Flexural Eigenfrequency Analysis of Healthy and Pathological Tissues Using Machine Learning and Nonlocal Viscoelasticity
Abstract
:1. Introduction
2. Scale-Dependent Continuum Approach of Nonlocal Viscoelasticity
3. Finite Element Approach
4. Machine Learning Approach
5. Results
5.1. Validation Study
5.2. Ovarian Cancer
5.3. Breast Cancer
5.4. Ovarian Fibrosis Associated with Ageing
5.5. Comparison Study of Different Machine Learning Models
6. Discussion
6.1. Ovarian Cancer
6.2. Breast Cancer
6.3. Ovarian Fibrosis Associated with Ageing
6.4. Comparison Study of Different Machine Learning Models
7. Conclusions
8. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pang, K.T.; Loo, L.S.W.; Chia, S.; Ong, F.Y.T.; Yu, H.; Walsh, I. Insight into muscle stem cell regeneration and mechanobiology. Stem Cell Res. Ther. 2023, 14, 129. [Google Scholar] [CrossRef] [PubMed]
- Zonderland, J.; Moroni, L. Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2021, 268, 120572. [Google Scholar] [CrossRef] [PubMed]
- Ajalloueian, F.; Lemon, G.; Hilborn, J.; Chronakis, I.S.; Fossum, M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat. Rev. Urol. 2018, 15, 155–174. [Google Scholar] [CrossRef]
- Lee, J.; Henderson, K.; Massidda, M.W.; Armenta-Ochoa, M.; Im, B.G.; Veith, A.; Lee, B.-K.; Kim, M.; Maceda, P.; Yoon, E. Mechanobiological conditioning of mesenchymal stem cells for enhanced vascular regeneration. Nat. Biomed. Eng. 2021, 5, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Elizondo, M.B.; Weihs, D. Breast cancer stem cells: Mechanobiology reveals highly invasive cancer cell subpopulations. Cell. Mol. Life Sci. 2022, 79, 134. [Google Scholar] [CrossRef]
- Ozturk, A.; Olson, M.C.; Samir, A.E.; Venkatesh, S.K. Liver fibrosis assessment: MR and US elastography. Abdom. Radiol. 2022, 47, 3037–3050. [Google Scholar] [CrossRef]
- Golemati, S.; Cokkinos, D.D. Recent advances in vascular ultrasound imaging technology and their clinical implications. Ultrasonics 2022, 119, 106599. [Google Scholar] [CrossRef]
- Shao, Y.; Hashemi, H.S.; Gordon, P.; Warren, L.; Wang, J.; Rohling, R.; Salcudean, S. Breast cancer detection using multimodal time series features from ultrasound shear wave absolute vibro-elastography. IEEE J. Biomed. Health Inform. 2021, 26, 704–714. [Google Scholar] [CrossRef]
- Zaniker, E.J.; Zhang, M.; Hughes, L.; La Follette, L.; Atazhanova, T.; Trofimchuk, A.; Babayev, E.; Duncan, F.E. Shear wave elastography to assess stiffness of the human ovary and other reproductive tissues across the reproductive lifespan in health and disease. Biol. Reprod. 2024, 110, 1100–1114. [Google Scholar] [CrossRef] [PubMed]
- Klyuchko, O. On the mathematical methods in biology and medicine. Biotechnol. Acta 2017, 10, 31–40. [Google Scholar] [CrossRef]
- Sigrist, R.M.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Chaudhry, A.; Unnikrishnan, G.; Reddy, J.; Righetti, R. An analytical poroelastic model for ultrasound elastography imaging of tumors. Phys. Med. Biol. 2018, 63, 025031. [Google Scholar] [CrossRef] [PubMed]
- Salo-Ahen, O.M.; Alanko, I.; Bhadane, R.; Bonvin, A.M.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A.S.; et al. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2020, 9, 71. [Google Scholar] [CrossRef]
- Khan, M.I.; Hasan, F.; Mahmud, K.A.H.A.; Adnan, A. Recent computational approaches on mechanical behavior of axonal cytoskeletal components of neuron: A Brief Review. Multiscale Sci. Eng. 2020, 2, 199–213. [Google Scholar] [CrossRef]
- Samani, A.; Zubovits, J.; Plewes, D. Elastic moduli of normal and pathological human breast tissues: An. inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 2007, 52, 1565. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Tang, S.; Liverani, C.; Saha, S.; Tasciotti, E.; Righetti, R. Non-invasive imaging of Young’s modulus and Poisson’s ratio in cancers in vivo. Sci. Rep. 2020, 10, 7622. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-H. Basic Finite Element Method as Applied to Injury Biomechanics; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Farajpour, A.; Ghayesh, M.H.; Farokhi, H. A review on the mechanics of nanostructures. Int. J. Eng. Sci. 2018, 133, 231–263. [Google Scholar] [CrossRef]
- Eringen, A.C.; Wegner, J. Nonlocal continuum field theories. Appl. Mech. Rev. 2003, 56, B20–B22. [Google Scholar] [CrossRef]
- Lim, C.; Zhang, G.; Reddy, J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 2015, 78, 298–313. [Google Scholar] [CrossRef]
- Al-Furjan, M.; Samimi-Sohrforozani, E.; Habibi, M.; won Jung, D.; Safarpour, H. Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Compos. Struct. 2021, 257, 113152. [Google Scholar] [CrossRef]
- Farajpour, A.; Yazdi, M.H.; Rastgoo, A.; Mohammadi, M. A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 2016, 227, 1849–1867. [Google Scholar] [CrossRef]
- Gao, Y.; Lei, F.-M. Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Biochem. Biophys. Res. Commun. 2009, 387, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Heireche, H.; Tounsi, A.; Benhassaini, H.; Benzair, A.; Bendahmane, M.; Mokadem, S. Nonlocal elasticity effect on vibration characteristics of protein microtubules. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 42, 2375–2379. [Google Scholar] [CrossRef]
- Civalek, Ö.; Demir, C. A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 2016, 289, 335–352. [Google Scholar] [CrossRef]
- Akgöz, B.; Civalek, Ö. Mechanical analysis of isolated microtubules based on a higher-order shear deformation beam theory. Compos. Struct. 2014, 118, 9–18. [Google Scholar] [CrossRef]
- Demir, C.; Civalek, Ö. Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 2013, 37, 9355–9367. [Google Scholar] [CrossRef]
- Alhebshi, A.; Metwally, A.; Al-Basyouni, K.; Mahmoud, S.; Al-Solami, H.; Alwabli, A. Mechanical Behavior and Physical Properties of Protein Microtubules in Living Cells Using the Nonlocal Beam Theory. Phys. Mesomech. 2022, 25, 181–186. [Google Scholar] [CrossRef]
- Zhang, P.; Ge, Z.; Safarpour, M. Size-dependent dynamic stability analysis of the cantilevered curved microtubule-associated proteins (MAPs). J. Biomol. Struct. Dyn. 2021, 39, 2932–2944. [Google Scholar] [CrossRef] [PubMed]
- Farajpour, A.; Rastgoo, A. Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory. Results Phys. 2017, 7, 1367–1375. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Omidvar, P.; Pournaderi, P. Investigating the effect of the fluid field on the vibrations of the curved microtubule based on the non-local couple stress theory. Eur. Phys. J. Plus 2023, 138, 642. [Google Scholar] [CrossRef]
- Arani, A.G.; Abdollahian, M.; Jalaei, M. Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory. J. Theor. Biol. 2015, 367, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Eptaimeros, K.; Koutsoumaris, C.C.; Karyofyllis, I. Eigenfrequencies of microtubules embedded in the cytoplasm by means of the nonlocal integral elasticity. Acta Mech. 2020, 231, 1669–1684. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Yang, J. Propagation and reflection of plane waves in biological tissue based on nonlocal TPL thermoelasticity. Int. Commun. Heat Mass Transf. 2021, 128, 105587. [Google Scholar] [CrossRef]
- Farajpour, A.; Ingman, W.V. In-Plane Wave Propagation Analysis of Human Breast Lesions Using a Higher-Order Nonlocal Model and Deep Learning. Mathematics 2023, 11, 4804. [Google Scholar] [CrossRef]
- Sahmani, S.; Aghdam, M. Nonlinear vibrations of pre-and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. J. Biomech. 2017, 65, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Haas, P.A.; Goldstein, R.E. Nonlinear and nonlocal elasticity in coarse-grained differential-tension models of epithelia. Phys. Rev. E 2019, 99, 022411. [Google Scholar] [CrossRef] [PubMed]
- Pouresmaeeli, S.; Ghavanloo, E.; Fazelzadeh, S. Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos. Struct. 2013, 96, 405–410. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, A.; Jindal, R. Scalable machine-learning algorithms for big data analytics: A comprehensive review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2016, 6, 194–214. [Google Scholar] [CrossRef]
- Kiaghadi, M.; Sheikholeslami, M.; Alinia, A.; Boora, F.M. Predicting the performance of a photovoltaic unit via machine learning methods in the existence of finned thermal storage unit. J. Energy Storage 2024, 90, 111766. [Google Scholar] [CrossRef]
- Maghsoudi, S.; Taghavi Shahraki, B.; Rameh, F.; Nazarabi, M.; Fatahi, Y.; Akhavan, O.; Rabiee, M.; Mostafavi, E.; Lima, E.C.; Saeb, M.R.; et al. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery. Chem. Biol. Drug Des. 2022, 100, 699–721. [Google Scholar] [CrossRef]
- Salehi, M.; Javadpour, N.; Beisner, B.; Sanaei, M.; Gilbert, S.B. Innovative Cybersickness Detection: Exploring Head Movement Patterns in Virtual Reality. arXiv 2024, arXiv:2402.02725. [Google Scholar]
- Habehh, H.; Gohel, S. Machine learning in healthcare. Curr. Genom. 2021, 22, 291. [Google Scholar] [CrossRef] [PubMed]
- Nayyar, A.; Gadhavi, L.; Zaman, N. Machine learning in healthcare: Review, opportunities and challenges. Mach. Learn. Internet Med. Things Healthc. 2021, 23–45. [Google Scholar]
- Farajpour, A.; Ingman, W.V. Mechanics of Small-Scale Spherical Inclusions Using Nonlocal Poroelasticity Integrated with Light Gradient Boosting Machine. Micromachines 2024, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Alimirzaei, F.; Kieslich, C.A. Machine learning models for predicting membranolytic anticancer peptides. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023; Volume 52, pp. 2691–2696. [Google Scholar]
- Ahadian, P.; Parand, K. Support vector regression for the temperature-stimulated drug release. Chaos Solitons Fractals 2022, 165, 112871. [Google Scholar] [CrossRef]
- Hackeling, G. Mastering Machine Learning with Scikit-Learn; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Chen, M.; Zeng, J.; Ruan, W.; Zhang, Z.; Wang, Y.; Xie, S.; Wang, Z.; Yang, H. Examination of the relationship between viscoelastic properties and the invasion of ovarian cancer cells by atomic force microscopy. Beilstein J. Nanotechnol. 2020, 11, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Jiang, N.; Zheng, L.; Zeng, J.; Qiu, C.; Yang, H.; Xie, S. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy. Scanning 2016, 38, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Amargant, F.; Manuel, S.L.; Tu, Q.; Parkes, W.S.; Rivas, F.; Zhou, L.T.; Rowley, J.E.; Villanueva, C.E.; Hornick, J.E.; Shekhawat, G.S.; et al. Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Aging Cell 2020, 19, e13259. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.; Sanchez, A.; Scurr, J. Estimating the gravity induced three dimensional deformation of the breast. J. Biomech. 2016, 49, 4134–4137. [Google Scholar] [CrossRef]
- Sanchez, A.Z.; Mills, C.; Scurr, J.C. Estimating breast mass-density: A retrospective analysis of radiological data. Breast J. 2017, 23, 237–239. [Google Scholar] [CrossRef]
- Cacopardo, L.; Guazzelli, N.; Nossa, R.; Mattei, G.; Ahluwalia, A. Engineering hydrogel viscoelasticity. J. Mech. Behav. Biomed. Mater. 2019, 89, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guo, Y.; Zhou, Y.; Zhu, H.; Wu, P.; Wang, K.; Ruan, L.; Wan, M.; Insana, M.F. Fluidity and elasticity form a concise set of viscoelastic biomarkers for breast cancer diagnosis based on Kelvin–Voigt fractional derivative modeling. Biomech. Model Mechanobiol. 2020, 19, 2163–2177. [Google Scholar] [CrossRef] [PubMed]
- Nematbakhsh, Y.; Pang, K.T.; Lim, C.T. Correlating the viscoelasticity of breast cancer cells with their malignancy. Converg. Sci. Phys. Oncol. 2017, 3, 034003. [Google Scholar] [CrossRef]
- Aria, A.I.; Biglari, H. Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory. Appl. Math. Comput. 2018, 321, 313–332. [Google Scholar]
- Janson, N.B. Non-linear dynamics of biological systems. Contemp. Phys. 2012, 53, 137–168. [Google Scholar] [CrossRef]
- Kabiraj, S.; Raihan, M.; Alvi, N.; Afrin, M.; Akter, L.; Sohagi, S.A.; Podder, E. Breast cancer risk prediction using XGBoost and random forest algorithm. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–4. [Google Scholar]
Model | Model’s Biomechanical Parameters | Limitations | Scale Effects |
Classical elasticity | Elastic constants, Poisson’s ratio | Linearity, homogeneity, homogeneity, boundary conditions | Not incorporated |
Classical poroelasticity | Elastic moduli, Poisson’s ratio, fluid-related parameters | Simplified fluid interaction, homogeneity, coupling complexity | Not incorporated |
Local viscoelasticity | Elastic moduli, Poisson’s ratio, viscoelastic damping coefficient | Linear assumption, homogeneity, boundary conditions | Not incorporated |
Nonlocal elasticity | Elastic moduli, Poisson’s ratio, stress nonlocality | Parameter identification, homogeneity, viscoelastic effects | Zeroth-order nonlocal effect |
Present model | Elastic moduli, Poisson’s ratio, viscoelastic damping, strain gradient, stress nonlocality | Computational complexity, parameter identification, homogeneity | Three different scale effects |
Type | Young’s Modulus (Pa) | Dimensionless Flexural Wave Number | FEM | Present Model | Percentage Error (%) |
OVCAR-3 (ovarian cancer cells) | 1195.72 | 1 | 0.1297 | 0.1305 | 0.6168 |
1195.72 | 2 | 0.5104 | 0.5218 | 2.2335 | |
HO-8910 (ovarian cancer cells) | 996.27 | 1 | 0.1184 | 0.1191 | 0.5912 |
996.27 | 2 | 0.4659 | 0.4763 | 2.2322 | |
HOSEpiC (ovarian healthy cells) | 2160.94 | 1 | 0.1744 | 0.1754 | 0.5734 |
2160.94 | 2 | 0.6861 | 0.7015 | 2.2446 | |
MCF-7 (breast cancer cells) | 487.44 | 1 | 0.0828 | 0.0833 | 0.6039 |
487.44 | 2 | 0.3259 | 0.3332 | 2.2400 | |
MCF-10A (breast healthy cells) | 1231.07 | 1 | 0.1316 | 0.1324 | 2.2400 |
1231.07 | 2 | 0.5179 | 0.5295 | 2.2398 | |
Young mouse ovary | 1980 | 1 | 0.1669 | 0.1679 | 0.5992 |
2 | 0.6567 | 0.6715 | 2.2537 | ||
Old mouse ovary | 4360 | 1 | 0.2477 | 0.2491 | 0.5652 |
2 | 0.9746 | 0.9964 | 2.2368 | ||
Old mouse ovary with collagenase treatment | 2280 | 1 | 0.1791 | 0.1801 | 0.5583 |
2 | 0.7047 | 0.7205 | 2.2421 |
Machine Learning Model | Best Hyper-Parameters | Best Cross- Validation Score | Test Mean Square Error |
---|---|---|---|
Random Forest | bootstrap: True, max_depth: None, min_samples_leaf: 1, min_samples_split: 2, n_estimators: 200 | 9.2463 × 10−6 | 4.2856 × 10−6 |
XGBoost | colsample_bytree: 0.7, gamma: 0, learning_rate: 0.1, max_depth: 3, min_child_weight: 3, n_estimators: 300, reg_alpha: 0.01, reg_lambda: 1.5, subsample: 0.8 | 4.9260 × 10−5 | 1.4257 × 10−5 |
Lasso | alpha: 0.1 | 0.00935 | 0.00829 |
Ridge | alpha: 0.1 | 0.00700 | 0.00642 |
ElasticNet | alpha: 0.1, l1_ratio: 0.1 | 0.00872 | 0.00770 |
SVR | C: 1, coef0: 0.5, degree: 4, epsilon: 0.01, gamma: scale, kernel: poly | 4.8440 × 10−5 | 5.7263 × 10−5 |
KNN regressor | metric: Euclidean, n_neighbors: 3, weights: distance | 9.1557 × 10−6 | 4.3665 × 10−6 |
XGBoost Learning Rate | Number of Estimators | Train Mean Square Error | Test Mean Square Error |
---|---|---|---|
0.01 | 5 | 0.00847 | 0.00757 |
10 | 0.00776 | 0.00692 | |
100 | 0.00166 | 0.00143 | |
300 | 7.3643 × 10−5 | 6.5005 × 10−5 | |
0.1 | 5 | 0.00376 | 0.00327 |
10 | 0.00155 | 0.00131 | |
100 | 2.7657 × 10−6 | 1.4365 × 10−5 | |
300 | 2.5017 × 10−6 | 1.4257 × 10−5 | |
0.2 | 5 | 0.00141 | 0.00122 |
10 | 0.00024 | 0.00020 | |
100 | 5.5292 × 10−6 | 2.7804 × 10−5 | |
300 | 4.8781 × 10−6 | 2.6121 × 10−5 |
Wave Number | Actual Frequency | Machine Learning Model | |||||
---|---|---|---|---|---|---|---|
XGBoost | Random Forest | SVR | KNN | Ridge | ElasticNet | ||
9.5 | 147.574 | 147.838 | 147.774 | 149.102 | 147.760 | 169.803 | 169.261 |
1.5 | 203.385 | 203.789 | 203.560 | 201.862 | 203.582 | 183.613 | 171.555 |
3 | 193.528 | 195.141 | 192.738 | 191.800 | 193.114 | 181.024 | 171.125 |
15.8 | 158.819 | 158.086 | 158.721 | 156.928 | 158.608 | 158.927 | 167.455 |
12.8 | 147.036 | 146.806 | 147.020 | 145.629 | 147.139 | 164.106 | 168.315 |
11.5 | 145.255 | 145.576 | 145.261 | 144.969 | 145.249 | 166.351 | 168.688 |
6.9 | 160.642 | 163.082 | 159.783 | 162.628 | 159.503 | 174.291 | 170.007 |
17.1 | 166.337 | 165.108 | 166.301 | 165.409 | 166.007 | 156.683 | 167.082 |
17.5 | 168.863 | 167.011 | 169.498 | 168.344 | 169.223 | 155.993 | 166.967 |
4.5 | 180.543 | 181.449 | 181.026 | 180.306 | 180.183 | 178.434 | 170.695 |
6.6 | 162.816 | 163.082 | 164.206 | 164.650 | 163.557 | 174.809 | 170.093 |
18.3 | 174.185 | 173.428 | 174.007 | 174.563 | 174.463 | 154.612 | 166.738 |
16.5 | 162.713 | 161.495 | 162.852 | 161.276 | 163.023 | 157.719 | 167.254 |
7.8 | 154.864 | 155.492 | 154.882 | 157.062 | 154.583 | 172.738 | 169.749 |
18.7 | 176.961 | 176.331 | 176.565 | 177.804 | 177.242 | 153.921 | 166.623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farajpour, A.; Ingman, W.V. Flexural Eigenfrequency Analysis of Healthy and Pathological Tissues Using Machine Learning and Nonlocal Viscoelasticity. Computers 2024, 13, 179. https://doi.org/10.3390/computers13070179
Farajpour A, Ingman WV. Flexural Eigenfrequency Analysis of Healthy and Pathological Tissues Using Machine Learning and Nonlocal Viscoelasticity. Computers. 2024; 13(7):179. https://doi.org/10.3390/computers13070179
Chicago/Turabian StyleFarajpour, Ali, and Wendy V. Ingman. 2024. "Flexural Eigenfrequency Analysis of Healthy and Pathological Tissues Using Machine Learning and Nonlocal Viscoelasticity" Computers 13, no. 7: 179. https://doi.org/10.3390/computers13070179
APA StyleFarajpour, A., & Ingman, W. V. (2024). Flexural Eigenfrequency Analysis of Healthy and Pathological Tissues Using Machine Learning and Nonlocal Viscoelasticity. Computers, 13(7), 179. https://doi.org/10.3390/computers13070179