Observer-Based Suboptimal Controller Design for Permanent Magnet Synchronous Motors: State-Dependent Riccati Equation Controller and Impulsive Observer Approaches
Abstract
:1. Introduction
- Developing a pseudo-linearised representation of the PMSM system.
- Designing a controller for optimal tracking of the PMSM’s reference speed with high accuracy and a quick speed without a speed sensor.
- Estimating motor speed in a sensorless framework.
- Addressing the challenge of disturbances during the course of the control.
- Maintaining the function of estimation and speed control during all times of sampling and not just at the impulse sample times.
- Quantifying the effects of impulse intervals (the sample rate) and load torque.
2. State-Dependent Riccati Equation
3. Impulsive Observer
- -
- , , in , and .
- -
- There is a , so and for all , and in , .
- -
- on when .
State-Dependent Impulsive Observer
4. Main Design: SDRE Controller Based on State-Dependent Impulsive Observer
5. Case Study: Permanent Magnet Synchronous Motor
6. Simulation Results and Discussions
6.1. The Main Simulation Results
6.2. The Effect of Impulse Intervals
6.3. The Effect of Load Torque
6.4. Comparisons
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Liu, H.; Ding, S. A speed control for a PMSM using finite-time feedback control and disturbance compensation. Trans. Inst. Meas. Control 2010, 32, 170–187. [Google Scholar] [CrossRef]
- Li, S.; Zong, K.; Liu, H. A composite speed controller based on a second-order model of permanent magnet synchronous motor system. Trans. Inst. Meas. Control 2011, 33, 522–541. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, J.G. A survey of sensorless initial rotor position estimation schemes for permanent magnet synchronous motors. In Proceedings of the Australasian Universities Power Engineering Conference, Brisbane, Australia, 26–29 September 2004; pp. 26–29. [Google Scholar]
- Benjak, O.; Gerling, D. Review of position estimation methods for IPMSM drives without a position sensor, Part I: Nonadaptive Methods. In Proceedings of the International Conference on Electrical Machines, Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar]
- Benjak, O.; Gerling, D. Review of position estimation methods for IPMSM drives without a position sensor, Part II: Adaptive Methods. In Proceedings of the International Conference on Electrical Machines and Systems, Incheon, Republic of Korea, 10–13 October 2010; pp. 1–6. [Google Scholar]
- Benjak, O.; Gerling, D. Review of position estimation methods for IPMSM drives without a position sensor, Part III: Methods based on saliency and signal injection. In Proceedings of the International Conference on Electrical Machines, Rome, Italy, 6–8 September 2010; pp. 873–878. [Google Scholar]
- Zhao, Y. Position/Speed Sensorless Control for Permanent-Magnet Synchronous Machines. Ph.D. Thesis, University of Nebraska, Electrical Engineering Department, Lincoln, NE, USA, 2014. [Google Scholar]
- Li, S.; Li, J.; Tang, Y.; Shi, Y.; Cao, W. Model-based model predictive control for a direct-driven permanent magnet synchronous generator with internal and external disturbances. Trans. Inst. Meas. Control 2020, 42, 386–397. [Google Scholar]
- Wei, Y.; Wei, Y.; Yuan, S.; Qi, H.; Guo, X.; Li, M. Nonlinear Model Predictive Speed Control with Variable Predictive Horizon for PMSM Rotor Position. J. Control Eng. Appl. Inform. 2021, 23, 86–94. [Google Scholar]
- Walambe, R.A.; Joshi, V.A. Closed Loop Stability of a PMSM-EKF Controller-Observer Structure. IFAC-Pap. 2018, 51, 249–254. [Google Scholar] [CrossRef]
- Sawma, J.; Khatounian, F.; Monmasson, E.; Idkhajine, L.; Ghosn, R. Analysis of the impact of online identification on model predictive current control applied to permanent magnet synchronous motors. IET Electr. Power Appl. 2017, 11, 864–873. [Google Scholar] [CrossRef]
- El-Sousy, F.F.; El-Naggar, M.F.; Amin, M.; Abu-Siada, A.; Abuhasel, K.A. Robust Adaptive Neural-Network Backstepping Control Design for High-Speed Permanent-Magnet Synchronous Motor Drives: Theory and Experiments. IEEE Access 2019, 7, 99327–99348. [Google Scholar] [CrossRef]
- Hezzi, A.; Bensalem, Y.; Elghali, S.B.; Abdelkrim, M.N. Sliding Mode Observer based sensorless control of five phase PMSM in electric vehicle. In Proceedings of the International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 24–26 March 2019; pp. 530–535. [Google Scholar]
- Khlaief, A.; Boussak, M.; Châari, A. A MRAS-based stator resistance and speed estimation for sensorless vector controlled IPMSM drive. Electr. Power Syst. Res. 2014, 108, 1–15. [Google Scholar] [CrossRef]
- Izadinasab, A.; Ghanbari, M. Control of sensorless PMSM using state dependent model reference adaptive system adaptive augmented observer. J. Model. Eng. 2020, 18, 85–95. [Google Scholar]
- Usama, M.; Kim, J. Robust adaptive observer-based finite control set model predictive current control for sensorless speed control of surface permanent magnet synchronous motor. Trans. Inst. Meas. Control 2021, 43, 1416–1429. [Google Scholar] [CrossRef]
- Hamida, M.A.; De Leon, J.; Glumineau, A.; Boisliveau, R. An Adaptive Interconnected Observer for Sensorless Control of PM Synchronous Motors With Online Parameter Identification. IEEE Trans. Ind. Electron. 2013, 60, 739–748. [Google Scholar] [CrossRef]
- Toumi, D.; Mihoub, Y.; Hassaine, S.; Moreau, S. Design and implementation of adaptive fuzzy-RST digital speed control of PMSM drive. Asian J. Control 2021, 24, 2534–2547. [Google Scholar] [CrossRef]
- Xu, W.; Junejo, A.K.; Liu, Y.; Hussien, M.G.; Zhu, J. An Efficient Antidisturbance Sliding-Mode Speed Control Method for PMSM Drive Systems. IEEE Trans. Power Electron. 2021, 36, 6879–6891. [Google Scholar] [CrossRef]
- Lewis, F.L. Optimal Control, 3rd ed.; John Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Çimen, T. State-Dependent Riccati Equation (SDRE) Control: A Survey. IFAC Proc. Vol. 2008, 41, 3761–3775. [Google Scholar] [CrossRef]
- Çimen, T. Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method. Annu. Rev. Control 2010, 34, 32–51. [Google Scholar] [CrossRef]
- Çimen, T.; Manikandan, R.; Saha, N.; Korayem, A.H.; Korayem, M.H.; Nekoo, S.R.; Lin, L.-G.; Xin, M.; Lee, J.; Lee, Y.; et al. Survey of State-Dependent Riccati Equation in Nonlinear Optimal Feedback Control Synthesis. J. Guid. Control Dyn. 2012, 35, 1025–1047. [Google Scholar] [CrossRef]
- Korayem, A.H.; Nekoo, S.R.; Korayem, M.H. Optimal sliding mode control design based on the state-dependent Riccati equation for cooperative manipulators to increase dynamic load carrying capacity. Robotica 2018, 37, 321–337. [Google Scholar] [CrossRef]
- Nekoo, S.R.; Acosta, J.A.; Ollero, A. Collision Avoidance of SDRE Controller using Artificial Potential Field Method: Application to Aerial Robotics. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020. [Google Scholar]
- Batmani, Y.; Takhtabnus, M.; Mirzaei, R. DC microgrid fault-tolerant control using state-dependent Riccati equation techniques. Optim. Control Appl. Methods 2021, 43, 1–15. [Google Scholar] [CrossRef]
- Liavoli, F.B.; Fakharian, A. Sub-optimal observer-based controller design using the state dependent riccati equation approach for air-handling unit. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019; pp. 991–996. [Google Scholar]
- Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Theory of Impulsive Differential Equations; World Scientific: London, UK, 1989. [Google Scholar]
- Li, Z.; Soh, Y.; Wen, C. Switched and Impulsive Systems: Analysis, Design and Applications, 1st ed.; Springer: Berlin, Germany, 2005. [Google Scholar]
- Kalamian, N.; Khaloozadeh, H.; Ayati, M. Design of state-dependent impulsive observer for nonlinear time-delay systems. IET Control Theory Appl. 2019, 13, 3155–3163. [Google Scholar] [CrossRef]
- Kalamian, N.; Khaloozadeh, H.; Ayati, M. Adaptive state-dependent impulsive observer design for nonlinear deterministic and stochastic dynamics with time-delays. ISA Trans. 2020, 98, 87–100. [Google Scholar] [CrossRef]
- Kalamain, N.; Khaloozadeh, H.; Ayati, M. On design of adaptive impulsive observer based on comparison system: Modifications in stability theory and feasibility centralization. Int. J. Dyn. Control 2022, 11, 149–161. [Google Scholar] [CrossRef]
- Kivanc, O.C.; Ozturk, S.B. Sensorless PMSM drive based on stator feedforward voltage estimation improved with MRAS multiparameter estimation. IEEE/ASME Trans. Mechatron. 2018, 23, 1326–1337. [Google Scholar] [CrossRef]
- Kalamian, N.; Niri, M.F.; Mehrabizadeh, H. Design of a Suboptimal Controller based on Riccati Equation and State-dependent Impulsive Observer for a Robotic Manipulator. In Proceedings of the 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), Sanandaj, Iran, 30–31 October 2019; pp. 1–6. [Google Scholar]
- Liu, Z.H.; Nie, J.; Wei, H.L.; Chen, L.; Li, X.H.; Zhang, H.Q. A newly designed VSC-based current regulator for sensorless control of PMSM considering VSI nonlinearity. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 4420–4431. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of poles | |
Stator resistance | 0.0875 Ω |
Permanent magnetic flux | 1 Wb |
Inductance | |
Moment of inertia | |
Friction coefficient |
Metrices | Impulse Intervals (Δ(s)) | ||||
---|---|---|---|---|---|
45.6892 | 128.6873 | 177.1134 | 301.8423 | 2521.4897 | |
0.9992 | 0.9968 | 0.9925 | 0.9725 | 0.6850 | |
1 | 0.9999 | 0.9998 | 0.9994 | 0.7982 | |
1 | 1 | 0.9999 | 0.9812 | 0.8241 |
Δ(s) = 5 × 10−3 | The Proposed Method | LQR |
---|---|---|
301.8423 | 3128.2159 | |
0.9725 | 0.6014 | |
0.9994 | 0.7102 | |
0.9812 | 0.7371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalamian, N.; Soltani, M.; Bouzari Liavoli, F.; Faraji Niri, M. Observer-Based Suboptimal Controller Design for Permanent Magnet Synchronous Motors: State-Dependent Riccati Equation Controller and Impulsive Observer Approaches. Computers 2024, 13, 142. https://doi.org/10.3390/computers13060142
Kalamian N, Soltani M, Bouzari Liavoli F, Faraji Niri M. Observer-Based Suboptimal Controller Design for Permanent Magnet Synchronous Motors: State-Dependent Riccati Equation Controller and Impulsive Observer Approaches. Computers. 2024; 13(6):142. https://doi.org/10.3390/computers13060142
Chicago/Turabian StyleKalamian, Nasrin, Masoud Soltani, Fariba Bouzari Liavoli, and Mona Faraji Niri. 2024. "Observer-Based Suboptimal Controller Design for Permanent Magnet Synchronous Motors: State-Dependent Riccati Equation Controller and Impulsive Observer Approaches" Computers 13, no. 6: 142. https://doi.org/10.3390/computers13060142
APA StyleKalamian, N., Soltani, M., Bouzari Liavoli, F., & Faraji Niri, M. (2024). Observer-Based Suboptimal Controller Design for Permanent Magnet Synchronous Motors: State-Dependent Riccati Equation Controller and Impulsive Observer Approaches. Computers, 13(6), 142. https://doi.org/10.3390/computers13060142