–0.97) | 0.040 | 0.479 |
rs10514249 * | XRCC4 | A > G | rec | 0.39 (0.17–0.89) | 0.024 | 0.86 (0.27–2.69) | 0.792 | 0.52 (0.25–1.09) | 0.047 | 0.273 |
Discovery | Validation | Meta | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SNP | Gene | Allele | Model | OR # (95% CI) | p value | OR # (95% CI) | p value | OR (95% CI) | p value | P-het |
rs1051772 ^ | TOPBP1 | A > G | dom | 0.27 (0.11–0.65) | 0.004 | 0.41 (0.13–1.27) | 0.122 | 0.32 (0.16–0.63) | 0.001 | 0.564 |
rs16944739 * | BLM | G > A | rec | 3.11 (1.13–8.56) | 0.028 | 6.24 (0.68–57.4) | 0.106 | 3.51 (1.40–8.81) | 0.008 | 0.576 |
rs3735461 ^ | RPA3 | A > G | dom | 2.90 (1.39–6.04) | 0.005 | 1.41 (0.61–3.24) | 0.418 | 2.11 (1.22–3.66) | 0.008 | 0.204 |
rs963248 * | XRCC4 | A > G | dom | 1.92 (1.01–3.63) | 0.047 | 2.02 (0.84–4.83) | 0.115 | 1.95 (1.16–3.27) | 0.011 | 0.925 |
rs3760412 * | EME1 | A > G | dom | 0.42 (0.22–0.79) | 0.008 | 0.84 (0.39–1.79) | 0.651 | 0.56 (0.34–0.91) | 0.019 | 0.170 |
rs11571468 ^ | RAD52 | G > A | dom | 0.35 (0.13–0.95) | 0.040 | 0.55 (0.17–1.73) | 0.305 | 0.43 (0.20–0.90) | 0.026 | 0.566 |
rs4986764 * | BRIP1 | G > A | rec | 2.42 (1.08–5.45) | 0.032 | 1.53 (0.52–4.56) | 0.443 | 2.06 (1.07–3.95) | 0.030 | 0.509 |
rs917029 * | EME1 | A > G | rec | 2.57 (1.09–6.08) | 0.031 | 1.53 (0.50–4.65) | 0.456 | 2.12 (1.07–4.18) | 0.030 | 0.467 |
UFG Group | Number of UFGS | Grade ≥ 2n (%) | Grade < 2n (%) | Adjusted OR * (95% CI) | p Value |
---|---|---|---|---|---|
Esophagitis | |||||
0 | 0–5 | 68 (48.92%) | 71(51.08%) | 1 (reference) | |
1 | 6–7 | 53 (63.86%) | 30 (36.14%) | 3.63 (1.56–8.43) | 0.003 |
2 | 8–10 | 21 (84.00%) | 4 (16.00%) | 113.12 (14.73–868.67) | 5.46 × 10−6 |
p trend for individual UFG | 1.78 (1.43–2.22) | 2.59× 10−7 | |||
Pneumonitis | |||||
0 | 0–2 | 4 (9.76%) | 37 (90.24%) | 1 (reference) | |
1 | 3–5 | 72 (40.45%) | 106 (59.55%) | 8.65 (2.73–27.38) | 0.0002 |
2 | 6–8 | 11 (78.57%) | 3 (21.43%) | 73.05 (11.28–472.94) | 6.70 × 10−6 |
p trend for individual UFG | 2.49(1.79–3.46) | 6.34 × 10−8 |
SNP | Related Outcome | Gene | Position | Enhancer Histone Marks | DNase | Promoter Histone Marks | Proteins Bound | Motifs Changed | Amino Acid Change | eQTL |
---|---|---|---|---|---|---|---|---|---|---|
rs7165790 | esophagitis | BLM | intronic | - | - | - | - | Barhl1,Zbtb12 | - | - |
rs8176257 | esophagitis | BRCA1 | intronic | - | - | - | - | Pax-4,TATA | - | Y |
rs2270132 | esophagitis | BLM | intronic | HSMM | 4 cell types | - | - | Zfp740 | - | - |
rs12516 | esophagitis | BRCA1 | 3'-UTR | - | - | - | - | 9 altered motifs | - | Y |
rs1799966 | esophagitis | BRCA1 | Missense | - | - | - | - | - | S [Ser] ⇒ G [Gly] | Y |
rs4873772 | esophagitis | PRKDC | intronic | - | - | - | - | CEBPD,EWSR1-FLI1,HDAC2 | - | - |
rs1822744 | esophagitis | TOPBP1 | intronic | Huvec | - | - | - | DBP,INSM1,Pax-2 | - | - |
rs11078671 | esophagitis | RPA1 | intronic | - | - | - | - | CIZ,E2F | - | - |
rs401549 | esophagitis | BLM | intronic | HMEC | - | - | - | Foxj1,Pax-3,Sox | - | - |
rs1776139 | esophagitis | EXO1 | intronic | - | - | - | - | 4 altered motifs | - | - |
rs10514249 | esophagitis | XRCC4 | intronic | - | WERI-Rb-1 | - | - | - | - | - |
rs1051772 | pneumonitis | TOPBP1 | synonymous | - | 5 cell types | - | - | 21 altered motifs | - | - |
rs16944739 | pneumonitis | BLM | intronic | K562, GM12878 | GM12878, GM12892, GM12864 | - | - | TCF12 | - | - |
rs3735461 | pneumonitis | RPA3 | intronic | Huvec | 18 cell types | - | 5 bound proteins | Foxc1,STAT | - | - |
rs963248 | pneumonitis | XRCC4 | intronic | - | - | - | - | VDR | - | - |
rs3760412 | pneumonitis | EME1 | intronic | - | - | - | - | LBP-1,LXR | - | - |
rs11571468 | pneumonitis | RAD52 | intronic | NHEK | Hepatocytes | - | - | - | - | - |
rs4986764 | pneumonitis | BRIP1 | Missense | - | - | - | - | SIX5,THAP1,Znf143 | S [Ser] ⇒ P [Pro] | - |
rs917029 | pneumonitis | EME1 | intronic | - | HL-60 | - | - | 5 altered motifs | - | - |
Gene | Chr | Number of SNPS | p Value |
---|---|---|---|
Esophagitis | |||
EXO1 | 1 | 23 | 0.005 |
RPA1 | 17 | 16 | 0.009 |
MDC1 | 6 | 5 | 0.014 |
BLM | 15 | 23 | 0.018 |
RAD54L | 1 | 18 | 0.023 |
BRCA1 | 17 | 10 | 0.024 |
PRKDC | 8 | 11 | 0.036 |
Pneumonitis | |||
RAD54L | 1 | 18 | 0.033 |
MUS81 | 11 | 6 | 0.036 |
RAG1 | 11 | 7 | 0.039 |
RAG2 | 11 | 7 | 0.039 |
EME1 | 17 | 10 | 0.048 |
ATM | 11 | 10 | 0.049 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Pu, X.; Ye, Y.; Lu, C.; Chang, J.Y.; Wu, X. Association between Genetic Variants in DNA Double-Strand Break Repair Pathways and Risk of Radiation Therapy-Induced Pneumonitis and Esophagitis in Non-Small Cell Lung Cancer. Cancers 2016, 8, 23. https://doi.org/10.3390/cancers8020023
Zhao L, Pu X, Ye Y, Lu C, Chang JY, Wu X. Association between Genetic Variants in DNA Double-Strand Break Repair Pathways and Risk of Radiation Therapy-Induced Pneumonitis and Esophagitis in Non-Small Cell Lung Cancer. Cancers. 2016; 8(2):23. https://doi.org/10.3390/cancers8020023
Chicago/Turabian StyleZhao, Lina, Xia Pu, Yuanqing Ye, Charles Lu, Joe Y. Chang, and Xifeng Wu. 2016. "Association between Genetic Variants in DNA Double-Strand Break Repair Pathways and Risk of Radiation Therapy-Induced Pneumonitis and Esophagitis in Non-Small Cell Lung Cancer" Cancers 8, no. 2: 23. https://doi.org/10.3390/cancers8020023
APA StyleZhao, L., Pu, X., Ye, Y., Lu, C., Chang, J. Y., & Wu, X. (2016). Association between Genetic Variants in DNA Double-Strand Break Repair Pathways and Risk of Radiation Therapy-Induced Pneumonitis and Esophagitis in Non-Small Cell Lung Cancer. Cancers, 8(2), 23. https://doi.org/10.3390/cancers8020023