Crossing the AI Chasm in Neurocritical Care
Abstract
:1. Introduction
2. Crossing the AI Chasm
3. Ethical Issues
4. Perspectives and Ongoing Research
Ongoing Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhry, F.; Hunt, R.J.; Hariharan, P.; Anand, S.K.; Sanjay, S.; Kjoller, E.E.; Bartlett, C.M.; Johnson, K.W.; Levy, P.D.; Noushmehr, H.; et al. Machine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem? Front. Neurol. 2020, 11, 554633. [Google Scholar] [CrossRef] [PubMed]
- Use of AI in Healthcare & Medicine is Booming—Here’s How the Medical Field Is Benefiting from AI in 2023 and Beyond. Available online: https://www.insiderintelligence.com/insights/artificial-intelligence-healthcare/ (accessed on 8 April 2023).
- Al-Mufti, F.; Kim, M.; Dodson, V.; Sursal, T.; Bowers, C.; Cole, C.; Scurlock, C.; Becker, C.; Gandhi, C.; Mayer, S.A. Machine Learning and Artificial Intelligence in Neurocritical Care: A Specialty-Wide Disruptive Transformation or a Strategy for Success. Curr. Neurol. Neurosci. Rep. 2019, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Bellini, V.; Valente, M.; Pelosi, P.; Del Rio, P.; Bignami, E. Big Data and Artificial Intelligence in Intensive Care Unit: From “Bla, Bla, Bla” to the Incredible Five’s. Neurocrit. Care 2022, 37 (Suppl. S2), 170–172. [Google Scholar] [CrossRef] [PubMed]
- United States Government Accountability Office (GAO). Technology Assessment. Artificial Intelligence in Health Care. Benefits and Challenges of Machine Learning. Technologies for Medical Diagnostics. Available online: https://www.gao.gov/assets/gao-22-104629.pdf (accessed on 8 April 2023).
- Gravesteijn, B.Y.; Steyerberg, E.W.; Lingsma, H.F. Modern Learning from Big Data in Critical Care: Primum Non Nocere. Neurocrit. Care 2022, 37 (Suppl. S2), 174–184. [Google Scholar] [CrossRef]
- Savin, I.; Ershova, K.; Kurdyumova, N.; Ershova, O.; Khomenko, O.; Danilov, G.; Shifrin, M.; Zelman, V. Healthcare-associated ventriculitis and meningitis in a neuro-ICU: Incidence and risk factors selected by machine learning approach. J. Crit. Care 2018, 45, 95–104. [Google Scholar] [CrossRef]
- Ye, G.; Balasubramanian, V.; Li, J.K.; Kaya, M. Machine Learning-Based Continuous Intracranial Pressure Prediction for Traumatic Injury Patients. IEEE J. Transl. Eng. Health Med. 2022, 10, 4901008. [Google Scholar] [CrossRef]
- Schweingruber, N.; Mader, M.M.D.; Wiehe, A.; Röder, F.; Göttsche, J.; Kluge, S.; Westphal, M.; Czorlich, P.; Gerloff, C. A recurrent machine learning model predicts intracranial hypertension in neurointensive care patients. Brain 2022, 145, 2910–2919. [Google Scholar] [CrossRef]
- Liu, W.; Ma, W.; Bai, N.; Li, C.; Liu, K.; Yang, J.; Zhang, S.; Zhu, K.; Zhou, Q.; Liu, H.; et al. Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning. Biosci. Rep. 2022, 42, BSR20220995. [Google Scholar] [CrossRef]
- Claassen, J.; Doyle, K.; Matory, A.; Couch, C.; Burger, K.M.; Velazquez, A.; Okonkwo, J.U.; King, J.R.; Park, S.; Agarwal, S.; et al. Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury. N. Engl. J. Med. 2019, 380, 2497–2505. [Google Scholar] [CrossRef]
- Arbabshirani, M.R.; Fornwalt, B.K.; Mongelluzzo, G.J.; Suever, J.D.; Geise, B.D.; Patel, A.A.; Moore, G.J. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med. 2018, 1, 9. [Google Scholar] [CrossRef]
- Koren, J.P.; Herta, J.; Fürbass, F.; Pirker, S.; Reiner-Deitemyer, V.; Riederer, F.; Flechsenhar, J.; Hartmann, M.; Kluge, T.; Baumgartner, C. Automated Long-Term EEG Review: Fast and Precise Analysis in Critical Care Patients. Front. Neurol. 2018, 9, 454. [Google Scholar] [CrossRef]
- Stapleton, C.J.; Acharjee, A.; Irvine, H.J.; Wolcott, Z.C.; Patel, A.B.; Kimberly, W.T. High-throughput metabolite profiling: Identification of plasma taurine as a potential biomarker of functional outcome after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2019, 133, 1842–1849. [Google Scholar] [CrossRef]
- Tanioka, S.; Ishida, F.; Nakano, F.; Kawakita, F.; Kanamaru, H.; Nakatsuka, Y.; Nishikawa, H.; Suzuki, H.; pSEED Group. Machine Learning Analysis of Matricellular Proteins and Clinical Variables for Early Prediction of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Mol. Neurobiol. 2019, 56, 7128–7135. [Google Scholar] [CrossRef]
- Chang, C.C.; Yeh, J.H.; Chiu, H.C.; Chen, Y.M.; Jhou, M.J.; Liu, T.C.; Lu, C.J. Utilization of Decision Tree Algorithms for Supporting the Prediction of Intensive Care Unit Admission of Myasthenia Gravis: A Machine Learning-Based Approach. J. Pers. Med. 2022, 12, 32. [Google Scholar] [CrossRef]
- Kamousi, B.; Karunakaran, S.; Gururangan, K.; Markert, M.; Decker, B.; Khankhanian, P.; Mainardi, L.; Quinn, J.; Woo, R.; Parvizi, J. Monitoring the Burden of Seizures and Highly Epi-leptiform Patterns in Critical Care with a Novel Machine Learning Method. Neurocrit. Care. 2021, 34, 908–917. [Google Scholar] [CrossRef]
- Ryvlin, P.; Rheims, S.; Hirsch, L.J.; Sokolov, A.; Jehi, L. Neuromodula-tion in epilepsy: State-of-the-art approved therapies. Lancet Neurol. 2021, 20, 1038–1047. [Google Scholar] [CrossRef]
- King, M.R. The Future of AI in Medicine: A Perspective from a Chatbot. Ann. Bio-Med Eng. 2023, 51, 291–295. [Google Scholar] [CrossRef]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. J. Med. Syst. 2023, 47, 33. [Google Scholar] [CrossRef]
- Fratino, S.; Garré, A.; Garufi, A.; Hafidi, S.; Migliorino, E.; Stropeni, S.; Bogossian, E.G.; Ndieugnou Djan-gang, N.; Albano, G.; Creteur, J.; et al. Evaluation of nociception in unconscious critically ill patients using a multimodal approach. Anaesth. Crit. Care Pain Med. 2023, 42, 101175. [Google Scholar] [CrossRef]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E.G. Integrating data science and neural architecture techniques for automatic pain assessment in critically ill patients. Anaesth. Crit. Care Pain Med. 2023, 42, 101220. [Google Scholar] [CrossRef]
- Aristidou, A.; Jena, R.; Topol, E.J. Bridging the chasm between AI and clinical implementation. Lancet 2022, 399, 620. [Google Scholar] [CrossRef] [PubMed]
- Westfall, J.M.; Mold, J.; Fagnan, L. Practice-based research—“Blue Highways” on the NIH roadmap. JAMA 2007, 297, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Car, J.; Sheikh, A.; Wicks, P.; Williams, M.S. Beyond the hype of big data and artificial intelligence: Building foundations for knowledge and wisdom. BMC Med. 2019, 17, 143. [Google Scholar] [CrossRef] [PubMed]
- Duke Neurocritical Care Patient Data Repository. Available online: https://datacatalog.mclibrary.duke.edu/dataset/duke-neurocritical-care-patient-data-repository (accessed on 26 February 2023).
- Azad, T.D.; Shah, P.P.; Kim, H.B.; Stevens, R.D. Endotypes and the Path to Precision in Moderate and Severe Traumatic Brain Injury. Neurocrit. Care. 2022, 37 (Suppl. S2), 259–266. [Google Scholar] [CrossRef]
- Pollard, T.J.; Johnson, A.E.W.; Raffa, J.D.; Celi, L.A.; Mark, R.G.; Badawi, O. The eICU collaborative research database, a freely available multi-center database for critical care research. Sci. Data 2018, 5, 180178. [Google Scholar] [CrossRef]
- Bignami, E.G.; Vittori, A.; Lanza, R.; Compagnone, C.; Cascella, M.; Bellini, V. The Clinical Researcher Journey in the Artificial Intelligence Era: The PAC-MAN’s Challenge. Healthcare 2023, 11, 975. [Google Scholar] [CrossRef]
- Bellini, V.; Cascella, M.; Cutugno, F.; Russo, M.; Lanza, R.; Compagnone, C.; Bignami, E.G. Understanding basic principles of Artificial Intelligence: A practical guide for intensivists. Acta Biomed. 2022, 93, e2022297. [Google Scholar] [CrossRef]
- Yang, S.; Du, P.; Feng, X.; He, D.; Chen, Y.; Zhong, L.L.D.; Yan, X.; Luo, J. Propensity score analysis with missing data using a multi-task neural network. BMC Med. Res. Methodol. 2023, 23, 41. [Google Scholar] [CrossRef]
- Cobianchi, L.; Verde, J.M.; Loftus, T.J.; Piccolo, D.; Dal Mas, F.; Mascagni, P.; Garcia Vazquez, A.; Ansaloni, L.; Marseglia, G.R.; Massaro, M.; et al. Artificial Intelligence and Surgery: Ethical Dilemmas and Open Issues. J. Am. Coll Surg. 2022, 235, 268–275. [Google Scholar] [CrossRef]
- Raimundo, R.; Rosário, A. The Impact of Artificial Intelligence on Data System Security: A Literature Review. Sensors 2021, 21, 7029. [Google Scholar] [CrossRef]
- Panch, T.; Mattie, H.; Atun, R. Artificial intelligence and algorithmic bias: Implications for health systems. J. Glob. Health 2019, 9, 010318. [Google Scholar] [CrossRef]
- Koohy, H. The rise and fall of machine learning methods in biomedical research. F1000Res 2017, 6, 2012. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.; Precise4Q Consortium. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Keskinbora, K.H. Medical ethics considerations on artificial intelligence. J. Clin. Neurosci. 2019, 64, 277–282. [Google Scholar] [CrossRef]
- IEEE Xplore. Available online: https://ieeexplore.ieee.org/Xplore/home.jsp (accessed on 25 February 2023).
- Cobianchi, L.; Piccolo, D.; Dal Mas, F.; Agnoletti, V.; Ansaloni, L.; Balch, J.; Biffl, W.; Butturini, G.; Catena, F.; Coccolini, F.; et al. Surgeons’ perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: Results from an international survey. World J. Emerg. Surg. 2023, 18, 1. [Google Scholar] [CrossRef]
- Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef]
- Harris, S.; Shi, S.; Brealey, D.; MacCallum, N.S.; Denaxas, S.; Perez-Suarez, D.; Ercole, A.; Watkinson, P.; Jones, A.; Ashworth, S.; et al. Critical Care Health Informatics Collaborative (CCHIC): Data, tools and methods for reproducible research: A multi-centre UK intensive care database. Int. J. Med. Inform. 2018, 112, 82–89. [Google Scholar] [CrossRef]
- Marwaha, J.S.; Kvedar, J.C. Crossing the chasm from model performance to clinical impact: The need to improve implementation and evaluation of AI. NPJ Digit. Med. 2022, 5, 25. [Google Scholar] [CrossRef]
- Levy, J.J.; O’Malley, A.J. Don’t dismiss logistic regression: The case for sensible extraction of interactions in the era of machine learning. BMC Med. Res. Methodol. 2020, 20, 171. [Google Scholar] [CrossRef]
- Russak, A.J.; Chaudhry, F.; De Freitas, J.K.; Baron, G.; Chaudhry, F.F.; Bienstock, S.; Paranjpe, I.; Vaid, A.; Ali, M.; Zhao, S.; et al. Machine Learning in Cardiology-Ensuring Clinical Impact Lives Up to the Hype. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 379–390. [Google Scholar] [CrossRef]
- Simpkins, A.N.; Busl, K.M.; Amorim, E.; Barnett-Tapia, C.; Cervenka, M.C.; Dhakar, M.B.; Etherton, M.R.; Fung, C.; Griggs, R.; Holloway, R.G.; et al. Neurotherapeutics Symposium 2019. Proceedings from the Neurotherapeutics Symposium on Neurological Emergencies: Shaping the Future of Neurocritical Care. Neurocrit. Care 2020, 33, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Vasseneix, C.; Najjar, R.P.; Xu, X.; Tang, Z.; Loo, J.L.; Singhal, S.; Tow, S.; Milea, L.; Ting, D.S.W.; Liu, Y.; et al. Accuracy of a deep learning system for classification of papilledema severity on ocular fundus photographs. Neurology 2021, 97, e369–e377. [Google Scholar] [CrossRef] [PubMed]
- Megjhani, M.; Weiss, M.; Kwon, S.B.; Ford, J.; Nametz, D.; Kastenholz, N.; Fogel, H.; Velazquez, A.; Roh, D.; Agarwal, S.; et al. Vector Angle Analysis of Multimodal Neuromonitoring Data for Continuous Prediction of Delayed Cerebral Ischemia. Neurocrit. Care 2022, 37 (Suppl. S2), 230–236. [Google Scholar] [CrossRef] [PubMed]
- Mohd Noor, N.S.E.; Ibrahim, H.; Lai, C.Q.; Abdullah, J.M. A Long Short-Term Memory Network Using Resting-State Electroencephalogram to Predict Outcomes Following Moderate Traumatic Brain Injury. Computers 2023, 12, 45. [Google Scholar] [CrossRef]
- Narindrarangkura, P.; Kim, M.S.; Boren, S.A. A Scoping Review of Artificial Intelligence Algorithms in Clinical Decision Support Systems for Internal Medicine Subspecialties. ACI Open. 2021, 5, e67–e79. [Google Scholar] [CrossRef]
- Jha, R.M.; Elmer, J.; Zusman, B.E.; Desai, S.; Puccio, A.M.; Okonkwo, D.O.; Park, S.Y.; Shutter, L.A.; Wallisch, J.S.; Conley, Y.P.; et al. Intracranial pressure trajectories: A novel approach to informing severe traumatic brain injury Phenotypes. Crit. Care Med. 2018, 46, 1792–1802. [Google Scholar] [CrossRef]
- Dhar, R.; Meyfroidt, G. Navigating the Ocean of Big Data in Neurocritical Care. Neurocrit. Care 2022, 37 (Suppl. S2), 157–159. [Google Scholar] [CrossRef]
- Carminati, L. Generalizability in Qualitative Research: A Tale of Two Traditions. Qual. Health Res. 2018, 28, 2094–2101. [Google Scholar] [CrossRef]
- Islam, M.S.; Ameedeen, M.A.B.; Rahman, M.A.; Ajra, H.; Ismail, Z.B. Healthcare-Chain: Blockchain-Enabled Decentralized Trustworthy System in Healthcare Management Industry 4.0 with Cyber Safeguard. Computers 2023, 12, 46. [Google Scholar] [CrossRef]
- Lin, A.L.; Avila, E.K. Neurologic emergencies in the patients with cancer. J. Intensive Care Med. 2017, 32, 99–115. [Google Scholar] [CrossRef]
- Tabrizi, P.R.; Obeid, R.; Mansoor, A.; Ensel, S.; Cerrolaza, J.J.; Penn, A.; Linguraru, M.G. Cranial ultrasound-based prediction of post hemorrhagic hydrocephalus outcome in premature neonates with intraventricular hemorrhage. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 2017, 169–172. [Google Scholar] [CrossRef]
- Pisapia, J.M.; Akbari, H.; Rozycki, M.; Goldstein, H.; Bakas, S.; Rathore, S.; Moldenhauer, J.S.; Storm, P.B.; Zarnow, D.M.; Anderson, R.C.E.; et al. Use of Fetal Magnetic Resonance Image Analysis and Machine Learning to Predict the Need for Postnatal Cerebrospinal Fluid Diversion in Fetal Ventriculomegaly. JAMA Pediatr. 2018, 172, 128–135. [Google Scholar] [CrossRef]
- Sheikh, A.; Anderson, M.; Albala, S.; Casadei, B.; Franklin, B.D.; Richards, M.; Taylor, D.; Tibble, H.; Mossialos, E. Health information technology and digital innovation for national learning health and care systems. Lancet Digit. Health 2021, 3, e383–e396. [Google Scholar] [CrossRef]
- Reddy, S.; Allan, S.; Coghlan, S.; Cooper, P. A governance model for the application of AI in health care. J. Am. Med. Inform. Assoc. 2020, 27, 491–497. [Google Scholar] [CrossRef]
- Becker, C.D.; Fusaro, M.V.; Scurlock, C. Telemedicine in the ICU: Clinical outcomes, economic aspects, and trainee education. Curr. Opin. Anaesthesiol. 2019, 32, 129–135. [Google Scholar] [CrossRef]
- Cascella, M.; Coluccia, S.; Monaco, F.; Schiavo, D.; Nocerino, D.; Grizzuti, M.; Romano, M.C.; Cuomo, A. Different Machine Learning Approaches for Implementing Telehealth-Based Cancer Pain Management Strategies. J. Clin. Med. 2022, 11, 5484. [Google Scholar] [CrossRef]
- Klein, K.E.; Rasmussen, P.A.; Winners, S.L.; Frontera, J.A. Teleneurocritical care and telestroke. Crit. Care Clin. 2015, 31, 197–224. [Google Scholar] [CrossRef]
- Freeman, W.D.; Rogers, A.; Rabinstein, A. TeleNeuroICU: Expanding the Reach of Subspecialty Neurocritical Care. Semin. Neurol. 2022, 42, 18–30. [Google Scholar] [CrossRef]
- Cascella, M.; Schiavo, D.; Grizzuti, M.; Romano, M.C.; Coluccia, S.; Bimonte, S.; Cuomo, A. Implementation of a Hybrid Care Model for Telemedicine-based Cancer Pain Management at the Cancer Center of Naples, Italy: A Cohort Study. Vivo 2023, 37, 385–392. [Google Scholar] [CrossRef]
Topic | Data Source | Algorithm and Methods | Ref […] |
---|---|---|---|
Incidence and risk factors of HAVM in a neuro-ICU | Multiple | ML (RF; XGBoost) | [7] |
Early prediction of an abnormal increase in ICP in trauma | ICP | DL | [8] |
Early prediction of an abnormal increase in ICP | Multiple | DL (LSTM) | [9] |
Hospital mortality after embolic stroke | Multiple | 15 ML models ^ | [10] |
Brain activation in unresponsive patients with acute brain injury | EEG | ML (SVM) | [11] |
Early detection of ICH | Imaging | DL (CNN) | [12] |
Neonatal seizure detection | EEG | ML ° | [13] |
Prediction of neurological recovery after SAH | Biomarkers | ML (EN; LASSO) | [14] |
Prediction DCI after SAH | Multiple | ML (RF) | [15] |
Prediction of ICU admission in Myasthenia Gravis | Clinical variables | ML (DT) ‡ | [16] |
Topic | Strategy |
---|---|
Partnerships and knowledge dissemination [38] | Enhancement of collaborations between neuro-ICU clinicians, data scientists, and AI developers. Targeted acquaintance dissemination. |
Technology acceptance [39] | It is mandatory to “persuade” clinicians about the opportunities of using AI. |
Data collection and management [1,3,28,40,41] | There is a need to collect and manage high-quality data from multiple sources, including electronic medical records, imaging, and vital signs. |
Standardization of data [40,41] | It is necessary to ensure that AI models can be applied across different institutions and datasets. |
Model development and validation [24,52] | AI models should be developed and validated using robust methods, including external validation through independent datasets. |
Real-world evidence and causal inference strategies [42,43] | Data from electronic health records, administrative claims databases, and data gathered from other sources. |
Disease-specific knowledge gaps [45,54,55,56] | Extensive collaboration for structuring and analyzing datasets. |
Integration of AI into clinical workflows [46,47,48,49] | AI tools should be integrated into clinical workflows to ensure that they are used effectively and efficiently. |
Training and education [39,44,45,50,57] | Training and education programs should be developed to ensure that neuro-ICU specialists are equipped with the necessary skills to use AI tools. |
Ethical and regulatory considerations [26,32,33,34,35,36,37,53] | Regulatory frameworks with the involvement of ethicists, governments, and other stakeholders. International cooperation and communication. |
Long-term monitoring and evaluation [49,51] | Continuous monitoring and evaluation of AI tools should be performed to ensure their safety, effectiveness, and impact on patient outcomes. |
Investing in AI technology [57,58,59,60,61] | Strategic investments in research and development, education, and infrastructures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascella, M.; Montomoli, J.; Bellini, V.; Vittori, A.; Biancuzzi, H.; Dal Mas, F.; Bignami, E.G. Crossing the AI Chasm in Neurocritical Care. Computers 2023, 12, 83. https://doi.org/10.3390/computers12040083
Cascella M, Montomoli J, Bellini V, Vittori A, Biancuzzi H, Dal Mas F, Bignami EG. Crossing the AI Chasm in Neurocritical Care. Computers. 2023; 12(4):83. https://doi.org/10.3390/computers12040083
Chicago/Turabian StyleCascella, Marco, Jonathan Montomoli, Valentina Bellini, Alessandro Vittori, Helena Biancuzzi, Francesca Dal Mas, and Elena Giovanna Bignami. 2023. "Crossing the AI Chasm in Neurocritical Care" Computers 12, no. 4: 83. https://doi.org/10.3390/computers12040083
APA StyleCascella, M., Montomoli, J., Bellini, V., Vittori, A., Biancuzzi, H., Dal Mas, F., & Bignami, E. G. (2023). Crossing the AI Chasm in Neurocritical Care. Computers, 12(4), 83. https://doi.org/10.3390/computers12040083