Semantic-Aware Adaptive Binary Search for Hard-Label Black-Box Attack
Abstract
:1. Introduction
- The proposed adaptive binary search algorithm effectively reduces unnecessary queries by searching for adversarial samples in a coarse-to-fine manner.
- The proposed semantic-aware search algorithm avoids invalid searches by cropping the search space using semantic masks from breast anatomy.
- The combination of the two above algorithms leads to a novel hard-label black-box attack approach. It significantly reduces the number of queries for searching adversaries for extreme samples (Figure 1).
2. Related Works
2.1. White-Box Adversarial Attack
2.2. Black-Box Adversarial Attack
2.3. Adversarial Defense Strategies
2.4. Breast Ultrasound Image (BUS) Classification
3. Materials and Methods
3.1. Preliminary
3.2. Adaptive Binary Search
Algorithm 1 AdptBS | ||
Input: Model f, clean image , label y, distance upper bound , search direction , best radius , and tolerance | ||
1: | ▹ normalization | |
2: | if then | ▹ Invalid search direction |
3: | return , ∞ | |
4: | , | ▹ is the start point, is the endpoint |
5: | if then | |
6: | ▹ c is the decay rate | |
7: | while do | |
8: | ||
9: | if then | |
10: | ||
11: | else | |
12: | ||
13: | return , |
3.3. Semantic-Aware Search
Algorithm 2 Semantic-Aware Search | ||
Input: : Model f, clean image , label y, distance upper bound , query limit Q, semantic mask M | ||
1: | Initialize the search direction , best radius , and block level | |
2: | Initialize binary search tolerance , block level cut point K, and cropping block size | |
3: | function BlockSplit(k) | |
4: | cut into blocks of equal size and save the splitting blocks into a list | |
5: | return the block list | |
6: | remaining queries = Q | |
7: | while remaining queries > 0 do | |
8: | ||
9: | blocks = BlockSplit(k) | |
10: | if then | |
11: | ▹ skip more blocks for fine splitting | |
12: | for i in blocks do | |
13: | ▹ contains the indices of all pixels in block i | |
14: | if (blocks[:] ∪M) then | |
15: | if An adversary along can be found then | |
16: | ||
17: | else: continue | ▹ skip invalid search direction |
18: | , AdptBS() | |
19: | if then | |
20: | , | |
21: | ||
22: | if then | ▹ early stopping |
23: | break | |
24: | return |
4. Results
4.1. Experiment Setup
4.1.1. Datasets and Metrics
4.1.2. Experiment Environment
4.1.3. Target Model Settings
4.1.4. Adversarial Attack Settings
4.2. The Effectiveness of Adaptive Binary Search
4.3. The Effectiveness of Semantic-Aware Search
4.4. Attack on Other Deep Classifiers
4.5. Comparison with State-of-the-Art Attacks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- American Cancer Society. Cancer Facts & Figures. Available online: https://cancerstatisticscenter.cancer.org/#!/ (accessed on 12 June 2024).
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv 2017, arXiv:1706.06083. [Google Scholar]
- Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (sp), San Jose, CA, USA, 22–26 May 2017; pp. 39–57. [Google Scholar]
- Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. Deepfool: A simple and accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2574–2582. [Google Scholar]
- Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in machine learning: From phenomena to black-box attacks using adversarial samples. arXiv 2016, arXiv:1605.07277. [Google Scholar]
- Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009; pp. 32–33. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=1b030ma06t5208m06s6s0ju0e4025736 (accessed on 15 August 2024).
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Chen, J.; Gu, Q. Rays: A ray searching method for hard-label adversarial attack. In Proceedings of the Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 1739–1747. [Google Scholar]
- Dong, X.; Han, J.; Chen, D.; Liu, J.; Bian, H.; Ma, Z.; Li, H.; Wang, X.; Zhang, W.; Yu, N. Robust superpixel-guided attentional adversarial attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12895–12904. [Google Scholar]
- Yao, Z.; Gholami, A.; Xu, P.; Keutzer, K.; Mahoney, M.W. Trust region based adversarial attack on neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11350–11359. [Google Scholar]
- Steihaug, T. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization. SIAM J. Numer. Anal. 1983, 20, 626–637. [Google Scholar] [CrossRef]
- Chen, P.Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.J. Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 15–26. [Google Scholar]
- Guo, C.; Gardner, J.; You, Y.; Wilson, A.G.; Weinberger, K. Simple black-box adversarial attacks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 2484–2493. [Google Scholar]
- Yang, J.; Jiang, Y.; Huang, X.; Ni, B.; Zhao, C. Learning black-box attackers with transferable priors and query feedback. Adv. Neural Inf. Process. Syst. 2020, 33, 12288–12299. [Google Scholar]
- Ma, C.; Chen, L.; Yong, J.H. Simulating unknown target models for query-efficient black-box attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11835–11844. [Google Scholar]
- Al-Dujaili, A.; O’Reilly, U. There are No Bit Parts for Sign Bits in Black-Box Attacks. arXiv 2019, arXiv:1902.06894. [Google Scholar]
- Bernstein, J.; Wang, Y.X.; Azizzadenesheli, K.; Anandkumar, A. signSGD: Compressed optimisation for non-convex problems. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 560–569. [Google Scholar]
- Brendel, W.; Rauber, J.; Bethge, M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. arXiv 2017, arXiv:1712.04248. [Google Scholar]
- Chen, J.; Jordan, M.I.; Wainwright, M.J. Hopskipjumpattack: A query-efficient decision-based attack. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (sp), Francisco, CA, USA, 18–21 May 2020; pp. 1277–1294. [Google Scholar]
- Cheng, M.; Singh, S.; Chen, P.; Chen, P.Y.; Liu, S.; Hsieh, C.J. Sign-opt: A query-efficient hard-label adversarial attack. arXiv 2019, arXiv:1909.10773. [Google Scholar]
- Cheng, M.; Le, T.; Chen, P.Y.; Yi, J.; Zhang, H.; Hsieh, C.J. Query-efficient hard-label black-box attack: An optimization-based approach. arXiv 2018, arXiv:1807.04457. [Google Scholar]
- Liang, B.; Li, H.; Su, M.; Li, X.; Shi, W.; Wang, X. Detecting adversarial image examples in deep neural networks with adaptive noise reduction. IEEE Trans. Dependable Secur. Comput. 2018, 18, 72–85. [Google Scholar] [CrossRef]
- Klington, G.; Ramesh, K.; Kadry, S. Cost-Effective watermarking scheme for authentication of digital fundus images in healthcare data management. Inf. Technol. Control 2021, 50, 645–655. [Google Scholar] [CrossRef]
- Lal, S.; Rehman, S.U.; Shah, J.H.; Meraj, T.; Rauf, H.T.; Damaševičius, R.; Mohammed, M.A.; Abdulkareem, K.H. Adversarial Attack and Defence through Adversarial Training and Feature Fusion for Diabetic Retinopathy Recognition. Sensors 2021, 21, 3922. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Hijab, A.; Rushdi, M.A.; Gomaa, M.M.; Eldeib, A. Breast cancer classification in ultrasound images using transfer learning. In Proceedings of the 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), Tripoli, Lebanon, 17–19 October 2019; pp. 1–4. [Google Scholar]
- Xie, J.; Song, X.; Zhang, W.; Dong, Q.; Wang, Y.; Li, F.; Wan, C. A novel approach with dual-sampling convolutional neural network for ultrasound image classification of breast tumors. Phys. Med. Biol. 2020, 65, 245001. [Google Scholar] [CrossRef] [PubMed]
- Shareef, B.; Vakanski, A.; Freer, P.E.; Xian, M. Estan: Enhanced small tumor-aware network for breast ultrasound image segmentation. Healthcare 2022, 10, 2262. [Google Scholar] [CrossRef] [PubMed]
- Shareef, B.M.; Xian, M.; Sun, S.; Vakanski, A.; Ding, J.; Ning, C.; Cheng, H.D. A Benchmark for Breast Ultrasound Image Classification. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Ma, X.; Niu, Y.; Gu, L.; Wang, Y.; Zhao, Y.; Bailey, J.; Lu, F. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognit. 2021, 110, 107332. [Google Scholar] [CrossRef]
- Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial examples in the physical world. In Artificial Intelligence Safety and Security; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 99–112. [Google Scholar]
- Brunner, T.; Diehl, F.; Le, M.T.; Knoll, A. Guessing Smart: Biased sampling for efficient black-box adversarial attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4958–4966. [Google Scholar]
- Lucke, K.; Vakanski, A.; Xian, M. A2DMN: Anatomy-Aware Dilated Multiscale Network for Breast Ultrasound Semantic Segmentation. In Proceedings of the 2024 IEEE ISBI, Athens, Greece, 27–30 May 2024; pp. 1–5. [Google Scholar]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xian, M.; Cheng, H.D.; Shareef, B.; Ding, J.; Xu, F.; Huang, K.; Zhang, B.; Ning, C.; Wang, Y. BUSIS: A benchmark for breast ultrasound image segmentation. Healthcare 2022, 10, 729. [Google Scholar] [CrossRef]
- Geertsma, T. Ultrasoundcases.info, FujiFilm. Available online: https://www.ultrasoundcases.info/ (accessed on 1 September 2022).
- Yap, M.H.; Pons, G.; Marti, J.; Ganau, S.; Sentis, M.; Zwiggelaar, R.; Davison, A.K.; Marti, R. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 2017, 22, 1218–1226. [Google Scholar] [CrossRef]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 1 January 2022).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 1–12. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015, arXiv:512.00567. [Google Scholar]
Attack Method | Queries (AVG) ↓ | Queries (MED) ↓ | SR (%) ↑ | ||
---|---|---|---|---|---|
- | 0.001(original) | 411.94 | 248.5 | 99.83 | |
RayS [10] | - | 0.1 | 299.06 (−27.40%) | 159.0 (−36.01%) | 99.15 (−0.68%) |
- | 0.01 | 346.07 (−15.99%) | 206.0 (−20.63%) | 99.83 | |
0.9 | 323.47 (−21.47%) | 175.5 (−29.37%) | 99.83 | ||
AdptBS | 0.8 | Adaptive | 325.91 (−20.88%) | 178.5 (−28.16%) | 99.83 |
0.7 | 330.26 (−19.82%) | 181.0 (−27.16%) | 99.83 |
Attack Method | K | Queries (AVG)↓ | Queries (MED)↓ | SR (%)↑ | ||
---|---|---|---|---|---|---|
RayS [10] | - | - | - | 411.94 | 248.5 | 99.83 |
- | 2 | 4 | 402.29 (−0.23%) | 236.5 (−4.82%) | 99.83 | |
- | 2 | 5 | 395.98 (−3.87%) | 238.0 (−4.22%) | 99.83 | |
RayS + Semantic Mask | - | 2 | 6 | 399.68 (−2.97%) | 238.5 (−4.02%) | 99.83 |
- | 3 | 5 | 404.70 (−1.75%) | 243.5 (−2.01%) | 99.83 | |
- | 4 | 5 | 402.29 (−2.34%) | 236.5 (−5.07%) | 99.83 | |
2 | 4 | 308.62 (-25.07%) | 164 (−34.00%) | 99.66 (−0.17%) | ||
2 | 5 | 313.22 (−23.96%) | 169.5 (−31.79%) | 99.83 | ||
Semantic-Aware AdptBS | 0.9 | 2 | 6 | 318.21 (−22.75%) | 169.5 (−31.79%) | 99.83 |
3 | 5 | 309.18 (−24.94%) | 170.0 (−31.58%) | 99.49 (−0.34%) | ||
4 | 5 | 308.62 (−25.08%) | 164.0 (−34.00%) | 99.66 (−0.17%) |
Model | Method | Queries (AVG)↓ | Queries (MED)↓ | SR (%)↑ | AVG PSNR (dB)↑ |
---|---|---|---|---|---|
ResNet50 | RayS | 411.94 | 248.5 | 99.83 | 27.90 |
Ours | 313.22 | 169.5 | 99.83 | 27.91 | |
DenseNet121 | RayS | 618.67 | 384.0 | 99.52 | 27.57 |
Ours | 509.28 | 261.0 | 99.52 | 27.55 | |
VGG16 | RayS | 456.06 | 297.0 | 100 | 27.64 |
Ours | 368.68 | 197.0 | 100 | 27.58 | |
MobileNetv2 | RayS | 417.27 | 256.5 | 100 | 28.16 |
Ours | 317.61 | 177 | 100 | 28.18 | |
Inceptionv3 | RayS | 483.88 | 296 | 99.83 | 27.87 |
Ours | 370.35 | 196 | 99.83 | 27.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Lucke, K.; Xian, M.; Vakanski, A. Semantic-Aware Adaptive Binary Search for Hard-Label Black-Box Attack. Computers 2024, 13, 203. https://doi.org/10.3390/computers13080203
Ma Y, Lucke K, Xian M, Vakanski A. Semantic-Aware Adaptive Binary Search for Hard-Label Black-Box Attack. Computers. 2024; 13(8):203. https://doi.org/10.3390/computers13080203
Chicago/Turabian StyleMa, Yiqing, Kyle Lucke, Min Xian, and Aleksandar Vakanski. 2024. "Semantic-Aware Adaptive Binary Search for Hard-Label Black-Box Attack" Computers 13, no. 8: 203. https://doi.org/10.3390/computers13080203
APA StyleMa, Y., Lucke, K., Xian, M., & Vakanski, A. (2024). Semantic-Aware Adaptive Binary Search for Hard-Label Black-Box Attack. Computers, 13(8), 203. https://doi.org/10.3390/computers13080203