Evasion Differential Games in the Space of Square Summable Sequences
Abstract
:1. Introduction
2. Preliminaries
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isaacs, R. Differential Games; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Pontryagin, L.S. On the theory of differential games Russian Math. Surveys 1966, 21, 193–246. [Google Scholar]
- Başar, T.; Olsder, G. Dynamic Noncooperative Game Theory; Reprint of the second (1995) edition; Classics in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1999; Volume 23, pp. xvi+519. [Google Scholar]
- Battistini, S. A Stochastic Characterization of the Capture Zone in Pursuit-Evasion Games. Games 2020, 11, 54. [Google Scholar] [CrossRef]
- Buckdahn, R.; Cardaliaguet, P.; Quincampoix, M. Some recent aspects of differential game theory. Dyn. Games Appl. 2011, 1, 74–114. [Google Scholar] [CrossRef]
- Friedman, A. Differential Games; John Wiley and Sons: New York, NY, USA, 1971. [Google Scholar]
- Hajek, O. Pursuit Games: An Introduction to The theory and Applications of Differential Games of Pursuit and Evasion; Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1975; Volume 120. [Google Scholar]
- Krasovskii, N.N.; Subbotin, A.I. Game-Theoretical Control Problems; Springer: New York, NY, USA, 1988. [Google Scholar]
- Petrosyan, L.A. Differential Games of Pursuit; World Scientific: Singapore; London, UK, 1993. [Google Scholar]
- Croft, H.T. Lion and man: A postscript. J. Lond. Math. Soc. 1964, 39, 385–390. [Google Scholar] [CrossRef]
- Ivanov, R.P. Simple pursuit-evasion on a compact convex set. Dokl. Akad. Nauk. SSSR 1980, 254, 1318–1321. [Google Scholar]
- Berkovitz, L.D. Differential game of generalized pursuit and evasion. SIAM J. Contr. 1986, 24, 361–373. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Başar, T.; Hovakimyan, N. A visibility-based pursuit-evasion game with a circular obstacle. J. Optim. Theory Appl. 2016, 171, 1071–1082. [Google Scholar] [CrossRef]
- Konstantinidis, G.; Kehagias, A. Simultaneously moving cops and robbers. Theoret. Comput. Sci. 2016, 645, 48–59. [Google Scholar] [CrossRef]
- Scott, W.L.; Leonard, N.E. Optimal evasive strategies for multiple interacting agents with motion constraints. Autom. J. IFAC 2018, 94, 26–34. [Google Scholar] [CrossRef]
- Sun, W.; Tsiotras, P. An optimal evader strategy in a two-pursuer one-evader problem. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 4266–4271. [Google Scholar]
- Alexander, S.; Bishop, R.; Christ, R. Capture pursuit games on unbounded domain. Lënseignement Mathëmatique 2009, 55, 103–125. [Google Scholar] [CrossRef]
- Pontryagin, L.S.; Mischenko, Y.F. The problem of evasion in linear differential games. Differ. Uravn. 1971, 7, 436–445. [Google Scholar]
- Mishchenko, E.F.; Nikol’skii, M.S.; Satimov, N.Y. Avoidance encounter problem in differential games of many persons. Trudy MIAN USSR 1977, 143, 105–128. [Google Scholar]
- Chernous’ko, F.L. A Problem of Evasion of Several Pursuers. Prikl. Mat. Mekh. 1976, 40, 14–24. [Google Scholar]
- Chernous’ko, F.L.; Zak, V.L. On differential games of evasion from many pursuers. J. Optim. Theory Appl. 1985, 46, 461–470. [Google Scholar] [CrossRef]
- Zak, V.L. On a problem of evading many pursuers. J. Appl. Maths Mekhs 1978, 43, 492–501. [Google Scholar] [CrossRef]
- Zak, V.L. Problem of Evasion from Many Pursuers Controlled by Acceleration. Izv. Akad. Nauk. SSSR Tekhnicheskaya Kibern. 1981, 2, 57–71. [Google Scholar]
- Zak, V.L. The Problem of Evading Several Pursuers in the Presence of a State Constraint. Sov. Math. Dokl. 1982, 26, 190–193. [Google Scholar]
- Borowko, P.; Rzymowski, W.; Stachura, A. Evasion from many pursuers in the simple motion case. J. Math. Anal. Appl. 1988, 135, 75–80. [Google Scholar] [CrossRef]
- Chodun, W. Differential games of evasion with many pursuers. J. Math. Anal. Appl. 1986, 142, 370–389. [Google Scholar] [CrossRef]
- Pshenichnii, B.N. Simple pursuit by several objects. Cybern. Syst. Anal. 1976, 12, 145–146. [Google Scholar] [CrossRef]
- Pshenichnii, B.N.; Chikrii, A.A.; Rappoport, J.S. An efficient method of solving differential games with many pursuers. Dokl. Akad. Nauk SSSR 1981, 256, 530–535. (In Russian) [Google Scholar]
- Bannikov, A.S.; Petrov, N.N. To non-stationary group pursuit problem. Tr. Inst. Math. Mech. UrO RAN 2010, 16, 40–51. [Google Scholar] [CrossRef]
- Ibragimov, G.; Ferrara, M.; Kuchkarov, A.; Pansera, B.A. Simple motion evasion differential game of many pursuers and evaders with integral constraints. Dyn. Games Appl. 2018, 8, 352–378. [Google Scholar] [CrossRef]
- Vagin, D.; Petrov, N. The problem of the pursuit of a group of rigidly coordinated evaders. J. Comput. Syst. Sci. Int. 2001, 40, 749–753. [Google Scholar]
- Azamov, A.A.; Bakhramov, J.A.; Akhmedov, O.S. On the Chernousko time-optimal problem for the equation of heat conductivity in a rod. Ural. Math. J. 2019, 5, 13–23. [Google Scholar] [CrossRef]
- Azamov, A.; Ibragimov, G.; Mamayusupov, K.; Ruziboev, M. On the stability and null-controllability of an infinite system of linear differential equations. J. Dyn. Control Syst. 2021, 29, 595–605. [Google Scholar] [CrossRef]
- Ruziboev, M.; Ibragimov, G.; Mamayusupov, K.; Khaitmetov, A.; Pansera, B.A. On a linear differential game in the Hilbert Space ℓ2. Mathematics 2023, 11, 49–87. [Google Scholar] [CrossRef]
- Aminov, B.R.; Chilin, V.I. Isometries of real subspaces of self-adjoint operators in Banach symmetric ideals. Vladikavkaz Math. J. 2019, 21, 11–24. [Google Scholar]
- Ibragimov, G.I.; Salimi, M.; Amini, M. Evasion from many pursuers in simple motion differential game with integral constraints. Eur. J. Oper. Res. 2012, 218, 505–511. [Google Scholar] [CrossRef]
- Ibragimov, G.; Ruziboev, M.; Zaynabiddinov, I.; Pansera, B.A. Evasion differential game of multiple pursuers and a single evader with geometric constraints in ℓ2. Games 2023, 14, 52. [Google Scholar] [CrossRef]
- Alias, I.A.; Ibragimov, G.; Rakhmanov, A. Evasion Differential Game of Infinitely Many Evaders from Infinitely Many Pursuers in Hilbert Space. Dyn. Games Appl. 2017, 7, 347–359. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, X. Optimal control of multifactor uncertain system with jumps. Int. J. Control 2022, 96, 1272–1287. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, X. Optimistic value models of saddle point equilibrium control problems for uncertain jump systems. Optimization 2024, 1–34. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, X. Uncertain stochastic hybrid differential game system with V-n jumps:Saddle point equilibrium, strategies and application to advertising duopoly game. Chaos. Soliton. Fract 2023, 171, 113490. [Google Scholar] [CrossRef]
- Kumkov, S.S.; Le Ménec, S.; Patsko, V.S. Zero-sum pursuit-evasion differential games with many objects: Survey of publications. Dyn. Games Appl. 2017, 7, 609–633. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Hasim, R.M. Pursuit and evasion differential games in Hilbert space. Int. Game Theory Rev. 2010, 12, 239–251. [Google Scholar] [CrossRef]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aminov, B.; Ruziboev, M. Evasion Differential Games in the Space of Square Summable Sequences. Games 2024, 15, 38. https://doi.org/10.3390/g15060038
Aminov B, Ruziboev M. Evasion Differential Games in the Space of Square Summable Sequences. Games. 2024; 15(6):38. https://doi.org/10.3390/g15060038
Chicago/Turabian StyleAminov, Bekhzod, and Marks Ruziboev. 2024. "Evasion Differential Games in the Space of Square Summable Sequences" Games 15, no. 6: 38. https://doi.org/10.3390/g15060038
APA StyleAminov, B., & Ruziboev, M. (2024). Evasion Differential Games in the Space of Square Summable Sequences. Games, 15(6), 38. https://doi.org/10.3390/g15060038