Privacy-Preserving Passive DNS
Abstract
:1. Introduction
- We have developed PRESERVE DNS, a privacy-preserving passive DNS data solution, by leveraging distributed ledger technology. The implementation of this solution does not require any changes to the server side of the current DNS infrastructure.
- We have evaluated the robustness and security of PRESERVE DNS.
- We have comparatively evaluated the performance of PRESERVE DNS against a traditional database with column level encryption, and against an existing alternative solution.
2. Background
2.1. DNS Privacy Concerns
2.2. Blockchain
2.3. Hyperledger Fabric
3. Related Work
4. Proof-of-Concept Implementation
4.1. Architecture
- Participants of the network should be able to easily query the data stored in the blockchain.
- The queried data should be available only to authorized entities in order to be analysed further for its maliciousness or even to be used as a distributed DNS database protected from various attacks and misuses.
- Consequently, specific data segments on the ledger, e.g., IPs of the end-users should be available only to themselves and remain private to all other entities.
- To achieve consensus for storing the data, peers should approve the transaction only for authorized entities who call the corresponding storing procedure. Additionally, for each transaction related to data storage processes, new blocks should be created and added to the ledger, and all the participants should update their “local” ledgers to include these new blocks.
4.2. The Blockchain
5. Evaluation
5.1. Security Evaluation—DNS Attacks
- The proof-of-concept implementation of PRESERVE DNS described in the previous section contains only one orderer. A potential DDoS attack against the orderer container may result in particular writes to the ledger to be blocked. However, in a production environment, this attack can be prevented using more ordering services under the same Kafka cluster. When one orderer fails, the Kafka cluster assigns another orderer to complete the transaction.
- In a fast-flux DNS attack a malicious actor uses short-timed time-to-live (TTL) records to change legitimate to malicious servers under the same hostname. PRESERVE DNS thwarts Fast-flux DNS attacks, since the administrator of the blockchain configures the TTL of the ledger’s blocks.
- PRESERVE DNS is able to thwart DNS cache poisoning attacks, but only if it is being used as the local DNS database in the system, as in the case of our proof-of-concept implementation. This means that the local DNS resolver should query PRESERVE DNS for every DNS query instead of using the local DNS cache first. A potential solution to this issue in a production environment is to continually update the local DNS cache with the data from the blockchain using a scheduled job.
5.2. Security Evaluation—Blockchain Attacks
5.3. Performance Evaluation
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Mockapetris, P.V. Domain Names-Concepts and Facilities. RFC 1034. 1987. Available online: https://dl.acm.org/doi/book/10.17487/RFC1034 (accessed on 11 August 2012).
- Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.; Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110. [Google Scholar]
- Vissers, T.; Joosen, W.; Nikiforakis, N. Parking sensors: Analyzing and detecting parked domains. In Proceedings of the 22nd Network and Distributed System Security Symposium (NDSS 2015), San Diego, CA, USA, 8–11 February 2015; Internet Society: Reston, VA, USA; p. 53. [Google Scholar]
- Stout, B.; McDowell, K. System and Method for Combating Cybersquatting. U.S. Patent 8,285,830, 9 October 2012. [Google Scholar]
- Weimer, F. Passive DNS replication. In Proceedings of the FIRST Conference on Computer Security Incident, Singapore, 26 June–1 July 2005; p. 98. [Google Scholar]
- Patrick Breyer v Bundesrepublik Deutschland Case C-582/14 ECLI:EU:C:2016:779. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A62014CJ0582 (accessed on 11 August 2020).
- Spring, J.M.; Huth, C.L. The impact of passive dns collection on end-user privacy. Secur. Trust. Internet Names 2012, 1–11. [Google Scholar]
- Google. Google Public DNS. 2018. Available online: https://developers.google.com/speed/public-dns/privacy (accessed on 11 August 2020).
- Cloudflare. What Is 1.1.1.1? 2018. Available online: https://developers.cloudflare.com/1.1.1.1/what-is-1.1.1.1 (accessed on 11 August 2020).
- OpenDNS. 2006. Available online: https://www.opendns.com/about/global-dns-infrastructure/ (accessed on 11 August 2020).
- Federrath, H.; Fuchs, K.P.; Herrmann, D.; Piosecny, C. Privacy-preserving DNS: Analysis of broadcast, range queries and mix-based protection methods. In European Symposium on Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2011; pp. 665–683. [Google Scholar]
- Khalil, I.; Yu, T.; Guan, B. Discovering malicious domains through passive DNS data graph analysis. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, Xi’an, China, 30 May–3 June 2016; ACM: New York, NY, USA, 2016; pp. 663–674. [Google Scholar]
- Gasser, O.; Hof, B.; Helm, M.; Korczynski, M.; Holz, R.; Carle, G. In log we trust: Revealing poor security practices with certificate transparency logs and internet measurements. In Proceedings of the International Conference on Passive and Active Network Measurement, Berlin, Germany, 26–27 March 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 173–185. [Google Scholar]
- Farsight Security. DNSDB; Farsight Security: SAN Mateo, CA, USA, 2010. [Google Scholar]
- VirusTotal. VirusTotal Passive DNS Replication; VirusTotal: Dublin, Ireland, 2013. [Google Scholar]
- James, L. Phishing Exposed; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Yoon, C.; Kim, K.; Kim, Y.; Shin, S.; Son, S. Doppelgängers on the dark web: A large-scale assessment on phishing hidden web services. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2225–2235. [Google Scholar]
- Riederer, C.; Erramilli, V.; Chaintreau, A.; Krishnamurthy, B.; Rodriguez, P. For sale: Your data: By: You. In Proceedings of the 10th ACM WORKSHOP on Hot Topics in Networks, Cambridge, MA, USA, 14–15 November 2011; pp. 1–6. [Google Scholar]
- Bortzmeyer, S. DNS Privacy Considerations. Available online: https://www.bortzmeyer.org/7626.html (accessed on 11 August 2020).
- Wang, W.; Hoang, D.T.; Hu, P.; Xiong, Z.; Niyato, D.; Wang, P.; Wen, Y.; Kim, D.I. A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access 2019, 7, 22328–22370. [Google Scholar] [CrossRef]
- Benisi, N.Z.; Aminian, M.; Javadi, B. Blockchain-based decentralized storage networks: A survey. J. Netw. Comput. Appl. 2020, 102656. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Chen, L.; Hou, M.; Xiang, F.; Wang, P. A data storage method based on blockchain for decentralization DNS. In Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), Guangzhou, China, 18–21 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 189–196. [Google Scholar]
- Di Pierro, M. What is the blockchain? Comput. Sci. Eng. 2017, 19, 92–95. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Technical Report. Manubot. 2019. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 11 August 2020).
- Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 557–564. [Google Scholar]
- Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for internet of things: A survey. IEEE Int. Things J. 2019, 6, 8076–8094. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Chen, Q.; Yu, F.R.; Tang, L. Blockchain-enabled software-defined industrial internet of things with deep reinforcement learning. IEEE Int. Things J. 2020, 7, 5466–5480. [Google Scholar] [CrossRef]
- Xu, Q.; Su, Z.; Dai, M.; Yu, S. APIS: Privacy-preserving incentive for sensing task allocation in cloud and edge-cooperation mobile internet of things with SDN. IEEE Int. Things J. 2019, 7, 5892–5905. [Google Scholar] [CrossRef]
- Wu, M.; Wang, K.; Cai, X.; Guo, S.; Guo, M.; Rong, C. A comprehensive survey of blockchain: From theory to IoT applications and beyond. IEEE Int. Things J. 2019, 6, 8114–8154. [Google Scholar] [CrossRef]
- Karandikar, N.; Chakravorty, A.; Rong, C. Transactive energy on hyperledger fabric. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 22–25 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 539–546. [Google Scholar]
- Xu, X.; Weber, I.; Staples, M.; Zhu, L.; Bosch, J.; Bass, L.; Pautasso, C.; Rimba, P. A taxonomy of blockchain-based systems for architecture design. In Proceedings of the 2017 IEEE International Conference on Software Architecture (ICSA), Gothenburg, Sweden, 3–7 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 243–252. [Google Scholar]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference; ACM: New York, NY, USA, 2018; p. 30. [Google Scholar]
- Hyperledger Fabric. Private Data. 2019. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html (accessed on 11 August 2020).
- Dhillon, V.; Metcalf, D.; Hooper, M. Blockchain Enabled Applications: Understand the Blockchain Ecosystem and How to Make It Work for You; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Zhao, W.; Yang, S.; Luo, X. On consensus in public blockchains. In Proceedings of the 2019 International Conference on Blockchain Technology, Atlanta, GA, USA, 14–17 July 2019; pp. 1–5. [Google Scholar]
- Zdrnja, B. Security Monitoring of DNS Traffic; University of Auckland: Auckland, New Zealand, 2006. [Google Scholar]
- Govil, J.; Govil, J. 4G mobile communication systems: Turns, trends and transition. In Proceedings of the 2007 International Conference on Convergence Information Technology (ICCIT 2007), Gyeongju, Korea, 21–23 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 13–18. [Google Scholar]
- Xu, J.; Fan, J.; Ammar, M.H.; Moon, S.B. Prefix-preserving ip address anonymization: Measurement-based security evaluation and a new cryptography-based scheme. In Proceedings of the 10th IEEE International Conference on Network Protocols, Paris, France, 12–15 November 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 280–289. [Google Scholar]
- Kountouras, A.; Kintis, P.; Lever, C.; Chen, Y.; Nadji, Y.; Dagon, D.; Antonakakis, M.; Joffe, R. Enabling network security through active DNS datasets. In International Symposium on Research in Attacks, Intrusions, and Defenses; Springer: Berlin/Heidelberg, Germany, 2016; pp. 188–208. [Google Scholar]
- Liang, X.; Shetty, S.; Tosh, D.; Kamhoua, C.; Kwiat, K.; Njilla, L. Provchain: A blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Madrid, Spain, 14–17 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 468–477. [Google Scholar]
- Kalodner, H.A.; Carlsten, M.; Ellenbogen, P.; Bonneau, J.; Narayanan, A. An Empirical Study of Namecoin and Lessons for Decentralized Namespace Design; WEIS: Sunbury, PA, USA, 2015. [Google Scholar]
- Ali, M.; Nelson, J.; Shea, R.; Freedman, M.J. Blockstack: A global naming and storage system secured by blockchains. In Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC16), Denver, CO, USA, 22–24 June 2016; pp. 181–194. [Google Scholar]
- Yu, Z.; Xue, D.; Fan, J.; Guo, C. DNSTSM: DNS cache resources trusted sharing model based on consortium blockchain. IEEE Access 2020, 8, 13640–13650. [Google Scholar] [CrossRef]
- Liu, C.; Albitz, P. DNS and Bind; O’Reilly Media, Inc.: Newton, MA, USA, 2006. [Google Scholar]
- Vayghan, L.A.; Saied, M.A.; Toeroe, M.; Khendek, F. Deploying microservice based applications with Kubernetes: experiments and lessons learned. In Proceedings of the 2018 IEEE 11th international conference on cloud computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 970–973. [Google Scholar]
- Ager, B.; Mühlbauer, W.; Smaragdakis, G.; Uhlig, S. Comparing DNS resolvers in the wild. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement; ACM: New York, NY, USA, 2010; pp. 15–21. [Google Scholar]
- Fjellskal, E. Gamelinux Passive DNS. 2011. Available online: https://github.com/gamelinux/passivedns (accessed on 11 August 2020).
- Hyperledger Fabric. Certificates Github. 2019. Available online: https://github.com/hyperledger/fabric-ca (accessed on 11 August 2020).
- Thakkar, P.; Nathan, S.; Viswanathan, B. Performance benchmarking and optimizing hyperledger fabric blockchain platform. In Proceedings of the 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Milwaukee, WI, USA, 25–28 September 2018; IEEE: Piscataway, NJ, USA; pp. 264–276. [Google Scholar]
- Hyperledger Fabric. Chaincode for Developers. 2019. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.0/chaincode4ade.html (accessed on 11 August 2020).
- Sompolinsky, Y.; Zohar, A. Secure high-rate transaction processing in bitcoin. In Proceedings of the International Conference on Financial Cryptography and Data Security, San Juan, Puerto Rico, 26–30 January 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 507–527. [Google Scholar]
- Bashir, I. Mastering Blockchain; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Kambourakis, G.; Moschos, T.; Geneiatakis, D.; Gritzalis, S. Detecting DNS amplification attacks. In Proceedings of the International Workshop on Critical Information Infrastructures Security, Malaga, Spain, 3–5 October 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 185–196. [Google Scholar]
- Ranjan, S. Detecting DNS Fast-Flux Anomalies. U.S. Patent 8,260,914, 4 September 2012. [Google Scholar]
- Schuba, C. Addressing Weaknesses in the Domain Name System Protocol. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 1993. [Google Scholar]
- Piscini, E.; Dalton, D.; Kehoe, L. Blockchain and Cyber Security. Let’s Discuss; Deloitte: London, UK, 2017. [Google Scholar]
- English, E.; Kim, A.D.; Nonaka, M. Advancing Blockchain Cybersecurity: Technical and Policy Considerations for the Financial Services Industry. Cybersecur. Policy Resil. 2018, 81. [Google Scholar]
- Ali, M.; Shea, R.; Nelson, J.; Freedman, M.J. Blockstack: A new decentralized internet. Whitepaper, 2017. [Google Scholar]
- Momjian, B. PostgreSQL: Introduction and Concepts; Addison-Wesley: New York, NY, USA, 2001; Volume 192. [Google Scholar]
- Boettiger, C. An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 2015, 49, 71–79. [Google Scholar] [CrossRef]
- Hyperledger Fabric. Command-Line Interface (CLI). 2019. Available online: https://bmos299-fabric.readthedocs.io/en/latest/API/CLI.html (accessed on 11 August 2020).
- Antonakakis, M.; Perdisci, R.; Dagon, D.; Lee, W.; Feamster, N. Building a dynamic reputation system for dns. In Proceedings of the USENIX Security Symposium, Washington, DC, USA, 11–13 August 2010; pp. 273–290. [Google Scholar]
- Bilge, L.; Kirda, E.; Kruegel, C.; Balduzzi, M. EXPOSURE: Finding Malicious Domains Using Passive DNS Analysis; Ndss: New York, NY, USA, 2011; pp. 1–17. [Google Scholar]
Method | Attack Thwarting | User Privacy | Existing DNS Infrastructure |
---|---|---|---|
DecDNS Liu et al. [44] | ✓ | X | ✓ |
Liang et al. [40] | ✓ | X | ✓ |
Namecoin Kalodner et al. [41] | ✓ | ✓ | X |
Blockstack Ali et al. [42] | ✓ | ✓ | X |
DNSTSM Yu et al. [43] | ✓ | X | ✓ |
PRESERVE DNS | ✓ | ✓ | ✓ |
Number of DNS Entries | 10 | 1000 | 10,000 | 100,000 | 1,000,000 | |
---|---|---|---|---|---|---|
PRESERVE DNS | Read Data | 180 ms | 180 ms | 180 ms | 180 ms | 180 ms |
Write Data | 230 ms | 230 ms | 230 ms | 230 ms | 230 ms | |
PostgreSQL Database | Read Data | 2 ms | 3 ms | 10 ms | 44 ms | 220 ms |
Write Data | 4 ms | 5 ms | 6 ms | 9 ms | 11 ms | |
Blockstack Ali et al. [58] | Read Data | 360 ms | 360 ms | 360 ms | 360 ms | 360 ms |
Write Data | 530 ms | 530 ms | 530 ms | 530 ms | 530 ms |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, P.; Pitropakis, N.; Buchanan, W.J.; Lo, O.; Katsikas, S. Privacy-Preserving Passive DNS. Computers 2020, 9, 64. https://doi.org/10.3390/computers9030064
Papadopoulos P, Pitropakis N, Buchanan WJ, Lo O, Katsikas S. Privacy-Preserving Passive DNS. Computers. 2020; 9(3):64. https://doi.org/10.3390/computers9030064
Chicago/Turabian StylePapadopoulos, Pavlos, Nikolaos Pitropakis, William J. Buchanan, Owen Lo, and Sokratis Katsikas. 2020. "Privacy-Preserving Passive DNS" Computers 9, no. 3: 64. https://doi.org/10.3390/computers9030064
APA StylePapadopoulos, P., Pitropakis, N., Buchanan, W. J., Lo, O., & Katsikas, S. (2020). Privacy-Preserving Passive DNS. Computers, 9(3), 64. https://doi.org/10.3390/computers9030064