Possibilities of Electromagnetic Penetration of Displays of Multifunction Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Printer Displays
2.2. LVDS Interface
2.3. Serializer FPD-Link—Color Mapping
3. Test Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loughry, J.; Umphress, D.A. Information Leakage from Optical Emanations. ACM Trans. Inf. Syst. Secur. 2002, 5, 262–289. [Google Scholar] [CrossRef] [Green Version]
- Mahshid, Z.; Saeedeh, H.T.; Ayaz, G. Security limits for Electromagnetic Radiation from CRT Display. In Proceedings of the Second International Conference on Computer and Electrical Engineering, Dubai, United Arab Emirates, 28–30 January 2009; pp. 452–456. [Google Scholar]
- Kubiak, I.; Boitan, A.; Halunga, S. Assessing the Security of TEMPEST Fonts against Electromagnetic Eavesdropping by Using Different Specialized Receivers. Appl. Sci. 2020, 10, 2828. [Google Scholar] [CrossRef] [Green Version]
- Vuagnoux, M.; Pasini, S. Compromising Electromagnetic Emanations of Wired and Wireless Keyboards. In Proceedings of the 18th Conference on USENIX Security Symposium SSYM’09, Montreal, QC, Canada, 10–14 August 2009; pp. 1–16. [Google Scholar]
- Boitan, A.; Bartusica, R.; Halunga, S.; Popescu, M.; Ionuta, I. Compromising Electromagnetic Emanations of Wired USB Keyboards. In Proceedings of the Third International Conference on Future Access Enablers for Ubiquitous and Intelligent Infrastructures (FABULOUS), Bucharest, Romania, 12–14 October 2017. [Google Scholar]
- Zhang, N.; Lu, Y.; Cui, Q.; Wang, Y. Investigation of Unintentional Video Emanations from a VGA Connector in the Desktop Computers. IEEE Trans. Electromagn. Compat. 2017, 59, 1826–1834. [Google Scholar] [CrossRef]
- Macovei, A.; Butnariu, V.; Boitan, A.; Rosu, G.; Trip, B.; Halunga, S. Detection of Electromagnetic Emissions Transmitted on the Power Line Through Electrical Conduction. In Proceedings of the International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 4–6 October 2018. [Google Scholar]
- Idita, A.; Butnariu, V.; Rosu, G.; Trip, B.; Boitan, A.; Baltag, O. Study of Shielding Effectiveness on Spurious Emissions of Information Systems by Means of Metallic and Carbon Powder Screens. In Proceedings of the International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 4–6 October 2018. [Google Scholar]
- Lee, H.K.; Kim, J.H.; Kim, Y.H.; Kim, S.C. Emission Security Limits for Compromising Emanations Using Electromagnetic Emanation Security Channel Analysis. IEICE Trans. Commun. 2013, 96, 2639–2649. [Google Scholar] [CrossRef]
- Tajima, K.; Ishikawa, R.; Mori, T.; Suzuki, Y.; Takaya, K. A study on risk evaluation of countermeasure technique for preventing electromagnetic information leakage from ITE. Int. Symp. Electromagn. Compat. 2017, 1, 1–4. [Google Scholar]
- Zagan, I.; Gaitan, V.G.; Petrariu, A.I.; Iuga, N.; Brezulianu, A. Design, Fabrication, and Testing of an IoT Healthcare Cardiac Monitoring Device. Computers 2020, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Alamri, A. Ontology Middleware for Integration of IoT Healthcare Information Systems in EHR Systems. Computers 2018, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Miranda, J.; Memon, M.; Cabral, J.; Ravelo, B.; Wagner, S.; Pedersen, C.F.; Mathiesen, M.; Nielsen, C. Eye on Patient Care: Continuous Health Monitoring: Design and Implementation of a Wireless Platform for Healthcare Applications. IEEE Microwav. Mag. 2017, 18, 83–94. [Google Scholar] [CrossRef]
- Miranda, J.; Cabral, J.; Wagner, S.; Pedersen, C.F.; Ravelo, B.; Memon, M.; Mathiesen, M. Open Platform for Seamless Sensor Support in Healthcare for the Internet of Things. Sensors 2016, 16, 2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, S.; Yongacoglu, A.; Sun, D.; Zhang, M.; Dong, W. Computer LCD recognition based on the compromising emanations in cyclic frequency domain. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Ottawa, ON, Canada, 25–29 July 2016; pp. 164–169. [Google Scholar]
- Lee, H.S.; Yook, J.G.; Sim, K. Analysis of information leakage from display devices with LCD. In Proceedings of the URSI Asia-Pacific Radio Science Conference, Seoul, Korea, 21–25 August 2016. [Google Scholar]
- Przybysz, A. Emission security of DVI and HDMI interfaces. Telecommun. Rev. Telecommun. News. 2014, 7, 669–673. [Google Scholar]
- Kubiak, I. The Influence of the Structure of Useful Signal on the Efficacy of Sensitive Emission of Laser Printers. Measurement. 2018, 119, 63–76. [Google Scholar] [CrossRef]
- Kubiak, I. Font Design—Shape Processing of Text Information Structures in the Process of Non-Invasive Data Acquisition. Computers 2019, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Song, T.L.; Yook, J.G. Study of jamming countermeasure for electromagnetically leaked digital video signals. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Gothenburg, Sweden, 1–4 September 2014. [Google Scholar]
- Kubiak, I. Influence of the method of colors on levels of electromagnetic emissions from video standards. IEEE Trans. Electromagn. Compat. 2018, 61, 1129–1137. [Google Scholar] [CrossRef]
- MIL-STD-461G, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment. 2015. Available online: https://www.atecorp.com/atecorp/media/pdfs/data-sheets/mil-std-461g.pdf (accessed on 11 December 2015).
- Sim, D.; Lee, H.S.; Yook, J.G.; Sim, K. Measurement and Analysis of the Compromising Electromagnetic Emanations from USB Keyboard. In Proceedings of the Digests 7th Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, 17–21 May 2016. [Google Scholar]
- Prvulovic, M.; Zajic, A.; Callan, R.L.; Wang, C.J. A Method for Finding Frequency-Modulated and Amplitude-Modulated Electromagnetic Emanations in Computer Systems. IEEE Trans. Electromagn. Compat. 2017, 59, 34–42. [Google Scholar] [CrossRef]
- Guri, M.; Elovici, Y. Exfiltration of information from air-gapped machines using monitor’s LED indicator. In Proceedings of the 2014 IEEE Joint Intelligence and Security Informatics Conference, Hague, The Netherlands, 24–26 September 2014; pp. 264–267. [Google Scholar]
- Maneki, S.; Maneki, S.A. Learning from the Enemy: The GUNMAN Project; United States Cryptologic History: Fort Meade, MD, USA, 2007.
- Birukawa, R.; Hayashi, Y.; Mizuki, T.; Sone, H. A study on an Effective Evaluation Method for EM Information Leakage without Reconstructing Screen. In Proceedings of the International Symposium and Exhibition on Electromagnetic Compatibility (EMC Europe 2019), Barcelona, Spain, 2–6 September 2019. [Google Scholar]
- Kubiak, I.; Przybysz, A. DVI (HDMI) and DisplayPort digital video interfaces in electromagnetic eavesdropping process. In Proceedings of the 2019 International Symposium on Electromagnetic Compatibility (EMC Europe 2019), Barcelona, Spain, 2–6 September 2019. [Google Scholar]
- Kubiak, I. Digital processing methods of images and signals in electromagnetic infiltration process. Image Process. Commun. 2014, 18, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, I.; Grzesiak, K.; Musiał, S.; Przybysz, A. A Raster Generator in an Electromagnetic Infiltration Process, Monograph; Publishing House of Military University of Technology: Bucharest, Romania, 2012. [Google Scholar]
- Kubiak, I. Methods of Analysis and Digital Processing of Images in the Electromagnetic Infiltration Process, Monograph; Publishing House of Military University of Technology: Warsaw, Poland, 2013. [Google Scholar]
- Kubiak, I.; Musiał, S. Hardware Raster Generator as a tool supporting of an electromagnetic infiltration. Telecommun. Rev. Telecommun. News 2011, 11, 1601–1607. [Google Scholar]
- Kobayashi, A. DisplayPort Ver.1.2 Overview. Available online: http://www.vesa.org/wp-content/uploads/2010/12/DisplayPort-DevCon-Presentation-DP-1.2-Dec-2010-rev-2b.pdf. (accessed on 6 December 2010).
- Balzarotti, D.; Cova, M.; Vigna, G. ClearShot: Eavesdropping on keyboard input from video. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 18–21 May 2008. [Google Scholar]
- Loughry, J. (“Oops! Had the silly thing in reverse”)—Optical injection attacks in through LED status indicators. In Proceedings of the International Symposium and Exhibition on Electromagnetic Compatibility (EMC Europe 2019), Barcelona, Spain, 2–6 September 2019. [Google Scholar]
- Loughry, J. Optical TEMPEST. In Proceedings of the International Symposium and Exhibition on Electromagnetic Compatibility (EMC Europe 2018), Amsterdam, The Netherlands, 27–30 August 2018. [Google Scholar]
- Kubiak, I. Impact of IT Devices Production Quality on the Level of Protection of Processed Information against the Electromagnetic Infiltration Process. Electronics 2019, 8, 1054. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, I.; Loughry, J. LED Arrays of Laser Printers as sources of Valuable Emissions for Electromagnetic Penetration Process. Electronics 2019, 8, 1078. [Google Scholar] [CrossRef] [Green Version]
- Ulas, C.; Asik, U.; Karadeniz, C. Analysis and reconstruction of laser printer information leakages in the media of electromagnetic radiation, power, and signal lines. Comput. Secur. 2016, 58, 250–267. [Google Scholar] [CrossRef]
6-bit | 8-bit | b-bit (Alter) | 10-bit | |
---|---|---|---|---|
A0 | R0 | R2 | R0 | R4 |
A1 | R1 | R3 | R1 | R5 |
A2 | R2 | R4 | R2 | R6 |
A3 | R3 | R5 | R3 | R7 |
A4 | R4 | R6 | R4 | R8 |
A5 | R5 | R7 | R5 | R9 |
A6 | G0 | G2 | G0 | G4 |
B0 | G1 | G3 | G1 | G5 |
B1 | G2 | G4 | G2 | G6 |
B2 | G3 | G5 | G3 | G7 |
B3 | G4 | G6 | G4 | G8 |
B4 | G5 | G7 | G5 | G9 |
B5 | B0 | B2 | B0 | B4 |
B6 | B1 | B3 | B1 | B5 |
C0 | B2 | B4 | B2 | B6 |
C1 | B3 | B5 | B3 | B7 |
C2 | B4 | B6 | B4 | B8 |
C3 | B5 | B7 | B5 | B9 |
C4 | HS | HS | HS | HS |
C5 | VS | VS | VS | VS |
C6 | DE | DE | DE | DE |
D0 | R0 | R0 | R2 | |
D1 | R1 | R1 | R3 | |
D2 | G0 | G0 | G2 | |
D3 | G1 | G1 | G3 | |
D4 | B0 | B0 | B2 | |
D5 | B1 | B1 | B3 | |
D6 | N/A | N/A | N/A | |
E0 | R0 | |||
E1 | R1 | |||
E2 | G0 | |||
E3 | G1 | |||
E4 | B0 | |||
E5 | B1 | |||
E6 | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, I.; Przybysz, A.; Musial, S. Possibilities of Electromagnetic Penetration of Displays of Multifunction Devices. Computers 2020, 9, 62. https://doi.org/10.3390/computers9030062
Kubiak I, Przybysz A, Musial S. Possibilities of Electromagnetic Penetration of Displays of Multifunction Devices. Computers. 2020; 9(3):62. https://doi.org/10.3390/computers9030062
Chicago/Turabian StyleKubiak, Ireneusz, Artur Przybysz, and Slawomir Musial. 2020. "Possibilities of Electromagnetic Penetration of Displays of Multifunction Devices" Computers 9, no. 3: 62. https://doi.org/10.3390/computers9030062
APA StyleKubiak, I., Przybysz, A., & Musial, S. (2020). Possibilities of Electromagnetic Penetration of Displays of Multifunction Devices. Computers, 9(3), 62. https://doi.org/10.3390/computers9030062