The Role of Situatedness in Immersive Dam Visualization: Comparing Proxied with Immediate Approaches †
Abstract
:1. Introduction
2. Related Work
2.1. Situated Visualization
2.2. Extended Reality in Dam Engineering
3. System Overview
3.1. Architecture
- An immersive environment replicating hydrographic basins, allowing free user movement. This environment serves as a spatial reference during data analysis;
- Detailed representations of dams and their surrounding landscape, which includes the primary structure, the terrain, and bodies of water;
- Sensor network models, encompassing geodetic marks, plumblines, GNSS equipment, and accelerometers.
- An array of floating panels within the VR environment. These panels display charts of displacements, vibrations, and accelerations and provide information about selected elements;
- A database containing structural health monitoring information as well as model geometrical and positional data;
- A VR headset with controllers;
- A management module tasked with interpreting data from the database. This module also translates the positional data from the VR equipment into the immersive environment and ensures consistent synchronization between the dam models, the sensor networks, and the informational panels.
3.2. User Interface
3.2.1. Model
3.2.2. Sensors
3.2.3. Panels
3.2.4. Idioms
4. Evaluation
4.1. Materials and Methods
4.2. Results and Discussion
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Questionnaire Questions
Regarding the prototype: (select only one option on each line) | |||||
1-Strongly disagree | 2 | 3 | 4 | 5-Strongly agree | |
It has a friendly interface | ○ | ○ | ○ | ○ | ○ |
It’s comfortable to use | ○ | ○ | ○ | ○ | ○ |
It’s easy to use | ○ | ○ | ○ | ○ | ○ |
I consider the prototype useful for sensor data analysis | ○ | ○ | ○ | ○ | ○ |
I see potential in this prototype to be useful in the future in supporting dam safety control tasks | ○ | ○ | ○ | ○ | ○ |
Regarding the tasks: (select only one option on each line) | |||||
1-Strongly disagree | 2 | 3 | 4 | 5-Strongly agree | |
It was easy to perform task A (comparing the values in the graph) | ○ | ○ | ○ | ○ | ○ |
It was easy to perform task B (identify geodetic mark) | ○ | ○ | ○ | ○ | ○ |
Regarding the sensors: (select only one option on each line) | |||||
1-Strongly disagree | 2 | 3 | 4 | 5-Strongly agree | |
It’s easy to distinguish between each type of sensor | ○ | ○ | ○ | ○ | ○ |
It’s easy to distinguish between different sensors of the same type | ○ | ○ | ○ | ○ | ○ |
It’s easy to select each sensor | ○ | ○ | ○ | ○ | ○ |
It’s easy to identify the name/reference of sensors | ○ | ○ | ○ | ○ | ○ |
The sensors have adequate dimensions | ○ | ○ | ○ | ○ | ○ |
Regarding the interactive menu: (select only one option on each line) | |||||
1-Strongly disagree | 2 | 3 | 4 | 5-Strongly agree | |
It’s easy to use | ○ | ○ | ○ | ○ | ○ |
It has adequate colors and icons | ○ | ○ | ○ | ○ | ○ |
It has adequate dimensions | ○ | ○ | ○ | ○ | ○ |
Regarding the data charts: (select only one option on each line) | |||||
1-Strongly disagree | 2 | 3 | 4 | 5-Strongly agree | |
The charts are easy to read | ○ | ○ | ○ | ○ | ○ |
It was easy to find the desired information | ○ | ○ | ○ | ○ | ○ |
The colors and dimensions are adequate | ○ | ○ | ○ | ○ | ○ |
The data visualization features (zoom and pan) are easy to use | ○ | ○ | ○ | ○ | ○ |
Immersiveness and realism: (select only one option on each line) | |||||
1-Strongly disagree | 2 | 3 | 4 | 5-Strongly agree | |
The representation of the Cabril Dam is realistic | ○ | ○ | ○ | ○ | ○ |
The representation of the area surrounding the dam is realistic | ○ | ○ | ○ | ○ | ○ |
I felt immersed in the experience | ○ | ○ | ○ | ○ | ○ |
References
- Gu, C.; Cui, X.; Gu, H.; Yang, M. A New Hybrid Monitoring Model for Displacement of the Concrete Dam. Sustainability 2023, 15, 9609. [Google Scholar] [CrossRef]
- Carvalho, E.; Matsinhe, B.; Mendes, P.; Oliveira, S.; Alegre, A.; Ciudad-Real, M.; Skolnik, D.; El-Idrissi, M. SSHM Systems for Dams: 12 Years’ Experience in Cahora Bassa Dam. Equipment, Software, and Main Results. In Experimental Vibration Analysis for Civil Engineering Structures; Limongelli, M.P., Giordano, P.F., Quqa, S., Gentile, C., Cigada, A., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; Volume 432, pp. 273–282. [Google Scholar] [CrossRef]
- de Castro, A.T.; Mata, J.; Barateiro, J.; Miranda, P. Information Management Systems for Dam Safety Control. The Portuguese Experience. In Proceedings of the 54º Congresso Brasileiro Do Concreto-CBC, Maceió, Brazil, 8–11 October 2012; pp. 1–13. [Google Scholar]
- Oliveira, S.; Alegre, A.; Carvalho, E.; Mendes, P.; Proença, J. Seismic and Structural Health Monitoring Systems for Large Dams: Theoretical, Computational and Practical Innovations. Bull. Earthq. Eng. 2022, 20, 4483–4512. [Google Scholar] [CrossRef]
- Oliveira, S.; Silvestre, A. Barragem do Cabril-Sistema para Monitorização de Vibrações em Contínuo-Medição e Análise Automática da Resposta Dinâmica sob Excitação Ambiente/Operacional e sob Ações Sísmicas; Technical Report 205/2017–DBB/NMMR; Laboratório Nacional de Engenharia Civil (LNEC): Lisbon, Portugal, 2017. [Google Scholar]
- Pereira, D.G.; Martins, F.G. Barragem do Cabril—Inspeção à Estrutura e ao Sistema de Observação Efetuada em Abril de 2015; Technical Report 78/2016 – DBB/NO, LNEC; Laboratório Nacional de Engenharia Civil (LNEC): Lisbon, Portugal, 2016. [Google Scholar]
- Qu, P.; Chai, J.; Xu, Z. Three-Dimensional Static and Dynamic Analyses of an Embedded Concrete-Face Rockfill Dam. Water 2023, 15, 4189. [Google Scholar] [CrossRef]
- Li, B.; Yang, J.; Hu, D. Dam Monitoring Data Analysis Methods: A Literature Review. Struct. Control. Health Monit. 2020, 27, e2501. [Google Scholar] [CrossRef]
- Alpay, L. Can Contextualization Increase Understanding During Man-Machine Communication? A Theory-Driven Study. Open Med. Inform. J. 2008, 2, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Satriadi, K.A.; Cunningham, A.; Smith, R.T.; Dwyer, T.; Drogemuller, A.; Thomas, B.H. ProxSituated Visualization: An Extended Model of Situated Visualization Using Proxies for Physical Referents. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–20. [Google Scholar] [CrossRef]
- Skarbez, R.; Polys, N.F.; Ogle, J.T.; North, C.; Bowman, D.A. Immersive Analytics: Theory and Research Agenda. Front. Robot. AI 2019, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Yue, K.; Hu, H.; Lu, K.; Han, Y.; Chen, S.; Liu, Y. Neural Research on Depth Perception and Stereoscopic Visual Fatigue in Virtual Reality. Brain Sci. 2022, 12, 1231. [Google Scholar] [CrossRef]
- Vienne, C.; Masfrand, S.; Bourdin, C.; Vercher, J.L. Depth Perception in Virtual Reality Systems: Effect of Screen Distance, Environment Richness and Display Factors. IEEE Access 2020, 8, 29099–29110. [Google Scholar] [CrossRef]
- Marriott, K.; Schreiber, F.; Dwyer, T.; Klein, K.; Riche, N.; Itoh, T.; Stuerzlinger, W.; Thomas, B. Immersive Analytics; Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Nouri, N.; Kalamkar, S.; Farzinnejad, F.; Biener, V.; Schick, F.; Kalkhof, S.; Grubert, J. Improving Understanding of Biocide Availability in Facades through Immersive Analytics. In Proceedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Singapore, 17–21 October 2022; pp. 98–103. [Google Scholar] [CrossRef]
- Verdelho Trindade, N.; Ferreira, A.; Oliveira, S. DamAR: Augmented Reality in Dam Safety Control. Int. J. Hydropower Dams 2019, 26, 7. [Google Scholar]
- Verdelho Trindade, N.; Ferreira, A.; Oliveira, S. Extended Reality in the Safety Control of Dams. In Proceedings of the Fourth International Dam World Conference-DW2020, Lisbon, Portugal, 22–24 September 2020; Volume 1, Paper 169. pp. 71–89. [Google Scholar]
- Verdelho Trindade, N.; Leitão, P.; Gonçalves, D.; Oliveira, S.; Ferreira, A. Immersive Situated Analysis of Dams’ Behavior. In Proceedings of the Fifth International Conference on Graphics and Interaction-ICGI 2023, Tomar, Portugal, 2–3 November 2023; pp. 105–112. [Google Scholar]
- Leitão, P. Dam Health Monitoring with Virtual Reality. Master’s Thesis, Instituto Superior Técnico, Lisbon, Portugal, 2023. [Google Scholar]
- Mata, J.; Santos, J.; Barateiro, J. Using Emergent Technologies on the Structural Health Monitoring and Control of Critical Infrastructures. In Industry 4.0 for the Built Environment; Bolpagni, M., Gavina, R., Ribeiro, D., Eds.; Springer International Publishing: Cham, Switzerland, 2022; Volume 20, pp. 541–567. [Google Scholar] [CrossRef]
- Rahimian, F.P.; Goulding, J.S.; Abrishami, S.; Seyedzadeh, S.; Elghaish, F. Industry 4.0 Solutions for Building Design and Construction: A Paradigm of New Opportunities, 1st ed.; Routledge: London, UK, 2021. [Google Scholar]
- White, S.; Feiner, S. SiteLens: Situated Visualization Techniques for Urban Site Visits. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009; pp. 1117–1120. [Google Scholar] [CrossRef]
- White, S.; Feiner, S.; Kopylec, J. Virtual Vouchers: Prototyping a Mobile Augmented Reality User Interface for Botanical Species Identification. In Proceedings of the 3D User Interfaces (3DUI’06), Alexandria, VA, USA, 25–26 March 2006; pp. 119–126. [Google Scholar] [CrossRef]
- Willett, W.; Jansen, Y.; Dragicevic, P. Embedded Data Representations. IEEE Trans. Vis. Comput. Graph. 2017, 23, 461–470. [Google Scholar] [CrossRef]
- Thomas, B.H.; Welch, G.F.; Dragicevic, P.; Elmqvist, N.; Irani, P.; Jansen, Y.; Schmalstieg, D.; Tabard, A.; ElSayed, N.A.M.; Smith, R.T.; et al. Situated Analytics. In Immersive Analytics; Marriott, K., Schreiber, F., Dwyer, T., Klein, K., Riche, N.H., Itoh, T., Stuerzlinger, W., Thomas, B.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 11190, pp. 185–220. [Google Scholar] [CrossRef]
- Martins, N.C.; Marques, B.; Alves, J.; Araújo, T.; Dias, P.; Santos, B.S. Augmented Reality Situated Visualization in Decision-Making. Multimed. Tools Appl. 2022, 81, 14749–14772. [Google Scholar] [CrossRef]
- Bressa, N.; Korsgaard, H.; Tabard, A.; Houben, S.; Vermeulen, J. What’s the Situation with Situated Visualization? A Survey and Perspectives on Situatedness. IEEE Trans. Vis. Comput. Graph. 2022, 28, 107–117. [Google Scholar] [CrossRef]
- Shin, S.; Batch, A.; Butcher, P.W.S.; Ritsos, P.D.; Elmqvist, N. The Reality of the Situation: A Survey of Situated Analytics. IEEE Trans. Vis. Comput. Graph. 2023, 1–19. [Google Scholar] [CrossRef]
- ElSayed, N.; Thomas, B.; Marriott, K.; Piantadosi, J.; Smith, R. Situated Analytics. In Proceedings of the 2015 Big Data Visual Analytics (BDVA), Hobart, Australia, 22–25 September 2015; pp. 1–8. [Google Scholar] [CrossRef]
- ElSayed, N.A.M.; Thomas, B.H.; Smith, R.T.; Marriott, K.; Piantadosi, J. Using Augmented Reality to Support Situated Analytics. In Proceedings of the 2015 IEEE Virtual Reality (VR), Arles, France, 23–27 March 2015; pp. 175–176. [Google Scholar] [CrossRef]
- ElSayed, N.A.M.; Smith, R.T.; Marriott, K.; Thomas, B.H. Blended UI Controls for Situated Analytics. In Proceedings of the 2016 Big Data Visual Analytics (BDVA), Sydney, Australia, 22–25 November 2016; pp. 1–8. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Smith, R.T.; Marriott, K.; Thomas, B.H. Context-Aware Design Pattern for Situated Analytics: Blended Model View Controller. J. Vis. Lang. Comput. 2018, 44, 1–12. [Google Scholar] [CrossRef]
- Abao, R.P.; Malabanan, C.V.; Galido, A.P. Design and Development of FoodGo: A Mobile Application Using Situated Analytics to Augment Product Information. Procedia Comput. Sci. 2018, 135, 186–193. [Google Scholar] [CrossRef]
- Zheng, M.; Campbell, A.G. Location-Based Augmented Reality In-Situ Visualization Applied for Agricultural Fieldwork Navigation. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing, China, 10–18 October 2019; pp. 93–97. [Google Scholar] [CrossRef]
- Alallah, F.; Sakamoto, Y.; Irani, P. Exploring the Need and Design for Situated Video Analytics. In Proceedings of the Symposium on Spatial User Interaction, Virtual Event, 9–10 November 2020; pp. 1–11. [Google Scholar] [CrossRef]
- Berger, M. Egocentric Sonification of Continuous Spatial Data in Situated Analytics. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, 22–26 March 2020; pp. 658–659. [Google Scholar] [CrossRef]
- Büschel, W.; Lehmann, A.; Dachselt, R. MIRIA: A Mixed Reality Toolkit for the In-Situ Visualization and Analysis of Spatio-Temporal Interaction Data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–15. [Google Scholar] [CrossRef]
- Fleck, P.; Calepso, A.S.; Hubenschmid, S.; Sedlmair, M.; Schmalstieg, D. RagRug: A Toolkit for Situated Analytics. IEEE Trans. Vis. Comput. Graph. 2023, 29, 3281–3297. [Google Scholar] [CrossRef]
- Lin, T.; Singh, R.; Yang, Y.; Nobre, C.; Beyer, J.; Smith, M.A.; Pfister, H. Towards an Understanding of Situated AR Visualization for Basketball Free-Throw Training. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–13. [Google Scholar] [CrossRef]
- Guarese, R.; Andreasson, P.; Nilsson, E.; Maciel, A. Augmented Situated Visualization Methods towards Electromagnetic Compatibility Testing. Comput. Graph. 2021, 94, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Su, Y.; Zhao, J.; Chen, S.; Qu, H. Mobile Situated Analytics of Ego-Centric Network Data. In Proceedings of the SIGGRAPH Asia 2017 Symposium on Visualization, Bangkok, Thailand, 27–30 November 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Ens, B.; Irani, P. Spatial Analytic Interfaces: Spatial User Interfaces for In Situ Visual Analytics. IEEE Comput. Graph. Appl. 2017, 37, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Zeng, W.; Weng, L.; Liu, Y.; Xu, M.; Chen, W. Effects of View Layout On Situated Analytics for Multiple-View Representations in Immersive Visualization. IEEE Trans. Vis. Comput. Graph. 2022, 29, 440–450. [Google Scholar] [CrossRef]
- Kurzhals, K.; Becher, M.; Pathmanathan, N.; Reina, G. Evaluating Situated Visualization in AR with Eye Tracking. In Proceedings of the 2022 IEEE Evaluation and Beyond-Methodological Approaches for Visualization (BELIV), Oklahoma City, OK, USA, 17 October 2022; pp. 77–84. [Google Scholar] [CrossRef]
- Spero, H.R.; Vazquez-Lopez, I.; Miller, K.; Joshaghani, R.; Cutchin, S.; Enterkine, J. Drones, Virtual Reality, and Modeling: Communicating Catastrophic Dam Failure. Int. J. Digit. Earth 2022, 15, 585–605. [Google Scholar] [CrossRef]
- Janovský, M.; Tobiáš, P.; Cehák, V. 3D Visualisation of the Historic Pre-Dam Vltava River Valley—Procedural and CAD Modelling, Online Publishing and Virtual Reality. ISPRS Int. J. Geo-Inf. 2022, 11, 376. [Google Scholar] [CrossRef]
- Macchione, F.; Costabile, P.; Costanzo, C.; De Santis, R. Fully-Hydrodynamic Modelling Supporting Flood Hazard Assessment and Communication: A Reference Framework. Ital. J. Eng. Geol. Environ. 2018, 1, 101–121. [Google Scholar] [CrossRef]
- Lin, S.; Chen, S. 3D Design of Gravity Dam Based on Virtual Reality CAD Dynamic Interactive System. Comput. Aided Des. Appl. 2021, 19, 11–20. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J. Application of Multimedia Technology in Water Conservancy and Hydropower Engineering. J. Vis. Commun. Image Represent. 2020, 71, 102707. [Google Scholar] [CrossRef]
- Wang, K.C.; Wang, S.H.; Kung, C.J.; Weng, S.W.; Wang, W.C. Applying BIM and Visualization Techniques to Support Construction Quality Management for Soil and Water Conservation Construction Projects. In Proceedings of the 34th International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2018. [Google Scholar] [CrossRef]
- Marques, J.C.; Rodrigues, J.; Restivo, M.T. Augmented Reality in Groundwater Flow. In Proceedings of the 2014 11th International Conference on Remote Engineering and Virtual Instrumentation (REV), Porto, Portugal, 1–3 March 2014; pp. 399–400. [Google Scholar] [CrossRef]
- Rehamnia, I.; Benlaoukli, B.; Jamei, M.; Karbasi, M.; Malik, A. Simulation of Seepage Flow through Embankment Dam by Using a Novel Extended Kalman Filter Based Neural Network Paradigm: Case Study of Fontaine Gazelles Dam, Algeria. Measurement 2021, 176, 109219. [Google Scholar] [CrossRef]
- Lin, W.; Cui, B.; Tong, D.; Wang, J.; Wang, X.; Zhang, J. Development and Application of Three-Dimensional Intelligent Monitoring System for Rolling Quality of Earth-Rock Dam under BS Framework. J. Hohai Univ. 2022, 50, 18. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Ren, B.; Wang, J.; Zeng, T.; Kang, D.; Wang, G. Vision-Based Productivity Analysis of Cable Crane Transportation Using Augmented Reality–Based Synthetic Image. J. Comput. Civ. Eng. 2022, 36, 04021030. [Google Scholar] [CrossRef]
- Ren, B.; Lu, X.; Wang, X.; Wang, D.; Wang, J.; Yu, J. Mobile Augmented Reality Visualization of High Arch Dam Construction Simulations Based on Simultaneous Localization and Mapping Optimization. J. Hydroelectr. Eng. 2021, 40, 115–128. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, Z.; Guan, T.; Wang, D.; Yan, Y. Visual Simulation of Construction Schedule for Core Rock-Fill Dam Based on Augmented Reality. J. Tianjin Univ. Sci. Technol. 2018, 51, 1072–1085. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Deng, Z. The Development and Application of 3-D Visual Display Platform for Safety Monitoring Information of Hydropower Project. IOP Conf. Ser. Earth Environ. Sci. 2018, 189, 022050. [Google Scholar] [CrossRef]
- Goff, C.A.; Atyeo, M.S.; Gimeno, O.; Wetton, M.N. Dealing with Data: Innovation in Monitoring and Operation and Maintenance of Dams. Dams Reserv. 2016, 26, 5–12. [Google Scholar] [CrossRef]
- Dengel, A.; Mägdefrau, J. Presence Is the Key to Understanding Immersive Learning. In Immersive Learning Research Network; Beck, D., Peña-Rios, A., Ogle, T., Economou, D., Mentzelopoulos, M., Morgado, L., Eckhardt, C., Pirker, J., Koitz-Hristov, R., Richter, J., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1044, pp. 185–198. [Google Scholar] [CrossRef]
- Lønne, T.F.; Karlsen, H.R.; Langvik, E.; Saksvik-Lehouillier, I. The Effect of Immersion on Sense of Presence and Affect When Experiencing an Educational Scenario in Virtual Reality: A Randomized Controlled Study. Heliyon 2023, 9, e17196. [Google Scholar] [CrossRef] [PubMed]
- Checa, D.; Bustillo, A. A Review of Immersive Virtual Reality Serious Games to Enhance Learning and Training. Multimed. Tools Appl. 2020, 79, 5501–5527. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam Safety: Use of Instrumentation in Dams. J. Earth Sci. Geotech. Eng. 2020, 11, 145–202. [Google Scholar] [CrossRef]
- Boletsis, C.; Chasanidou, D. A Typology of Virtual Reality Locomotion Techniques. Multimodal Technol. Interact. 2022, 6, 72. [Google Scholar] [CrossRef]
- Kim, W.; Xiong, S. ViewfinderVR: Configurable Viewfinder for Selection of Distant Objects in VR. Virtual Real. 2021, 26, 1573–1592. [Google Scholar] [CrossRef]
- Berger, M.; Tagliasacchi, A.; Seversky, L.M.; Alliez, P.; Guennebaud, G.; Levine, J.A.; Sharf, A.; Silva, C.T. A Survey of Surface Reconstruction from Point Clouds. Comput. Graph. Forum 2017, 36, 301–329. [Google Scholar] [CrossRef]
- Güss, C.D. What Is Going Through Your Mind? Thinking Aloud as a Method in Cross-Cultural Psychology. Front. Psychol. 2018, 9, 1292. [Google Scholar] [CrossRef]
- Dancey, C.P.; Reidy, J. Statistics without Maths for Psychology, 4th ed.; Pearson Prentice Hall: Harlow, UK, 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdelho Trindade, N.; Leitão, P.; Gonçalves, D.; Oliveira, S.; Ferreira, A. The Role of Situatedness in Immersive Dam Visualization: Comparing Proxied with Immediate Approaches. Computers 2024, 13, 35. https://doi.org/10.3390/computers13020035
Verdelho Trindade N, Leitão P, Gonçalves D, Oliveira S, Ferreira A. The Role of Situatedness in Immersive Dam Visualization: Comparing Proxied with Immediate Approaches. Computers. 2024; 13(2):35. https://doi.org/10.3390/computers13020035
Chicago/Turabian StyleVerdelho Trindade, Nuno, Pedro Leitão, Daniel Gonçalves, Sérgio Oliveira, and Alfredo Ferreira. 2024. "The Role of Situatedness in Immersive Dam Visualization: Comparing Proxied with Immediate Approaches" Computers 13, no. 2: 35. https://doi.org/10.3390/computers13020035
APA StyleVerdelho Trindade, N., Leitão, P., Gonçalves, D., Oliveira, S., & Ferreira, A. (2024). The Role of Situatedness in Immersive Dam Visualization: Comparing Proxied with Immediate Approaches. Computers, 13(2), 35. https://doi.org/10.3390/computers13020035