Impact of Video Motion Content on HEVC Coding Efficiency
Abstract
:1. Introduction
- A suitable encoding configuration for low-activity video sequences is selected to improve the coding performance. For such sequences, our results show that using the IPPP configuration can significantly improve coding performance by up to 4 dB.
- Investigated the impact of motion content on the coding efficiency of HEVC video coding. Our results show that for highly active sequences, IPPP has a negligible performance advantage over periodic-I and periodic-IDR. Here, our results suggest using periodic-I and periodic-IDR rather IPPP to obtain the benefits of I-frames of limiting error propagation and offering random access while not losing a significant coding performance.
- Investigated the impact of coding structure on decoding complexity. Our results show that IPPP has a slightly lower decoding complexity than periodic-I and periodic-IDR.
- Proposed an adaptive scheme that adjusts the GOP structure and intra coding techniques used based on the motion content of the encoded video.
2. HEVC Codec
3. Related Work
4. Evaluation Methodology and Configurations
4.1. Proposed Evaluation Framework
4.2. Quality Evaluation Metrics
4.3. Video Datasets and Configurations
5. Results
5.1. Motion Activity
5.2. Rate–Distortion Performance
5.3. Encoding and Decoding Times
6. Discussion
6.1. Low Motion Activity
6.2. Intermediate Motion Activity
6.3. High Motion Activity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cisco, U. Cisco Annual Internet Report (2018–2023) White Paper. 9 March 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 30 July 2024).
- Statista. Video Streaming (SVoD)—Worldwide. Available online: https://www.statista.com/outlook/dmo/digital-media/video-on-demand/worldwide (accessed on 29 January 2024).
- Grois, D.; Giladi, A.; Choi, K.; Park, M.W.; Piao, Y.; Park, M.; Choi, K.P. Performance comparison of emerging EVC and VVC video coding standards with HEVC and AV1. SMPTE Motion Imaging J. 2021, 130, 1–12. [Google Scholar] [CrossRef]
- Ramasamy, V.; Pop, M.-D. The Future Network 2030: A Simplified Intelligent Transportation System. In Intelligent Technologies for Sensors: Applications, Design, and Optimization for a Smart World; Apple Academic Press: Palm Bay, FL, USA, 2023; p. 315. [Google Scholar]
- Habchi, Y.; Aimer, A.F.; Baili, J.; Inc, M.; Menni, Y.; Lorenzini, G. Improving medical video coding using multi scale quincunx lattice: From low bitrate to high quality. Trait. Du Signal 2022, 39, 1191–1202. [Google Scholar] [CrossRef]
- Minopoulos, G.; Memos, V.A.; Psannis, K.E.; Ishibashi, Y. Comparison of video codecs performance for real-time transmission. In Proceedings of the 2020 2nd International Conference on Computer Communication and the Internet (ICCCI), Nagoya, Japan, 26–29 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 110–114. [Google Scholar]
- John, S.K.; Kunal, G.; Utkarsh, R. Video compression techniques: A review. Int. J. Pure Appl. Math. 2018, 119, 3709–3724. [Google Scholar]
- Rahim, T.; Usman, M.A.; Shin, S.Y. Comparing H. 265/HEVC and VP9: Impact of high frame rates on the perceptual quality of compressed videos. arXiv 2020, arXiv:2006.02671. [Google Scholar]
- Rao, K.R.; Hwang, J.J.; Kim, D. High Efficiency Video Coding and Other Emerging Standards; River Publishers: New York, NY, USA, 2022. [Google Scholar]
- Pourazad, M.T.; Doutre, C.; Azimi, M.; Nasiopoulos, P. HEVC: The new gold standard for video compression: How does HEVC compare with H. 264/AVC? IEEE Consum. Electron. Mag. 2012, 1, 36–46. [Google Scholar] [CrossRef]
- Patel, D.; Lad, T.; Shah, D. Review on intra-prediction in high efficiency video coding (HEVC) standard. Int. J. Comput. Appl. 2015, 975, 12. [Google Scholar] [CrossRef]
- Pastuszak, G.; Trochimiuk, M. Algorithm and architecture design of the motion estimation for the H. 265/HEVC 4K-UHD encoder. J. Real-Time Image Process. 2016, 12, 517–529. [Google Scholar] [CrossRef]
- Jayaratne, M.; Gunawardhana, L.; Samarathunga, U. Comparison of H. 264 and H. 265. Eng. Technol. Q. Rev. 2022, 5, 17–24. [Google Scholar]
- Wang, T.; Wei, G.; Li, H.; Bui, T.; Zeng, Q.; Wang, R. A Method to Reduce the Intra-Frame Prediction Complexity of HEVC Based on D-CNN. Electronics 2023, 12, 2091. [Google Scholar] [CrossRef]
- Liu, H.; Lu, M.; Ma, Z.; Wang, F.; Xie, Z.; Cao, X.; Wang, Y. Neural video coding using multiscale motion compensation and spatiotemporal context model. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 3182–3196. [Google Scholar] [CrossRef]
- Mansri, I.; Doghmane, N.; Kouadria, N.; Harize, S.; Bekhouch, A. Comparative evaluation of VVC, HEVC, H. 264, AV1, and VP9 encoders for low-delay video applications. In Proceedings of the 2020 Fourth International Conference on Multimedia Computing, Networking and Applications (MCNA), Valencia, Spain, 19–22 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 38–43. [Google Scholar]
- Subbarayappa, S.; Rao, K. Video quality evaluation and testing verification of H. 264, HEVC, VVC and EVC video compression standards. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1045, 012028. [Google Scholar] [CrossRef]
- Benjak, J.; Hofman, D.; Knezović, J.; Žagar, M. Performance Comparison of H. 264 and H. 265 Encoders in a 4K FPV Drone Piloting System. Appl. Sci. 2022, 12, 6386. [Google Scholar] [CrossRef]
- Monteiro, E.; Grellert, M.; Bampi, S.; Zatt, B. Rate-distortion and energy performance of HEVC and H. 264/AVC encoders: A comparative analysis. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1278–1281. [Google Scholar]
- Banitalebi-Dehkordi, A.; Azimi, M.; Pourazad, M.T.; Nasiopoulos, P. Compression of high dynamic range video using the HEVC and H. 264/AVC standards. In Proceedings of the 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Rhodes, Greece, 18–20 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 8–12. [Google Scholar]
- Wang, Z.; Li, F. Convolutional neural network based low complexity HEVC intra encoder. Multimed. Tools Appl. 2021, 80, 2441–2460. [Google Scholar] [CrossRef]
- Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, HHI. High Efficiency Video Coding (HEVC). Available online: https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-solutions/h265-hevc/hevc-overview.html (accessed on 10 December 2023).
- Sullivan, G.J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Park, W.; Lee, B.; Kim, M. Fast computation of integer DCT-V, DCT-VIII, and DST-VII for video coding. IEEE Trans. Image Process. 2019, 28, 5839–5851. [Google Scholar] [CrossRef] [PubMed]
- Singhadia, A.; Minhazuddin, M.; Mamillapalli, M.; Chakrabarti, I. A fast integrated deblocking filter and sample-adaptive-offset parameter estimation architecture for HEVC. Microprocess. Microsyst. 2021, 85, 104317. [Google Scholar] [CrossRef]
- Mrudula, S.; Murthy, K.; Prasad, M. Optimized Context-Adaptive Binary Arithmetic Coder in Video Compression Standard Without Probability Estimation. Math. Model. Eng. Probl. 2022, 9, 458–462. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, B.; Zhang, C.; Ke, N.; Jin, W.; Hao, S. The impact of bitrate and GOP pattern on the video quality of H. 265/HEVC compression standard. In Proceedings of the 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, China, 14–16 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Mackin, A.; Zhang, F.; Papadopoulos, M.A.; Bull, D. Investigating the impact of high frame rates on video compression. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 295–299. [Google Scholar]
- Valizadeh, S.; Nasiopoulos, P.; Ward, R. Improving compression efficiency of HEVC using perceptual coding. Multimed. Tools Appl. 2021, 80, 10235–10254. [Google Scholar] [CrossRef]
- Atencia, J.R.; Granado, O.L.; Malumbres, M.P.; Martínez-Rach, M.O.; Van Wallendael, G. Analysis of the perceptual quality performance of different HEVC coding tools. IEEE Access 2021, 9, 37510–37522. [Google Scholar] [CrossRef]
- Kobayashi, D.; Nakamura, K.; Kitahara, M.; Osawa, T.; Omori, Y.; Onishi, T.; Iwasaki, H. A Low-Latency 4K HEVC Multi-Channel Encoding System with Content-Aware Bitrate Control for Live Streaming. IEICE Trans. Inf. Syst. 2023, 106, 46–57. [Google Scholar] [CrossRef]
- Hamdoun, H.; Nazir, S.; Alzubi, J.A.; Laskot, P.; Alzubi, O.A. Performance benefits of network coding for HEVC video communications in satellite networks. Iran. J. Electr. Electron. Eng. (IJEEE) 2021, 17, 1–10. [Google Scholar]
- Joy, H.K.; Kounte, M.R. Decision Algorithm for Intra Prediction in High-Efficiency Video Coding (HEVC). J. Southwest Jiaotong Univ. 2022, 57, 180–193. [Google Scholar] [CrossRef]
- Pan, Z.; Yi, X.; Zhang, Y.; Yuan, H.; Wang, F.L.; Kwong, S. Frame-level Bit Allocation Optimization Based on Video Content Characteristics for HEVC. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–20. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Winkler, S. Digital Video Quality: Vision Models and Metrics; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Mercat, A.; Viitanen, M.; Vanne, J. UVG Dataset: 50/120fps 4 K Sequences for Video Codec Analysis and Development. In Proceedings of the 11th ACM Multimedia Systems Conference, Istanbul, Turkey, 8–11 June 2020; pp. 297–302. [Google Scholar]
- Group, U.V. Ultra Video Group—Home Page. Available online: https://ultravideo.fi (accessed on 30 July 2023).
- Xiph.org Video Test Media [Derf’s Collection]. HD Content and Above. Available online: https://media.xiph.org/video/derf/ (accessed on 15 July 2023).
Test Sequence | Resolution | No. of Frames Encoded | fps |
---|---|---|---|
HoneyBee | 1920 × 1080 | 200 | 120 |
Sunflower | 1920 × 1080 | 200 | 25 |
Fourpeople | 1280 × 720 | 200 | 60 |
Mobcal | 1280 × 720 | 200 | 50 |
Shields | 1280 × 720 | 200 | 50 |
YachtRide | 1920 × 1080 | 200 | 120 |
Ducks_take_off | 1920 × 1080 | 200 | 50 |
Crowd_run | 1920 × 1080 | 200 | 50 |
Configuration | IPPP | Periodic-I | Periodic-IDR |
---|---|---|---|
Encoder Parameter | |||
IntraPeriod | −1 | 32 | 32 |
DecodingRefreshType | 0 | 0 | 2 |
GOP Size | 8 | 8 | 8 |
QP | 22–42 | 22–42 | 22–42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, K.A.M.; Ali, I.A.; Mstafa, R.J. Impact of Video Motion Content on HEVC Coding Efficiency. Computers 2024, 13, 204. https://doi.org/10.3390/computers13080204
Salih KAM, Ali IA, Mstafa RJ. Impact of Video Motion Content on HEVC Coding Efficiency. Computers. 2024; 13(8):204. https://doi.org/10.3390/computers13080204
Chicago/Turabian StyleSalih, Khalid A. M., Ismail Amin Ali, and Ramadhan J. Mstafa. 2024. "Impact of Video Motion Content on HEVC Coding Efficiency" Computers 13, no. 8: 204. https://doi.org/10.3390/computers13080204
APA StyleSalih, K. A. M., Ali, I. A., & Mstafa, R. J. (2024). Impact of Video Motion Content on HEVC Coding Efficiency. Computers, 13(8), 204. https://doi.org/10.3390/computers13080204