Antioxidant Capacities of Hot Water Extracts and Endopolysaccharides of Selected Chinese Medicinal Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Yields, Total Phenolic and Flavonoid Content of HWEs and ENPs
2.2. Anti-Oxidant Activities
2.3. Correlation between Antioxidant Capacities and Total Phenolic and Flavonoid Content
3. Experimental Section
3.1. Fruits
3.2. Chemicals and Reagents
3.3. Preparation of Hot Water Extracts and Endopolysaccharides
3.4. Determination of Total Phenolic Content
3.5. Determination of Total Flavonoid Content
3.6. Free Radical DPPH Scavenging Assay
3.7. Assay for Screening of Scavenging Activity in a 96-well Microplate Using Saccharomyces Cerevisiae
3.8. Ferrous Ion-Chelating Effect
3.9. Ferric-Reducing Antioxidant Power Assay (FRAP)
3.10. Data Presentation and Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bloknina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidant, oxidative damage and oxygen deprivation studies: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
- Ajith, T.A.; Janardhanan, K.K. Indian medicinal mushrooms as a source of antioxidant and antitumor agents. J. Clin. Biochem. Nutr. 2007, 40, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Visner, G.A. Oxidants and antioxidants. In Molecular Pathology of Lung Diseases; Molecular Pathology Library; Dani, S.Z., Helmut, H., Jaishree, J., Abida, K.H., Philip, T.C., Roberto, B., Eds.; Springer: New York, NY, USA, 2008; Volume 1, pp. 470–475. [Google Scholar]
- Zhang, L.; Ravipati, A.S.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Smith, P.T.; Bartlett, J.; Shanmugam, K.; Münch, D.G.; Wu, M.J. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J. Agric. Food Chem. 2011, 59, 12361–12367. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.N.; Frei, B.; Vita, J.E.; Keaney, J.F. Antioxidants and atherosclerotic heart disease. N. Engl. J. Med. 1997, 337, 408–416. [Google Scholar] [PubMed]
- Aruoma, O.I. Free radicals, oxidative stress and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef]
- Burns, J.; Gardner, P.T.; Matthew, D.; Duthie, C.G.; Lean, M.E.; Crozier, A. Extraction of phenolics and changes in antioxidant activity of red wines during vinification. J. Agric. Food Chem. 2001, 9, 5797–5808. [Google Scholar]
- Tang, S.Y.; Whiteman, M.; Peng, Z.F.; Jenner, A.; Yong, E.L.; Halliwell, B. Characterization of antioxidant and antiglycation properties and isolation of active ingredients from traditional Chinese medicines. Free Radic. Biol. Med. 2004, 36, 1575–1587. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. Several culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr. 2003, 133, 1286–1290. [Google Scholar] [PubMed]
- Akinmoladun, A.C.; Obuotor, E.M.; Farombi, E.O. Evaluation of antioxidant and free radical scavenging capacities of some Nigerian indigenous medicinal plants. J. Med. Food 2010, 13, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Özen, T.; Çöllü, Z.; Korkmaz, H. Antioxidant Properties of Urtica pilulifera Root, Seed, Flower, and Leaf Extract. J. Med. Food 2010, 13, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E.; Norat, T. Epidemiologic Evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 2003, 78, 559–569. [Google Scholar]
- Tadjalli-Mehr, K.; Becker, N.; Rahu, M.; Stengrevics, A.; Kurtinaitis, J.; Hakama, M. Randomized trial with fruits and vegetables in prevention of cancer. Acta Oncol. 2003, 42, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Temple, N.J.; Gladwin, K.K. Fruit, vegetables, and the prevention of cancer: Research challenges. Nutrition 2003, 19, 467–470. [Google Scholar] [CrossRef]
- Hendra, R.; Ahmad, S.; Oskoueian, E.; Sukari, A.; Shukor, M.Y. Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit. BMC Complement. BMC Complement. Altern. Med. 2011. [Google Scholar] [CrossRef] [PubMed]
- Diaz, P.; Jeong, S.C.; Lee, S.; Khoo, C.; Koyyalamudi, S. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolics and flavonoid compounds. Chin. Med. J. 2012, 7, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Ravipati, A.S.; Zang, L.; Koyyalamudi, S.; Reddy, N.; Bartlett, J.; Smith, P.; Shanmugam, K.; Munch, G.; Wu, M.J. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med. 2012, 12, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Talhouk, R.; Karam, C.; Fostok, S.; El-Jouni, W.; Barbour, E. Anti-inflammatory bioactivities in plant extracts. J. Med. Food 2007, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.C.; Nam, K.C.; Min, B.R.; Ahn, D.U.; Cho, S.H.; Park, W.P.; Lee, S.C. Antioxidant activity of Prunus mume extract in cooked chicken breast meat. Int. J. Food Sci. Tech. 2006, 41, 15–19. [Google Scholar] [CrossRef]
- Luo, Q.; Li, Z.; Huang, X.; Yan, J.; Zhang, S.; Cai, Y.Z. Lycium barbarum polysaccharides: Protective effects against heat-induced damage of rat testes and H2O2-induced DNA damage in mouse testicular cells and beneficial effect on sexual behavior and reproductive function of hemicastrated rats. Life Sci. 2006, 79, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Chung, W.Y.; Szeto, Y.T.; Benzie, I.F. Fasting plasma zeaxanthin response to Fructus barbarum L. (wolfberry; Kei Tze) in a food-based human supplementation trial. Br. J. Nutr. 2005, 93, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.; Chang, R.C.; Koon-Ching, Ip.A.; Chiu, K.; Yuen, W.H.; Zee, S.Y.; So, K.F. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular-hypertension model of glaucoma. Exp. Neurol. 2007, 203, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.S.; Leung, S.K.; Lai, S.W.; Che, C.M.; Zee, S.Y.; So, K.F.; Yuen, W.H.; Chang, R.C. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity. Exp. Gerontol. 2005, 40, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Hua, Z.S.; Liang, Y.X.; Bi, X.H. Immunomodulation and antitumor activity by a polysaccharide-protein complex from Lycium barbarum. Int. Immunopharmacol. 2004, 4, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Z.; Zhang, J.; Zhang, Z.J.; Wang, W. Effects of Amomum villosum on functional digestion disorder in rats. West Chin. J. Pharm. Sci. 2006, 21, 60–62. [Google Scholar]
- Lee, M.; Lee, N.; Lee, J.; Jung, D.; Lee, H.; Seo, C.; Kim, J.; Kim, J.; Ha, H.; Shin, H. Anti-asthmatic Effects of Amomum compactum. J. Allergy Clin. Immunol. 2010. [Google Scholar] [CrossRef]
- Kao, E.S.; Wang, C.J.; Lin, W.L.; Chu, C.Y.; Tseng, T.H. Effects of polyphenols derived from fruit of Crataegus pinnatifida on cell transformation, dermal edema and skin tumor formation by phorbol ester application. Food Chem. Toxicol. 2007, 45, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.F.; Yang, C.H.; Chang, H.W.; Yang, C.S.; Wang, S.M.; Hsieh, M.C.; Chuang, L.Y. Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens. J. Med. Food 2010, 13, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Okuyama, E.; Yamazaki, M. Neurotropic components from star anise (Illicium verum Hook. fil.). Chem. Pharm. Bull. 1996, 44, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Jiangsu New Medical College. Dictionary of Chinese Materia Medical; Science and Technology Press of Shanghai: Shanghai, China, 1977; pp. 1574–1575. [Google Scholar]
- He, Z.D.; Dong, H.; Xu, H.X.; Ye, W.C.; Sun, H.D.; But, P.P.H. Secoiridoid constituents from the fruits of Ligustrum lucidum. Phytochemistry 2001, 56, 327–330. [Google Scholar] [CrossRef]
- Song, F.; Qi, X.; Chen, W.; Jia, W.; Yao, P.; Nussler, A.K.; Sun, X.; Liu, L. Effect of Momordica grosvenori on oxidative stress pathways in renal mitochondria of normal and alloxan-induced diabetic mice. Involvement of heme oxygenase-1. Eur. J. Nutr. 2007, 46, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, M.; Konoshima, T.; Murata, Y.; Sugiura, M.; Nishino, H.; Tokuda, H.; Matsumoto, K.; Kasai, R.; Yamasaki, K. Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori. Cancer Lett. 2003, 198, 37–42. [Google Scholar] [CrossRef]
- Song, F.; Chen, W.; Jia, W.; Yao, P.; Nussler, A.K.; Sun, X.; Liu, L. A natural sweetener, Momordica grosvenori, attenuates the imbalance of cellular immune functions in alloxaninduced diabetic mice. Phytother. Res. 2006, 20, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Szliszka, E.; Czuba, Z.P.; Sędek, L.; Paradysz, A.; Król, W. Enhanced TRAIL-mediated apoptosis in prostate cancer cells by the bioactive compounds neobavaisoflavone and psoralidin isolated from Psoralea corylifolia. Pharmacol. Rep. 2011, 63, 139–148. [Google Scholar] [CrossRef]
- Tang, S.Y.; Gruber, J.; Wong, K.P.; Halliwell, B. Psoralea corylifolia L. inhibits mitochondrial complex I and proteasome activities in SH-SY5Y cells. Ann. NY Acad. Sci. 2007, 1100, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.Y.; Hung, T.M.; Bae, K.H.; Shin, E.M.; Zhou, H.Y.; Hong, Y.N.; Kang, S.S.; Kim, H.P.; Kim, Y.S. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur. J. Pharm. 2008, 591, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Min, H.Y.; Lee, E.J.; Kim, Y.S.; Bae, K.; Kang, S.S.; Lee, S.K. Growth inhibition and cell cycle arrest in the G0/G1 by schizandrin, a dibenzocyclooctadiene lignan isolated from Schisandra chinensis, on T47D human breast cancer cells. Phytothe. Res. 2010, 24, 193–197. [Google Scholar]
- Azevedo, F.; Marques, F.; Fokt, H.; Oliveira, R.; Johansson, B. Measuring oxidative DNA damage and DNA repair using the yeast comet assay. Yeast 2011, 28, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Baumann, J.; Wurn, G.; Bruchlausen, V. Prostaglandin synthetase inhibiting O2-Radical scavenging properties of some flavonoids and related phenolic compounds. Naunyyn-Schmiedebergs. Arch. Pharmacol. 1979, 30, 27–32. [Google Scholar]
- Cai, Y.; Sun, M.; Xing, J.; Corke, H. Antioxidant phenolic constituents in roots of Rheum officinale and Rubia cordifolia: Structure-radical scavenging activity relationships. J. Agri. Food Chem. 2004, 52, 7884–7890. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.F.; Yang, L.L. Radical-scavenging and rat liver mitochondria lipid peroxidative inhibitory effects of natural flavonoids from traditional medicinal herbs. J. Med. Plants Res. 2012, 6, 997–1006. [Google Scholar]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florencio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Gordon, M.H. The Mechanism of Antioxidant Action in vitro. In Food antioxidants; Hudson, B.J.F., Ed.; Elsevier Applied Science: London, 1990; pp. 1–18. [Google Scholar]
- Lin, H.M.; Yen, F.L.; Ng, L.T.; Lin, C.C. Protective effects of Ligustrum lucidum fruit extract on acute butylated hydroxytoluene-induced oxidative stress in rats. J. Ethanopharmacol. 2007, 111, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Chen, H.S.; Chen, Y.C.; Lai, G.H.; Lin, P.K.; Wang, C.M. Phytochemical composition, antioxidant activity and neuroprotective effect of Crataegus pinnatifida fruit. S. Afr. J. Bot. 2013, 88, 432–437. [Google Scholar] [CrossRef]
- Jeong, S.C.; Yang, B.K.; Jeong, Y.T.; Sundar Rao, K.; Song, C.H. Isolation and characterization of biopolymers extracted from the bark of Acanthopanax sessiliflorus and their anti-complement activity. J. Microbiol. Biotechnol. 2007, 17, 21–28. [Google Scholar] [PubMed]
- Zhang, L.; Koyyalamudi, S.; Jeong, S.C.; Reddy, N.; Smith, P.T.; Ananthan, R.; Longvah, T. Antioxidant and immunomodulatory activities of polysaccharides from the roots of Sanguisorba officinalis. Int. J. Biol. Macromol. 2012, 51, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.C.; Koyyalamudi, S.; Hughes, J.M.; Khoo, C.; Bailey, T.; Park, J.P.; Song, C.H. Modulation of cytokine production and complement activity bybiopolymers extracted from medicinal plants. Phytopharmacology 2013, 4, 19–30. [Google Scholar]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V.A. Reproducible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuveleir, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Wu, M.J.; O'Doherty, P.J.; Fernandez, H.R.; Lyons, V.; Rogers, P.J.; Dawes, I.W.; Higgins, V.J. An antioxidant screening assay based on oxidant induced growth arrest in Saccharomyces cerevisiae. FEMS Yeast Res. 2011, 11, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Chua, M.T.; Tung, Y.T.; Chang, S.T. Antioxidant activities of ethanolic extracts from twigs of Cinnamomum osmophleum. Bioresour. Technol. 2008, 99, 1918–1925. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on product of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
Chinese Fruits | Family Name | Medicinal Uses |
---|---|---|
1. Prunus mume Siebold & Zucc. | Rosaceae | Fever, cough and intestinal disorders [20] |
2. Lycium barbarum L. | Solanaceae | Cardiovascular and inflammatory diseases [21], vision-related diseases [22], such as age-related macular degeneration and glaucoma [23] or from neuroprotective [24], anticancer [25] or immunomodulatory activity. |
3. Amomum villosum Lour. | Zingiberaceae | Digestion disorder [26] |
4. Amomum kravanh Pirre ex Gagnep. | Zingiberaceae | Anti-asthmatic [27] |
5. Crataegus pinnatifida Bunge | Rosaceae | Anticancer [28] |
6. Illicium verum Hook. f. | lliciaceae | Antibacterial [29], neurotropic, hypothermic and analgesic [30] |
7. Amomun tsao-ko Crevost & Lemarié | Zingiberaceae | Malaria, throat infections, abdominal pain, stomach disorders, dyspepsia, nausea, vomiting and diarrhea [31] |
8. Ligustrum lucidum W.T.Aiton | Oleaceae | Immunomodulatory, anti-inflammatory, hepatoprotective, anti-tumor and anti-aging act [32] |
9. Momordica grosvenori Swingle | Curcubitaceae | Anti-diabetic [33], anticancer [34], anti-inflammatory, antioxidant, anti-diabetic, and nephroprotective properties [35] |
10. Psoralea corylifolia L. | Fabaceae | Anticancer [36,37] |
11. Schisandra chinensis Turcz. Baill. | Schisandraceae | Anti-inflammatory [38], antiviral, anticancer and neuroprotective effects [39] |
Chinese Fruits | Hot Water Extracts (mg/10 g Dry Fruit) | Endopolysaccharides (mg/10 g Dry Fruit) |
---|---|---|
1. Prunus mume | 2864.40 | 500.18 |
2. Lycium barbarum | 4580.86 | 200.50 |
3. Amomum villosum | 887.07 | 446.86 |
4. Amomum kravanh | 478.81 | 240.99 |
5. Crataegus pinnatifida | 3239.41 | 761.56 |
6. Illicium verum | 1440.41 | 387.42 |
7. Amomun tsao-ko | 514.61 | 116.34 |
8. Ligustrum lucidum | 1601.63 | 397.34 |
9. Momordica grosvenori | 2737.64 | 365.29 |
10. Psoralea corylifolia | 1404.95 | 263.80 |
11. Schisandra chinensis | 3250.40 | 474.40 |
Chinese Fruits | Scavenging Activity on Yeast | Total Phenol Content (GAE mg/g ± SD) | Total Flavonoid Content (QE mg/g ± SD) | DPPH in Percent (I(%)) a | Ferrous Ion-Chelating Ability | Ferric-Reducing Antioxidant Power (CPE c mg/g ± SD) | |
---|---|---|---|---|---|---|---|
% b ± SD | EDTA Equivalent (ug/mL ± SD) | ||||||
1-ENP d | + f | 24.85 ± 0.52 | 122.06 ± 3.39 | 46.58 ± 0.00 | - | - | 30.48 ± 0.11 |
2-ENP | + | 21.24 ± 0.39 | 29.76 ± 0.99 | 19.86 ± 0.97 | 62.98 ± 0.37 | 226.91 ± 1.93 | 34.73 ± 0.25 |
3-ENP | + | 23.65 ± 0.39 | 116.66 ± 1.41 | 37.33 ± 0.48 | 63.50 ± 2.34 | 229.64 ± 12.21 | 24.91 ± 0.42 |
4-ENP | + | 24.85 ± 0.52 | 100.06 ± 2.55 | 27.40 ± 0.97 | 32.40 ± 5.42 | 67.36 ± 28.28 | 13.63 ± 0.11 |
5-ENP | + | 37.63 ± 0.26 | 227.06 ± 2.83 | 46.92 ± 0.48 | - | - | 51.36 ± 0.21 |
6-ENP | − | 37.35 ± 0.13 | 185.96 ± 0.42 | 53.42 ± 0.97 | - | - | 36.98 ± 0.39 |
7-ENP | − g | 4.51 ± 0.09 | 22.66 ± 0.57 | 20.89 ± 0.48 | 81.71 ± 1.72 | 324.64 ± 9.00 | 1.16 ± 0.07 |
8-ENP | + | 77.44 ± 0.26 | 230.06 ± 0.57 | 76.37 ± 1.45 | 38.76 ± 2.09 | 100.55 ± 10.93 | 54.21 ± 0.14 |
9-ENP | + | 52.07 ± 0.26 | 96.66 ± 0.85 | 68.15 ± 1.45 | - | - | 40.46 ± 0.35 |
10-ENP | − | 53.83 ± 0.39 | 130.66 ± 2.55 | 48.97 ± 1.45 | 48.08 ± 0.74 | 149.18 ± 3.86 | 14.78 ± 0.32 |
11-ENP | + | 22.63 ± 0.26 | 108.86 ± 0.57 | 4.45 ± 27.61 | - | - | 11.68 ± 0.11 |
1-HWE e | + | 25.22 ± 0.26 | 47.10 ± 0.94 | 39.38 ± 0.48 | - | - | 29.03 ± 0.25 |
2-HWE | + | 21.61 ± 0.13 | 12.35 ± 0.82 | 34.93 ± 0.97 | 64.11 ± 1.48 | 232.82 ± 7.71 | 27.33 ± 0.53 |
3-HWE | + | 33.46 ± 0.39 | 92.27 ± 1.18 | 55.14 ± 1.45 | 25.35 ± 0.37 | 30.55 ± 1.93 | 36.71 ± 0.71 |
4-HWE | + | 29.11 ± 0.26 | 70.52 ± 4.83 | 33.22 ± 1.45 | 49.65 ± 1.23 | 157.36 ± 6.43 | 15.61 ± 0.21 |
5-HWE | + | 49.48 ± 0.26 | 182.40 ± 5.66 | 50.00 ± 0.00 | - | - | 60.28 ± 1.31 |
6-HWE | − | 65.96 ± 1.31 | 235.73 ± 0.94 | 62.67 ± 0.48 | - | - | 67.71 ± 0.71 |
7-HWE | + | 76.33 ± 2.62 | 295.40 ± 0.47 | 69.52 ± 0.48 | 62.02 ± 5.17 | 221.91 ± 27.00 | 76.78 ± 0.60 |
8-HWE | + | 94.67 ± 1.31 | 221.07 ± 3.77 | 77.40 ± 0.97 | 19.86 ± 9.12 | 1.91 ± 47.57 | 73.78 ± 0.18 |
9-HWE | + | 40.22 ± 1.31 | 33.02 ± 0.12 | 46.58 ± 0.00 | - | - | 35.56 ± 0.28 |
10-HWE | − | 57.72 ± 0.65 | 56.85 ± 3.89 | 50.34 ± 0.48 | 49.13 ± 2.96 | 154.64 ± 15.43 | 19.76 ± 0.21 |
11-HWE | + | 17.72 ± 0.39 | 33.43 ± 0.24 | 26.37 ± 2.42 | - | - | 17.93 ± 0.39 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.C.; Tulasi, R.; Koyyalamudi, S.R. Antioxidant Capacities of Hot Water Extracts and Endopolysaccharides of Selected Chinese Medicinal Fruits. Cancers 2016, 8, 33. https://doi.org/10.3390/cancers8030033
Jeong SC, Tulasi R, Koyyalamudi SR. Antioxidant Capacities of Hot Water Extracts and Endopolysaccharides of Selected Chinese Medicinal Fruits. Cancers. 2016; 8(3):33. https://doi.org/10.3390/cancers8030033
Chicago/Turabian StyleJeong, Sang Chul, Ratna Tulasi, and Sundar Rao Koyyalamudi. 2016. "Antioxidant Capacities of Hot Water Extracts and Endopolysaccharides of Selected Chinese Medicinal Fruits" Cancers 8, no. 3: 33. https://doi.org/10.3390/cancers8030033
APA StyleJeong, S. C., Tulasi, R., & Koyyalamudi, S. R. (2016). Antioxidant Capacities of Hot Water Extracts and Endopolysaccharides of Selected Chinese Medicinal Fruits. Cancers, 8(3), 33. https://doi.org/10.3390/cancers8030033