Least Squares Minimum Class Variance Support Vector Machines
Abstract
:1. Introduction
2. Literature Review on SVMs
2.1. Support Vector Machines (SVMs)
2.2. Least Squares Support Vector Machines (LSSVMs)
2.3. Minimum Class Variances Support Vector Machines (MCVSVMs)
3. New Method: LS-MCVSVM
4. Addressing Singularity Using Principal Projections
5. Real Data Experiments
6. Conclusions
Other Approaches and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Liu, W.; Ci, L.; Liu, L. A New Method of Fuzzy Support Vector Machine Algorithm for Intrusion Detection. Appl. Sci. 2020, 10, 1065. [Google Scholar] [CrossRef]
- Razaque, A.; Mohamed, B.H.F.; Muder, A.; Munif, A.; Bandar, A. Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification. Sensors 2021, 21, 4431. [Google Scholar] [CrossRef] [PubMed]
- Panup, W.; Wachirapong, R.; Rabian, W. A Novel Twin Support Vector Machine with Generalized Pinball Loss Function for Pattern Classification. Symmetry 2022, 14, 289. [Google Scholar] [CrossRef]
- Han, K.-X.; Chien, W.; Chiu, C.-C.; Cheng, Y.-T. Application of Support Vector Machine (SVM) in the Sentiment Analysis of Twitter DataSet. Appl. Sci. 2020, 10, 1125. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Ehsan, H.; Lahmer, T.; Kumari, V.; Jadhav, K. Application of Support Vector Machine Modeling for the Rapid Seismic Hazard Safety Evaluation of Existing Buildings. Energies 2020, 13, 3340. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Zafeiriou, S.; Tefas, A.; Pitas, I. Minimum Class Variance Support Vector Machines. IEEE Trans. Image Process. 2006, 16, 2551–2564. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Fisher, R.A. Iris. UCI Machine Learning Repository. 1988. Available online: https://archive.ics.uci.edu/dataset/53/iris (accessed on 23 January 2024). [CrossRef]
- Haberman, S. Haberman’s Survival. UCI Machine Learning Repository. 1999. Available online: https://archive.ics.uci.edu/dataset/43/haberman+s+survival (accessed on 23 January 2024). [CrossRef]
- Sigillito, V.; Wing, S.; Hutton, L.; Baker, K. Ionosphere. UCI Machine Learning Repository. 1989. Available online: https://archive.ics.uci.edu/dataset/52/ionosphere (accessed on 23 January 2024). [CrossRef]
- Wolberg, W. Breast Cancer Wisconsin (Original). UCI Machine Learning Repository. 1992. Available online: https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original (accessed on 23 January 2024). [CrossRef]
- Kahn, M. Diabetes. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/dataset/34/diabetes (accessed on 23 January 2024). [CrossRef]
- Gil, D.; Girela, J. Fertility. UCI Machine Learning Repository. 2013. Available online: https://archive.ics.uci.edu/dataset/244/fertility (accessed on 23 January 2024). [CrossRef]
- Charytanowicz, M.; Niewczas, J.; Kulczycki, P.; Kowalski, P.; Lukasik, S. Seeds. UCI Machine Learning Repository. 2012. Available online: https://archive.ics.uci.edu/dataset/236/seeds (accessed on 23 January 2024). [CrossRef]
- Lohweg, V. Banknote Authentication. UCI Machine Learning Repository. 2013. Available online: https://archive.ics.uci.edu/dataset/267/banknote+authentication (accessed on 23 January 2024). [CrossRef]
- Panayides, M.; Artemiou, A. LSMCV-SVM Comparisons with Other SVMs. Zenodo. 2024. Available online: https://zenodo.org/records/10476188 (accessed on 23 January 2024). [CrossRef]
- Veropoulos, K.; Campbell, C.; Cristianini, N. Controlling the sensitivity of support vector vector machines. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI ’99), Workshop ML3, Stockholm, Sweden, 31 July–6 August 1999; pp. 55–60. [Google Scholar]
- Artemiou, A.; Shu, M. A cost based reweighed scheme of Principal Support Vector Machine. Top. Nonparamet. Stat. Springer Proc. Math. Stat. 2014, 74, 1–22. [Google Scholar]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Artemiou, A.; Dong, Y.; Shin, S.J. Real-time sufficient dimension reduction through principal least squares support vector machines. Pattern Recognit. 2021, 112, 107768. [Google Scholar] [CrossRef]
- Jang, H.J.; Shin, S.J.; Artemiou, A. Principal weighted least square support vector machine: An online dimension-reduction tool for binary classification. Comput. Stat. Data Anal. 2023, 187, 107818. [Google Scholar] [CrossRef]
- Li, B.; Artemiou, A.; Li, L. Principal Support Vector Machines for linear and nonlinear sufficient dimension reduction. Ann. Stat. 2011, 39, 3182–3210. [Google Scholar] [CrossRef]
- Wang, X.-M.; Wang, S.-T. Least-Square-based Minimum Class Variance Support Vector Machines. Jisuanji Gongcheng Comput. Eng. 2010, 36, 12. [Google Scholar]
Dataset | Observations | Features | Source, Citation |
---|---|---|---|
Iris | 150 | 4 | /53/iris, [11] |
Haberman’s | 306 | 3 | /43/haberman+s+survival, [12] |
Ionosphere | 351 | 34 | /52/ionosphere, [13] |
Breast Cancer | 699 | 9 | /15/breast+cancer+wisconsin+original, [14] |
Diabetes | ≈253,000 | 21 | /891/cdc+diabetes+health+indicators, [15] |
Fertility | 100 | 10 | /244/fertility, [16] |
Seeds | 210 | 7 | /dataset/236/seeds, [17] |
Banknote | 1372 | 5 | /267/banknote+authentication, [18] |
Algorithm | SVM | LS SVM | MCV SVM | LSMCV SVM | |
---|---|---|---|---|---|
Datasets | |||||
Iris | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Haberman’s | 0.27 (0.002) | 0.25 (0.002) | 0.27 (0.002) | 0.25 (0.002) | |
Ionosphere | 0.14 (0.002) | 0.14 (0.002) | 0.14 (0.002) | 0.14 (0.002) | |
Breast Cancer | 0.04 (0.000) | 0.04 (0.000) | 0.04 (0.000) | 0.04 (0.000) | |
Diabetes | 0.24 (0.001) | 0.23 (0.001) | 0.24 (0.001) | 0.23 (0.001) | |
Fertility | 0.17 (0.010) | 0.12 (0.005) | 0.17 (0.009) | 0.12 (0.005) | |
Seeds | 0.07 (0.001) | 0.06 (0.001) | 0.04 (0.001) | 0.03 (0.001) | |
Banknote | 0.01 (0.000) | 0.03 (0.000) | 0.01 (0.000) | 0.03 (0.000) |
Algorithm | SVM | LS SVM | MCV SVM | LSMCV | |
---|---|---|---|---|---|
Datasets | |||||
Iris | 0.229 | 0.00931 | 0.205 | 0.0207 | |
Haberman’s | 0.953 | 0.0305 | 0.783 | 0.0334 | |
Ionosphere | 1.29 | 0.0593 | 1.12 | 0.0784 | |
Breast Cancer | 8.79 | 0.241 | 6.34 | 0.217 | |
Diabetes | 10.4 | 0.342 | 8.003 | 0.307 | |
Fertility | 0.139 | 0.00786 | 0.125 | 0.016 | |
Seeds | 0.441 | 0.0164 | 0.372 | 0.0224 | |
Banknote | 59.3 | 1.67 | 49.1 | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panayides, M.; Artemiou, A. Least Squares Minimum Class Variance Support Vector Machines. Computers 2024, 13, 34. https://doi.org/10.3390/computers13020034
Panayides M, Artemiou A. Least Squares Minimum Class Variance Support Vector Machines. Computers. 2024; 13(2):34. https://doi.org/10.3390/computers13020034
Chicago/Turabian StylePanayides, Michalis, and Andreas Artemiou. 2024. "Least Squares Minimum Class Variance Support Vector Machines" Computers 13, no. 2: 34. https://doi.org/10.3390/computers13020034
APA StylePanayides, M., & Artemiou, A. (2024). Least Squares Minimum Class Variance Support Vector Machines. Computers, 13(2), 34. https://doi.org/10.3390/computers13020034