ApproxGeoMap: An Efficient System for Generating Approximate Geo-Maps from Big Geospatial Data with Quality of Service Guarantees
Abstract
:1. Introduction
2. Preliminaries and Theoretical Background
2.1. Geo-Visualization
2.2. Geohash as a Dimensionality Reduction Approach
2.3. Earth Mover’s Distance (EMD)
2.4. Geospatial Data Modeling, Reduction, and Sampling
2.5. Challenges Associated with Geo-Visualization of Big Data
2.6. Problem Formulation for ApproxGeoMap
3. Literature Review
4. ApproxGeoMap Geospatial Visualization at Scale with QoS Guarantees
4.1. Architecture Design and System Operation
Algorithm 1: ApproxGeoMap Workflow |
Input: refData, geoPrec, mapRenderType, sampFraction, seed // Step 1: Geohash Tessellation geoHashMap ← ∅ // Initialize an empty map for geohashes For each dataPoint in refData do geoHash ← geohashEncode(dataPoint.lat, dataPoint.long, geoPrec) // Encode geohash geoHashMap[geoHash].add(dataPoint) // Group data points by geohash End // Step 2: Stratified Sampling sampledData ← AGMSampler(geoHashMap, sampFraction, seed) // Sample data from each geohash // Step 3: Aggregation aggregatedData ← proxyAggregate(sampledData) // Aggregate the sampled data // Step 4: Map Rendering thematicMap ← (mapRenderType == "choropleth") ? choroplethRender(generateMatrix(aggregatedData)): heatmapRender(generateMatrix(aggregatedData)) // Render the map // Step 5: Error Estimation errorEstimate ← calculateError(refData, aggregatedData) // Estimate error between original and aggregated data // Output output thematicMap, errorEstimate, adjustSamplingRate(errorEstimate) // Output map, error, and sampling feedback End |
Algorithm 2: AGMSampler |
Input: geoHashMap, sampFraction, seed r = random(seed) // Initialize random number generator with seed sampledData ← ∅ // Initialize empty set for sampled data For each geoHash in geoHashMap do tuples ← geoHashMap[geoHash] // Retrieve data for current geohash fraction ← sampFraction // Set sampling fraction (can be adjusted per geohash) For each tuple in tuples do If (r < fraction) then // Randomly sample each tuple based on fraction sampledData.add(tuple) End End End return sampledData End Output: sampledData |
4.2. System Scope of Operation
5. Experimental Evaluation
5.1. Experimental Setup
5.1.1. Datasets
5.1.2. Deployment
5.2. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al Jawarneh, I.M.; Foschini, L.; Bellavista, P. Efficient Integration of Heterogeneous Mobility-Pollution Big Data for Joint Analytics at Scale with QoS Guarantees. Future Internet 2023, 15, 263. [Google Scholar] [CrossRef]
- Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. Locality-Preserving Spatial Partitioning for Geo Big Data Analytics in Main Memory Frameworks. In Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Hassan, A.; Vijayaraghavan, J. Geospatial Data Science Quick Start Guide: Effective Techniques for Performing Smarter Geospatial Analysis Using Location Intelligence; Packt Publishing Ltd.: Birmingham, UK, 2019; ISBN 978-1-78980-933-6. [Google Scholar]
- Al Jawarneh, I.M.; Foschini, L.; Bellavista, P. Polygon Simplification for the Efficient Approximate Analytics of Georeferenced Big Data. Sensors 2023, 23, 8178. [Google Scholar] [CrossRef] [PubMed]
- Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. Big Spatial Data Management for the Internet of Things: A Survey. J. Netw. Syst. Manag. 2020, 28, 990–1035. [Google Scholar] [CrossRef]
- Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. QoS-Aware Approximate Query Processing for Smart Cities Spatial Data Streams. Sensors 2021, 21, 4160. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tahir, A.; Sarwat, M. GeoSparkViz in Action: A Data System with Built-in Support for Geospatial Visualization. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1992–1995. [Google Scholar]
- Yu, J. SRC: Geospatial visual analytics belongs to database systems: The BABYLON approach. SIGSPATIAL Spec. 2018, 9, 2–3. [Google Scholar] [CrossRef]
- Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. SpatialSSJP: QoS-Aware Adaptive Approximate Stream-Static Spatial Join Processor. IEEE Trans. Parallel Distrib. Syst. 2024, 35, 73–88. [Google Scholar] [CrossRef]
- Guo, M.; Huang, Y.; Guan, Q.; Xie, Z.; Wu, L. An efficient data organization and scheduling strategy for accelerating large vector data rendering. Trans. GIS 2017, 21, 1217–1236. [Google Scholar] [CrossRef]
- Guo, M.; Guan, Q.; Xie, Z.; Wu, L.; Luo, X.; Huang, Y. A spatially adaptive decomposition approach for parallel vector data visualization of polylines and polygons. Int. J. Geogr. Inf. Sci. 2015, 29, 1419–1440. [Google Scholar] [CrossRef]
- Rachev, S.T. The Monge–Kantorovich Mass Transference Problem and Its Stochastic Applications. Theory Probab. Appl. 1985, 29, 647–676. [Google Scholar] [CrossRef]
- Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. Spatially Representative Online Big Data Sampling for Smart Cities. In Proceedings of the 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Pisa, Italy, 14–16 September 2020; pp. 1–6. [Google Scholar]
- Ma, M.; Wu, Y.; Ouyang, X.; Chen, L.; Li, J.; Jing, N. HiVision: Rapid visualization of large-scale spatial vector data. Comput. Geosci. 2021, 147, 104665. [Google Scholar] [CrossRef]
- Chen, H.; Chen, W.; Mei, H.; Liu, Z.; Zhou, K.; Chen, W.; Gu, W.; Ma, K.-L. Visual Abstraction and Exploration of Multi-class Scatterplots. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wu, W.; Chen, Y.; Qu, H.; Ni, L.M. Visual Analytics in Urban Computing: An Overview. IEEE Trans. Big Data 2016, 2, 276–296. [Google Scholar] [CrossRef]
- Chung, D.H.S.; Parry, M.L.; Griffiths, I.W.; Laramee, R.S.; Bown, R.; Legg, P.A.; Chen, M. Knowledge-Assisted Ranking: A Visual Analytic Application for Sports Event Data. IEEE Comput. Graph. Appl. 2016, 36, 72–82. [Google Scholar] [CrossRef]
- Andrienko, N.; Andrienko, G.; Barrett, L.; Dostie, M.; Henzi, P. Space Transformation for Understanding Group Movement. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2169–2178. [Google Scholar] [CrossRef]
- Krüger, R.; Thom, D.; Wörner, M.; Bosch, H.; Ertl, T. TrajectoryLenses—A Set-based Filtering and Exploration Technique for Long-term Trajectory Data. Comput. Graph. Forum 2013, 32, 451–460. [Google Scholar] [CrossRef]
- Liu, D.; Weng, D.; Li, Y.; Bao, J.; Zheng, Y.; Qu, H.; Wu, Y. SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1–10. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Lu, L.; Liu, S.; Qu, H.; Ni, L.M. Visual analysis of route diversity. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), Providence, RI, USA, 23–28 October 2011; pp. 171–180. [Google Scholar]
- Liu, S.; Pu, J.; Luo, Q.; Qu, H.; Ni, L.M.; Krishnan, R. VAIT: A Visual Analytics System for Metropolitan Transportation. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1586–1596. [Google Scholar] [CrossRef]
- Di Bartolomeo, M.; Hu, Y. There is More to Streamgraphs than Movies: Better Aesthetics via Ordering and Lassoing. Comput. Graph. Forum 2016, 35, 341–350. [Google Scholar] [CrossRef]
- Dougenik, J.A.; Chrisman, N.R.; Niemeyer, D.R. An Algorithm to Construct Continuous Area Cartograms*. Prof. Geogr. 1985, 37, 75–81. [Google Scholar] [CrossRef]
- Al-Dohuki, S.; Wu, Y.; Kamw, F.; Yang, J.; Li, X.; Zhao, Y.; Ye, X.; Chen, W.; Ma, C.; Wang, F. SemanticTraj: A New Approach to Interacting with Massive Taxi Trajectories. IEEE Trans. Vis. Comput. Graph. 2017, 23, 11–20. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Y.; Yang, J.; Zhang, C.; Ma, C.; Ye, X. TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data. IEEE Trans. Vis. Comput. Graph. 2016, 22, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Scheepens, R.; Hurter, C.; Van De Wetering, H.; Van Wijk, J.J. Visualization, Selection, and Analysis of Traffic Flows. IEEE Trans. Vis. Comput. Graph. 2016, 22, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Andrienko, G.L.; Andrienko, N.V. Interactive maps for visual data exploration. Int. J. Geogr. Inf. Sci. 1999, 13, 355–374. [Google Scholar] [CrossRef]
- Liu, D.; Xu, P.; Ren, L. TPFlow: Progressive Partition and Multidimensional Pattern Extraction for Large-Scale Spatio-Temporal Data Analysis. IEEE Trans. Vis. Comput. Graph. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Guo, J.; Wang, J.; Xu, C.; Song, Y. Modeling of spatial stratified heterogeneity. GISci. Remote Sens. 2022, 59, 1660–1677. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Andrienko, G.; Andrienko, N. Visual exploration of spatial and temporal variations of tweet topic popularity. In Proceedings of the EuroVis Workshop on Visual Analytics, Brno, Czech Republic, 4 June 2018; Eurographics Association: Goslar, Germany, 2018; pp. 7–11. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Chen, W.; Maciejewski, R.; Zhao, Y. Visual Analytics of Mobility and Transportation: State of the Art and Further Research Directions. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2232–2249. [Google Scholar] [CrossRef]
- Sobral, T.; Galvão, T.; Borges, J. Visualization of Urban Mobility Data from Intelligent Transportation Systems. Sensors 2019, 19, 332. [Google Scholar] [CrossRef]
- Lock, O.; Bednarz, T.; Pettit, C. The visual analytics of big, open public transport data—A framework and pipeline for monitoring system performance in Greater Sydney. Big Earth Data 2021, 5, 134–159. [Google Scholar] [CrossRef]
- Kalamaras, I.; Zamichos, A.; Salamanis, A.; Drosou, A.; Kehagias, D.D.; Margaritis, G.; Papadopoulos, S.; Tzovaras, D. An Interactive Visual Analytics Platform for Smart Intelligent Transportation Systems Management. IEEE Trans. Intell. Transp. Syst. 2018, 19, 487–496. [Google Scholar] [CrossRef]
- Silva, C.T.; Freire, J.; Miranda, F.; Lage, M.; Doraiswamy, H.; Hosseini, M.; Tokuda, E.; Ferreira, G.; Cesar, R.M., Jr. Integrated Analytics and Visualization for Multi-Modality Transportation Data; Connected Cities for Smart Mobility toward Accessible and Resilient Transportation Center (C2SMART): New York, NY, USA, 2019. [Google Scholar]
- Gomes, G.A.M.; Santos, E.; Vidal, C.A.; Coelho da Silva, T.L.; Macedo, J.A.F. Real-time discovery of hot routes on trajectory data streams using interactive visualization based on GPU. Comput. Graph. 2018, 76, 129–141. [Google Scholar] [CrossRef]
- He, J.; Chen, H.; Chen, Y.; Tang, X.; Zou, Y. Diverse Visualization Techniques and Methods of Moving-Object-Trajectory Data: A Review. ISPRS Int. J. Geo-Inf. 2019, 8, 63. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, J.; Guo, Z.; Liu, Y. Visual exploration of urban functions via spatio-temporal taxi OD data. J. Vis. Lang. Comput. 2018, 48, 169–177. [Google Scholar] [CrossRef]
- Clarinval, A.; Dumas, B. Intra-City Traffic Data Visualization: A Systematic Literature Review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6298–6315. [Google Scholar] [CrossRef]
- Sinclair, C.; Das, S. Traffic Accidents Analytics in UK Urban Areas using k-means Clustering for Geospatial Mapping. In Proceedings of the 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, 21–23 January 2021; pp. 1–7. [Google Scholar]
- Медведенкo, С.А.; Намиoт, Д.Е. Визуальный анализ данных пассажирoпoтoка железнoдoрoжнoгo транспoрта. Int. J. Open Inf. Technol. 2021, 9, 51–60. [Google Scholar]
- Xu, C.; Zhang, A.; Chen, Y. Traffic Congestion Forecasting in Shanghai Based on Multi-Period Hotspot Clustering. IEEE Access 2020, 8, 63255–63269. [Google Scholar] [CrossRef]
- Ma, M.; Wu, Y.; Chen, L.; Li, J.; Jing, N. Interactive and Online Buffer-Overlay Analytics of Large-Scale Spatial Data. ISPRS Int. J. Geo-Inf. 2019, 8, 21. [Google Scholar] [CrossRef]
- Al Jawarneh, I.M.; Bellavista, P.; Foschini, L.; Montanari, R. Spatial-Aware Approximate Big Data Stream Processing. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Lohr, S.L. Sampling: Design and Analysis, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2019; ISBN 978-0-429-29628-4. [Google Scholar]
- Stoehr, N.; Meyer, J.; Markl, V.; Bai, Q.; Kim, T.; Chen, D.-Y.; Li, C. Heatflip: Temporal-Spatial Sampling for Progressive Heat Maps on Social Media Data. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3723–3732. [Google Scholar]
- Mitra, S.; Khandelwal, P.; Pallickara, S.; Pallickara, S.L. STASH: Fast Hierarchical Aggregation Queries for Effective Visual Spatiotemporal Explorations. In Proceedings of the 2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, NM, USA, 23–26 September 2019; pp. 1–11. [Google Scholar]
- Zacharatou, E.T.; Doraiswamy, H.; Ailamaki, A.; Silva, C.T.; Freire, J. GPU rasterization for real-time spatial aggregation over arbitrary polygons. Proc. VLDB Endow. 2017, 11, 352–365. [Google Scholar] [CrossRef]
- Bruhwiler, K.; Buddhika, T.; Pallickara, S.; Pallickara, S.L. Iris: Amortized, Resource Efficient Visualizations of Voluminous Spatiotemporal Datasets. In Proceedings of the 2020 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT), Leicester, UK, 7–10 December 2020; pp. 47–56. [Google Scholar]
- Bruhwiler, K.; Pallickara, S. Aperture: Fast Visualizations Over Spatiotemporal Datasets. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing, Auckland, New Zealand, 2–5 December 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 31–40. [Google Scholar]
- Alsalama, A.; Kubba, A.; Alsmirat, M.; Al Jawarneh, I.M. A Novel Approximate Computing Method for Efficient Search in Satellite Remote Sensing Products. In Proceedings of the 2024 International Conference on Multimedia Computing, Networking and Applications (MCNA), Valencia, Spain, 17–20 September 2024; pp. 21–27. [Google Scholar]
- Al Jawarneh, I.M.; Montanari, R.; Corradi, A. Cost-Effective Approximate Aggregation Queries on Geospatial Big Data. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 1313–1318. [Google Scholar]
- Huang, K.; Liu, D.; Chen, T.; Wang, Y.; Wang, C.; Shi, W. Real-time map rendering and interaction: A stylized hierarchical symbol model. Int. J. Digit. Earth 2024, 17, 2367728. [Google Scholar] [CrossRef]
- Huang, K.; Wang, C.; Wang, S.; Liu, R.; Chen, G.; Li, X. An Efficient, Platform-Independent Map Rendering Framework for Mobile Augmented Reality. ISPRS Int. J. Geo-Inf. 2021, 10, 593. [Google Scholar] [CrossRef]
- Aljawarneh, I.M.; Bellavista, P.; Corradi, A.; Montanari, R.; Foschini, L.; Zanotti, A. Efficient spark-based framework for big geospatial data query processing and analysis. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; pp. 851–856. [Google Scholar]
- Nusrat, S.; Kobourov, S. The State of the Art in Cartograms. Comput. Graph. Forum 2016, 35, 619–642. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshamsi, R.A.; Al Jawarneh, I.M.; Foschini, L.; Corradi, A. ApproxGeoMap: An Efficient System for Generating Approximate Geo-Maps from Big Geospatial Data with Quality of Service Guarantees. Computers 2025, 14, 35. https://doi.org/10.3390/computers14020035
Alshamsi RA, Al Jawarneh IM, Foschini L, Corradi A. ApproxGeoMap: An Efficient System for Generating Approximate Geo-Maps from Big Geospatial Data with Quality of Service Guarantees. Computers. 2025; 14(2):35. https://doi.org/10.3390/computers14020035
Chicago/Turabian StyleAlshamsi, Reem Abdelaziz, Isam Mashhour Al Jawarneh, Luca Foschini, and Antonio Corradi. 2025. "ApproxGeoMap: An Efficient System for Generating Approximate Geo-Maps from Big Geospatial Data with Quality of Service Guarantees" Computers 14, no. 2: 35. https://doi.org/10.3390/computers14020035
APA StyleAlshamsi, R. A., Al Jawarneh, I. M., Foschini, L., & Corradi, A. (2025). ApproxGeoMap: An Efficient System for Generating Approximate Geo-Maps from Big Geospatial Data with Quality of Service Guarantees. Computers, 14(2), 35. https://doi.org/10.3390/computers14020035