Valorization of Glycerol through the Enzymatic Synthesis of Acylglycerides with High Nutritional Value
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 1,3-Dicaproylglycerol
Acyl Migration Promoted for Lipase
2.2. Immobilization of Lipase from Burkholderia on Chitosan
2.3. Esterification of Dicaprin and Palmitic Acid Catalyzed by BCL/Chitosan
2.3.1. Model Fitting and ANOVA
Consumed Reagents
Products Generated by Hydrolysis
Products Generated by Hydrolysis and Subsequent Esterification
Products Generated from the Esterification of Dicaprin with Palmitic Acid
Products Generated from the Esterification of Dicaprin and Palmitic Acid
3. Materials and Methods
3.1. Materials
3.2. Adsorption of Glycerol on Silica Gel
3.3. Enzymatic Esterification of Glycerol and Capric Acid
3.4. Immobilization of Burkholderia Cepacia Lipase
3.5. Dicaprin Esterification
3.6. Experimental Factorial Design and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Stasiak-Różańska, L.; Berthold-Pluta, A.; Dikshit, P.K. Valorization of Waste Glycerol to Dihydroxyacetone with Biocatalysts Obtained from Gluconobacter oxydans. Appl. Sci. 2018, 8, 2517. [Google Scholar] [CrossRef] [Green Version]
- Arcanjo, M.R.A.; da Silva, I.J., Jr.; Cavalcante, C.L., Jr.; Iglesias, J.; Morales, G.; Paniagua, M.; Melero, J.A.; Vieira, R.S. Glycerol valorization: Conversion to lactic acid by heterogeneous catalysis and separation by ion exchange chromatography. Biofuels Bioprod. Bioref. 2019. [Google Scholar] [CrossRef]
- Nitayavardhana, S.; Khanal, S.K. Biodiesel-derived crude glycerol bioconversion to animal feed: A sustainable option for a biodiesel refinery. Bioresour. Technol. 2011, 102, 5808–5814. [Google Scholar] [CrossRef]
- Bala-Litwiniak, A.; Radomiak, H. Pissibility of the utilization of waste glycerol as an addition to wood pellets. Waste Biomass Valoriz. 2018, 9, 1–7. [Google Scholar]
- Jin, X.; Zhao, M.; Zeng, C.; Yan, W.; Song, Z.; Thapa, P.S. Oxidation of glycerol to dicarboxylic acids using cobalt catalysts. ACS Catal. 2016, 6, 4576–4583. [Google Scholar] [CrossRef]
- Caia, F.; Pan, D.; Ibrahim, J.J.; Zhanga, J.; Xiao, G. Hydrogenolysis of glycerol over supported bimetallic Ni/Cu catalysts with and without external hydrogen addition in a fixed-bed flow reactor. Appl. Catal. A Gen. 2018, 564, 172–182. [Google Scholar] [CrossRef]
- Li, D.; Zhou, Z.; Qin, J.; Li, Y.; Liu, Z.; Wu, W. Cu-WOx-TiO2 catalysts by modified evaporation-induced self-assembly method for glycerol Hydrogenolysis to 1,3-Propanediol. ChemistrySelect 2018, 3, 2479–2486. [Google Scholar] [CrossRef]
- Samudrala, S.P.; Bhattacharya, S. Toward the sustainable synthesis of propanols from renewable glycerol over MoO3-Al2O3 supported palladium catalysts. Catalysts 2018, 8, 385. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, L.C.T.; Pires, M.S.; Corrêa, S.; Oliveira, L.C.A.; Ramalho, T.C. Oxidative dehydration reaction of glycerol into acrylic acid: A first-principles predction of structural and thermodynamic parameters of a bifuncional catalyst. Chem. Phys. Lett. 2016, 651, 161–167. [Google Scholar] [CrossRef]
- Sánchez, G.; Gaikwad, V.; Holdsworth, C.; Dlugogorski, B.; Kennedy, E.; Stockenhuber, M. Catalytic conversion of glycerol to polymers in the presence of ammonia. Chem. Eng. J. 2016, 291, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Kong, P.S.; Pérès, Y.; Daud, W.M.A.W.D.; Cognet, P.; Aroua, M.K. Esterification of glycerol with oleic acid over hydrophobic zirconia-silica acid catalyst and commercial acid catalyst: Optimization and influence of catalyst acidity. Front. Chem. 2019, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, D.A.; Tonetto, G.M.; Ferreira, M.L. Screening of Lipases with Unusual High Activity in the sn-2 Esterification of 1,3-Dicaprin under Mild Operating Conditions. J. Agric. Food Chem. 2017, 65, 5010–5017. [Google Scholar] [CrossRef] [PubMed]
- Høy, C.-E.; Xu, X. Structured triacylglycerols. In Structured and Modified Lipids; Gunstone, F.D., Ed.; Marcel Dekker: New York, NY, USA, 2001; pp. 209–240. [Google Scholar]
- Lai, O.M.; Low, C.T.; Akoh, C.C. Lipase-catalyzed acidolysis of palm olein and caprylic acid in a continuous bench-scale packed bed bioreactor. Food Chem. 2005, 92, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Mascioli, E.A.; Babayan, V.K.; Bistrian, B.R.; Blackburn, G.L. Novel triglycerides for special medical purposes. J. Parenter. Enter. Nutr. 1988, 12, 127S–132S. [Google Scholar] [CrossRef] [PubMed]
- Marten, B.; Pfeuffer, M.; Schrezenmeir, J. Medium-chain triglycerides. Int. Dairy J. 2006, 16, 1374–1382. [Google Scholar] [CrossRef]
- Kasai, M.; Nosaka, N.; Maki, H.; Negishi, S.; Aoyama, T.; Nakamura, M.; Kondo, K. Effect of dietary medium-and long-chain triacylglycerols (MLCT) on accumulation of body fat in healthy humans. Asia Pac. J. Clin. Nutr. 2003, 12, 151–160. [Google Scholar]
- Matsuo, T.; Matsuo, M.; Taguchi, N.; Takeuchi, H. The thermic effect is greater for structured medium-and long-chain triacylglycerols versus long-chain triacylglycerols in healthy young women. Metabolism 2001, 50, 125–130. [Google Scholar] [CrossRef]
- Ogawa, A.; Nosaka, N.; Kasai, M.; Aoyama, T.; Okazaki, M.; Igarashi, O.; Kondo, K. Dietary medium-and long-chain triacylglycerols accelerate diet-induced thermogenesis in humans. J. Oleo Sci. 2007, 56, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, H.; Ogawa, A.; Kasai, M.; Aoyama, T. Effect of randomly interesterified triacylglycerols containing medium-and long-chain fatty acids on energy expenditure and hepatic fatty acid metabolism in rats. Biosci. Biotechnol. Biochem. 2005, 69, 1811–1818. [Google Scholar] [CrossRef] [Green Version]
- Feltes, M.M.; de Oliveira Pitol, L.; Correia, J.G.; Grimaldi, R.; Block, J.M.; Ninow, J.L. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic interesterification. Grasas y Aceites 2009, 60, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Foresti, M.L.; Ferreira, M.L. Lipase-catalyzed acidolysis of tripalmitin with capric acid in organic solvent medium: Analysis of the effect of experimental conditions through factorial design and analysis of multiple responses. Enzym. Microb. Technol. 2010, 46, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Páez, B.C.; Medina, A.R.; Rubio, F.C.; Moreno, P.G.; Grima, E.M. Production of structured triglycerides rich in n-3 polyunsaturated fatty acids by the acidolysis of cod liver oil and caprylic acid in a packed-bed reactor: Equilibrium and kinetics. Chem. Eng. Sci. 2002, 57, 1237–1249. [Google Scholar] [CrossRef]
- Rønne, T.H.; Pedersen, L.S.; Xu, X. Triglyceride selectivity of immobilized Thermomyces lanuginosa lipase in interesterification. J. Am. Oil Chem. Soc. 2005, 82, 737–743. [Google Scholar] [CrossRef]
- Rubin, M.; Moser, A.; Vaserberg, N.; Greig, F.; Levy, Y.; Spivak, H.; Lelcuk, S. Structured triacylglycerol emulsion, containing both medium-and long-chain fatty acids, in long-term home parenteral nutrition: A double-blind randomized cross-over study. Nutrition 2000, 16, 95–100. [Google Scholar] [CrossRef]
- Xu, X.; Fomuso, L.B.; Akoh, C.C. Synthesis of structured triacylglycerols by lipase-catalyzed acidolysis in a packed bed bioreactor. J. Agric. Food Chem. 2000, 48, 3–10. [Google Scholar] [CrossRef]
- Schmid, U.; Bornscheuer, U.T.; Soumanou, M.M.; McNeill, G.P.; Schmid, R.D. Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides. J. Am. Oil Chem. Soc. 1998, 75, 1527–1531. [Google Scholar] [CrossRef]
- del Mar Muñío, M.; Robles, A.; Esteban, L.; González, P.A.; Molina, E. Synthesis of structured lipids by two enzymatic steps: Ethanolysis of fish oils and esterification of 2-monoacylglycerols. Process Biochem. 2009, 44, 723–730. [Google Scholar] [CrossRef]
- Kawashima, A.; Shimada, Y.; Yamamoto, M.; Sugihara, A.; Nagao, T.; Komemushi, S.; Tominaga, Y. Enzymatic synthesis of high-purity structured lipids with caprylic acid at 1,3-positions and polyunsaturated fatty acid at 2-position. J. Am. Oil Chem. Soc. 2001, 78, 611–616. [Google Scholar] [CrossRef]
- Lee, K.T.; Foglia, T.A.; Oh, M.J. Medium–long–medium and medium–long–long chain acyl glycerols from beef tallow and caprylic acid. J. Food Sci. 2002, 67, 1016–1020. [Google Scholar] [CrossRef]
- Nunes, P.A.; Pires-Cabral, P.; Guillén, M.; Valero, F.; Luna, D.; Ferreira-Dias, S. Production of MLM-type structured lipids catalyzed by immobilized heterologous Rhizopus oryzae lipase. J. Am. Oil Chem. Soc. 2011, 88, 473–480. [Google Scholar] [CrossRef]
- Christensen, M.S.; Høy, C.E.; Becker, C.C.; Redgrave, T.G. Intestinal Absorption and Lymphatic Transport of Eicosapentaenoic (EPA), Docosahexaenoic (DHA), and Decanoic Acids: Dependence on Intramolecular Triacylglycerol Structure. Am. J. Clin. Nutr. 1995, 61, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.S.; Müllertz, A.; Høy, C.E. Absorption of Triglycerides with Defined or Random Structure by Rats with Biliary and Pancreatic Diversion. Lipids 1995, 30, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Aoe, S.; Yamamura, J.; Matsuyama, H.; Hase, M.; Shiota, M.; Miura, S. The positional distribution of dioleoyl-palmitoyl glycerol influences lymph chylomicron transport, composition and size in rats. J. Nutr. 1997, 127, 1269–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lien, E.L.; Boyle, F.G.; Yuhas, R.; Tomarelli, R.M.; Quinlan, P. The Effect of Triglyceride Positional Distribution on Fatty Acid Absorption in Rats. J. Pediatr. Gastroenterol. Nutr. 1997, 25, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Bornscheuer, U.T.; Adamczak, M.; Soumanou, M.M. Lipase-Catalyzed Synthesis of Modified Lipids. In Lipids as Constituents of Functional Foods; Gunstone, F.D., Ed.; PJ Barnes & Associates: Bridgwater, UK, 2002; pp. 149–182. [Google Scholar]
- Xu, X. Production of Specific-Structured Triacylglycerols by Lipase-Catalyzed Reactions: A Review. Eur. J. Lipid Sci. Technol. 2000, 1002, 287–303. [Google Scholar] [CrossRef]
- Akoh, C.C.; Jennings, B.H.; Lillard, D.A. Enzymatic Modification of Trilinolein: Incorporation of n-3 Polyunsaturated Fatty Acids. J. Am. Oil Chem. Soc. 1995, 72, 1317–1321. [Google Scholar] [CrossRef]
- Shimada, Y.; Sugihara, A.; Nakano, H.; Yokota, T.; Nagao, T.; Komemushi, S.; Tominaga, Y. Production of Structured Lipids Containing Essential Fatty Acids by Immobilized Rhizopus delemar Lipase. J. Am. Oil Chem. Soc. 1996, 73, 1415–1420. [Google Scholar] [CrossRef]
- Fomuso, L.B.; Akoh, C.C. Structured Lipids: Lipase-Catalyzed Interesterification of Tricaproin and Trilinolein. J. Am. Oil Chem. Soc. 1998, 75, 405–410. [Google Scholar] [CrossRef]
- Soumanou, M.M.; Bornscheuer, U.T.; Menge, U.; Schmid, R.D. Synthesis of Structured Triglycerides from Peanut Oil with Immobilized Lipase. J. Am. Oil Chem. Soc. 1997, 74, 427–433. [Google Scholar] [CrossRef]
- Blasi, F.; Maurelli, S.; Cossignani, L.; D’Arco, G.; Simonetti, M.S.; Damiani, P. Study of some experimental parameters in the synthesis of triacylglycerols with CLA isomers and structural analysis. J. Am. Oil Chem. Soc. 2009, 86, 531–537. [Google Scholar] [CrossRef]
- Wongsakul, S.; Aran, H.; Bornscheuer, U.T. Lipase-catalyzed synthesis of structured triacylglycerides from 1, 3-diacylglycerides. J. Am. Oil Chem. Soc. 2004, 81, 151–155. [Google Scholar] [CrossRef]
- Zhang, H.; Önal, G.; Wijesundera, C.; Xu, X. Practical synthesis of 1,3-oleoyl 2-docosahexaenoylglycerol by lipase-catalyzed reactions: An evaluation of different reaction routes. Process Biochem. 2009, 44, 534–539. [Google Scholar] [CrossRef]
- D’Alonzo, R.P.; Kozarek, W.J.; Wade, R.L. Glyceride Composition of Processed Fats and Oils As Determined by Glass Capillary Gas Chromatography. J. Am. Oil Chem. Soc. 1982, 59, 292–295. [Google Scholar] [CrossRef]
- Nagao, T.; Watanabe, H.; Goto, N.; Onizawa, K.; Taguchi, H.; Matsuo, N. Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men in a Double-Blind Controlled Trial. J. Nutr. 2000, 130, 792–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Nabey, A.A.; Shehata, A.A.Y.; Ragab, M.H.; Rossell, J.B. Glycerides of cottonseed oils from Egyptian and other varieties. Riv. Ital. Sostanze Grasse 1992, 69, 443–447. [Google Scholar]
- Hara, K.; Onizawa, K.; Honda, H.; Ide, T.; Otsuji, K.; Murata, M. Dietary Diacylglycerol-Dependent Reduction in Serum Triacylglycerol Concentration in Rats. Ann. Nutr. Metab. 1993, 37, 185–191. [Google Scholar] [CrossRef]
- Murata, M.; Hara, K.; Ide, T. Alteration by Diacylglycerols of the Transport and Fatty Acid Composition of Lymph Chylomicrons in Rats. Biosci. Biotechnol. Biochem. 1994, 58, 1416–1419. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Onizawa, K.; Taguchi, H.; Kobori, M.; Chiba, H.; Naito, S.; Matuo, N.; Yasukawa, T.; Hattori, M.; Shimasaki, H. Nutritional Characterization of Diacylglycerols in Rats. J. Oleo Sci. 1997, 46, 301–307. [Google Scholar]
- Brüschweiler, H.; Dieffenbacher, A. Determination of mono-and diglycerides by capillary gas chromatography: Results of a collaborative study and the standardized method. Pure Appl. Chem. 1991, 63, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, J.B.; Xu, X.; Mu, H. Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases. J. Am. Oil Chem. Soc. 2005, 82, 329–334. [Google Scholar] [CrossRef]
- Watanabe, T.; Shimizu, M.; Sugiura, M.; Sato, M.; Kohori, J.; Yamada, N.; Nakanishi, K. Optimization of reaction conditions for the production of DAG using immobilized 1, 3-regiospecific lipase lipozyme RM IM. J. Am. Oil Chem. Soc. 2003, 80, 1201–1207. [Google Scholar] [CrossRef]
- Sánchez, D.A.; Tonetto, G.M.; Ferreira, M.L. Enzymatic synthesis of 1,3-dicaproyglycerol by esterification of glycerol with capric acid in an organic solvent system. J. Mol. Catal. B Enzym. 2014, 100, 7–18. [Google Scholar] [CrossRef]
- Laszlo, J.A.; Compton, D.L.; Vermillion, K.E. Acyl Migration Kinetics of Vegetable Oil 1,2-Diacylglycerols. J. Am. Oil Chem. Soc. 2008, 85, 307–312. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Fernandez-Lafuente, R. Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J. Mol. Catal. B Enzym. 2010, 66, 15–32. [Google Scholar] [CrossRef]
- Sánchez, D.A.; Tonetto, G.M.; Ferreira, M.L. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435. J. Biotechnol. 2016, 220, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Nicolás, P.; Lassalle, V.L.; Ferreira, M.L. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method. Enzym. Microb. Technol. 2017, 97, 97–103. [Google Scholar] [CrossRef]
- Besset, D.H. Object-Oriented Implementation of Numerical Methods: An Introduction with Java and Smalltalk, 1st ed.; Square Bracket Associates: Kehrsatz, Switzerland, 2001. [Google Scholar]
- Sánchez, D.A.; Tonetto, G.M.; Ferreira, M.L. Separation of Acylglycerides Obtained by Enzymatic Esterification Using Solvent Extraction. J. Am. Oil Chem. Soc. 2014, 91, 261–270. [Google Scholar] [CrossRef]
- Bornscheuer, U.; Reif, O.W.; Lausch, R.; Freitag, R.; Scheper, T.; Kolisis, F.N.; Menge, U. Lipase of Pseudomonas cepacia for biotechnological purposes: Purification, crystallization and characterization. Biochim. Biophys. Acta 1994, 1201, 55–60. [Google Scholar] [CrossRef]
- Schrag, J.D.; Li, Y.; Cygler, M.; Lang, D.; Burgdorf, T.; Hecht, H.J.; Strickland, L.C. The open conformation of a Pseudomonas lipase. Structure 1997, 5, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.H.; Wang, Z.Y.; Duan, Z.Q.; Zhao, X.J.; Chen, X.M.; Nie, L.H. An insight into the solvent effect on the positional selectivity of the immobilized lipase from Burkholderia cepacia in 1,3-diolein synthesis. RSC Adv. 2015, 5, 23122–23124. [Google Scholar] [CrossRef]
Experiment Number | Experimental Factors | Response Variables | ||||||
---|---|---|---|---|---|---|---|---|
G (mg) | B (mg) | T (°C) | XC (%) | σDAG (%) | CCG | CGC | GCC | |
1 | 50 | 20 | 40 | 38 | 74 | 5 | 92 | 3 |
2 | 150 | 30 | 50 | 66 | 70 | 4 | 92 | 4 |
3 | 250 | 20 | 40 | 55 | 83 | 10 | 83 | 7 |
4 | 250 | 40 | 40 | 67 | 76 | 17 | 80 | 4 |
5 | 250 | 40 | 60 | 75 | 71 | 9 | 71 | 20 |
6 | 150 | 30 | 50 | 67 | 72 | 5 | 94 | 1 |
7 | 250 | 20 | 60 | 73 | 76 | 5 | 93 | 2 |
8 | 50 | 20 | 60 | 45 | 58 | 8 | 86 | 5 |
9 | 50 | 40 | 60 | 55 | 33 | 3 | 33 | 64 |
10 | 50 | 40 | 40 | 40 | 56 | 3 | 56 | 40 |
Experiment Number | Experimental Factors | Reagents Consumed (μmoles) | ||||
---|---|---|---|---|---|---|
B (mg) | T (°C) | RM (mol/mol) | CCG | CGC | P | |
1 | 150 | 60 | 1 | 11.2 | 57.3 | 40.0 |
2 | 50 | 60 | 3 | 11.6 | 43.2 | 37.7 |
3 | 50 | 60 | 1 | 10.4 | 38.5 | 31.3 |
4 | 150 | 40 | 1 | 10.3 | 52.0 | 47.5 |
5 | 50 | 40 | 3 | 11.5 | 31.9 | 38.2 |
6 | 150 | 60 | 3 | 12.4 | 57.1 | 62.9 |
7 | 100 | 50 | 2 | 11.7 | 51.9 | 50.6 |
8 | 150 | 40 | 3 | 12.0 | 53.4 | 66.3 |
9 | 100 | 50 | 2 | 11.9 | 53.3 | 49.8 |
10 | 50 | 40 | 1 | 11.5 | 34.6 | 35.1 |
Experiment Number | Experimental Factors | Products Generated (μmoles) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B (mg) | T (°C) | RM (mol/mol) | GGG | C | PGG + GPG | CPG + CGP | CCC | PGP + PPG | CPC + CCP | CPP | |
1 | 150 | 60 | 1 | 25.3 | 65.3 | 1.9 | 10.5 | 6.7 | 2.5 | 17.7 | 2.5 |
2 | 50 | 60 | 3 | 15.9 | 50.7 | 2.5 | 12.6 | 3.6 | 1.6 | 17.2 | 1.1 |
3 | 50 | 60 | 1 | 8.9 | 24.9 | 2.2 | 10.2 | 11.0 | 1.2 | 15.0 | 0.7 |
4 | 150 | 40 | 1 | 16.7 | 56.2 | 2.4 | 13.4 | 3.7 | 3.1 | 20.7 | 2.4 |
5 | 50 | 40 | 3 | 1.4 | 19.3 | 2.4 | 13.4 | 6.7 | 1.7 | 16.2 | 1.4 |
6 | 150 | 60 | 3 | 11.3 | 53.8 | 2.9 | 14.7 | 7.2 | 5.8 | 21.3 | 6.2 |
7 | 100 | 50 | 2 | 18.1 | 68.4 | 2.9 | 16.2 | 1.3 | 3.9 | 17.8 | 2.9 |
8 | 150 | 40 | 3 | 7.0 | 49.5 | 2.6 | 19.1 | 3.3 | 5.7 | 22.8 | 4.7 |
9 | 100 | 50 | 2 | 20.8 | 71.6 | 3.0 | 17.0 | 1.2 | 3.8 | 17.0 | 2.7 |
10 | 50 | 40 | 1 | 6.1 | 25.6 | 2.3 | 13.4 | 8.3 | 1.9 | 14.1 | 0.6 |
Experiment Number | Experimental Factors | 1,3-Dicaprin Conversión (%) | Valuable Acylglycerides (%) a | Valuable Acylglycerides (%) b | ||
---|---|---|---|---|---|---|
B (mg) | T (°C) | RM (mol/mol) | ||||
1 | 150 | 60 | 1 | 90 | 68.1 | 80.9 |
2 | 50 | 60 | 3 | 68 | 54.6 | 88.4 |
3 | 50 | 60 | 1 | 60 | 52.4 | 89.2 |
4 | 150 | 40 | 1 | 81 | 62.1 | 81.6 |
5 | 50 | 40 | 3 | 50 | 47.8 | 90.0 |
6 | 150 | 60 | 3 | 89 | 65.9 | 76.2 |
7 | 100 | 50 | 2 | 81 | 60.5 | 81.0 |
8 | 150 | 40 | 3 | 84 | 64.5 | 79.5 |
9 | 100 | 50 | 2 | 83 | 62.4 | 81.2 |
10 | 50 | 40 | 1 | 54 | 49.7 | 90.3 |
Response | Equation | Eq. n | R2 (%) | p-Value | F-Value |
---|---|---|---|---|---|
1,3-dicaprin conversion | (2) | 97.0 | 0.0001 | 64.15 | |
1,2-dicarpin conversion | (3) | 88.1 | 0.0157 | 9.23 | |
palmitic acid conversion | (4) | 99.1 | 0.0000 | 140.8 | |
capric acid generation | (5) | 92.6 | 0.005 | 15.6 | |
glycerol generation | (6) | 91.2 | 0.03 | 8.3 | |
monopalmitin generation | (7) | 96.4 | 0.0008 | 33.5 | |
CPG + CGP generation | (8) | 95.9 | 0.0011 | 29.5 | |
dipalmitin generation | (9) | 99.9 | 0.0001 | 667 | |
tricaprin generation | (10) | 93.7 | 0.0163 | 11.9 | |
CPP generation | (11) | 96.4 | 0.0000 | 94.1 | |
CPC + CCP generation | (12) | 96.2 | 0.0001 | 50.4 | |
valuable glycerides a | (13) | 97.4 | 0.0000 | 75.19 | |
valuable glycerides b | (14) | 99.7 | 0.0000 | 237.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, D.A.; Tonetto, G.M.; Ferreira, M.L. Valorization of Glycerol through the Enzymatic Synthesis of Acylglycerides with High Nutritional Value. Catalysts 2020, 10, 116. https://doi.org/10.3390/catal10010116
Sánchez DA, Tonetto GM, Ferreira ML. Valorization of Glycerol through the Enzymatic Synthesis of Acylglycerides with High Nutritional Value. Catalysts. 2020; 10(1):116. https://doi.org/10.3390/catal10010116
Chicago/Turabian StyleSánchez, Daniel Alberto, Gabriela Marta Tonetto, and María Luján Ferreira. 2020. "Valorization of Glycerol through the Enzymatic Synthesis of Acylglycerides with High Nutritional Value" Catalysts 10, no. 1: 116. https://doi.org/10.3390/catal10010116
APA StyleSánchez, D. A., Tonetto, G. M., & Ferreira, M. L. (2020). Valorization of Glycerol through the Enzymatic Synthesis of Acylglycerides with High Nutritional Value. Catalysts, 10(1), 116. https://doi.org/10.3390/catal10010116