Adsorption Behavior and Electron Structure Engineering of Pd-Based Catalysts for Acetylene Hydrochlorination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performance of Pd-Based Catalysts
2.2. Characterization of Pd-Based Catalysts
2.3. Stability and Coke Deposition of Pd-2A-IL/AC Catalyst
2.4. DFT Calculation
2.5. Insights into Pd-2A-IL/AC Catalyst
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Johnston, P.; Carthey, N.; Hutchings, G.J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. J. Am. Chem. Soc. 2015, 137, 14548–14557. [Google Scholar] [CrossRef] [PubMed]
- Malta, G.; Kondrat, S.A.; Freakley, S.J.; Davies, C.J.; Dawson, S.; Liu, X.; Lu, L.; Dymkowski, K.; Fernandez-Alonso, F.; Mukhopadhyay, S. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study. ACS Catal. 2018, 8, 8493–8505. [Google Scholar] [CrossRef] [Green Version]
- Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev. 2014, 114, 1743–1760. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Xu, Y.; Liu, Z. Heterogeneous non-mercury catalysts for acetylene hydrochlorination progress, challenges, and opportunities. Green Chem. 2018, 20, 2412–2427. [Google Scholar] [CrossRef]
- Lin, R.; Amrute, A.P.; Perez-Ramirez, J. Halogen-mediated conversion of hydrocarbons to commodities. Chem. Rev. 2017, 117, 4182–4247. [Google Scholar] [CrossRef]
- Lan, G.; Wang, Y.; Qiu, Y.; Wang, X.; Liang, J.; Han, W.; Tang, H.-D.; Liu, H.; Liu, J.; Li, Y. Wheat flour derived N-doped mesoporous carbons extrudate as superior metal-free catalysts for acetylene hydrochlorination. Chem. Commun. 2017, 54, 623–626. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Hutchings, G.J. Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. Chem. Commun. 2008, 10, 1148–1164. [Google Scholar] [CrossRef]
- Shang, S.; Zhao, W.; Wang, Y.; Li, X.; Zhang, J.; Han, Y.; Li, W. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination. ACS Catal. 2017, 7, 3510–3520. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Jin, Y.; Sheng, W.; Hui, M.; Wang, X.; Zhang, J. Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Appl. Catal. B Environ. 2016, 189, 56–64. [Google Scholar] [CrossRef]
- Panova, S.A.; Shestakov, G.K.; Temkin, O.N. Supported liquid-phase rhodium catalyst for acetylene hydrochlorination. J. Chem. Soc. Chem. Commun. 1994, 7, 977. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, T.; Di, X.; Xu, J.; Gu, S.; Zhang, Q.; Ni, J.; Li, X. Activated carbon supported ternary gold-cesium(I)-indium(III) catalyst for the hydrochlorination of acetylene. Catal. Sci. Technol. 2015, 5, 4973–4984. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, J.; Xu, J.; Ni, J.; Zhang, T.; Xu, X.; Li, X. Activated-carbon-supported gold-cesium(I) as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride. ChemPlusChem 2015, 80, 196–201. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, T.; Di, X.; Xu, J.; Xu, J.; Feng, F.; Ni, J.; Li, X. Nitrogen-modified activated carbon supported bimetallic gold-cesium(I) as highly active and stable catalyst for the hydrochlorination of acetylene. RSC Adv. 2015, 5, 6925–6931. [Google Scholar] [CrossRef]
- Li, J.; Fan, J.; Ali, S.; Lan, G.; Tang, H.; Han, W.; Liu, H.; Li, B.; Li, Y. The origin of the extraordinary stability of mercury catalysts on the carbon support: the synergy effects between oxygen groups and defects revealed from a combined experimental and DFT study. Chin. J. Catal. 2019, 40, 141–146. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhao, J.; Di, X.; Di, S.; Wang, B.; Yue, Y.; Sheng, G.; Lai, H.; Guo, L.; Wang, H.; et al. Carbon supported perovskite-like CsCuCl3 nanoparticles: A highly active and cost-effective heterogeneous catalyst in the hydrochlorination of acetylene to vinyl chloride. Catal. Sci. Technol. 2018, 8, 2901–2908. [Google Scholar] [CrossRef]
- Krasnyakova, T.V.; Zhikharev, I.V.; Mitchenko, R.S.; Burkhovetski, V.I.; Korduban, A.M.; Kryshchuk, T.V.; Mitchenko, S.A. Acetylene catalytic hydrochlorination over mechanically pre-activated K2PdCl4 salt: A study of the reaction mechanism. J. Catal. 2012, 288, 33–43. [Google Scholar] [CrossRef]
- Qin, G.; Song, Y.; Jin, R.; Shi, J.; Yu, Z.; Cao, S. Gas-liquid acetylene hydrochlorination under nonmercuric catalysis using ionic liquids as reaction media. Green Chem. 2011, 13, 1495–1498. [Google Scholar] [CrossRef]
- Zhao, W.; Zhu, M.; Dai, B. Cobalt-nitrogen-activated carbon as catalyst in acetylene hydrochlorination. Catal. Commun. 2017, 98, 22–25. [Google Scholar] [CrossRef]
- Wang, B.; Lai, H.; Yue, Y.; Sheng, G.; Deng, Y.; He, H.; Guo, L.; Zhao, J.; Li, X. Zeolite supported ionic liquid catalysts for the hydrochlorination of acetylene. Catalysts 2018, 8, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yu, Y.; Xu, X.; Di, S.; Wang, B.; Xu, H.; Ni, J.; Guo, L.; Pan, Z.; Li, X. Stabilizing Au(III) in supported-ionic-liquid-phase (SILP) catalyst using CuCl2 via a redox mechanism. Appl. Catal. B Environ. 2017, 206, 175–183. [Google Scholar] [CrossRef]
- Li, X.; Pan, X.; Yu, L.; Ren, P.; Wu, X.; Sun, L.; Jiao, F.; Bao, X. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nat. Commun. 2014, 5, 3688–3695. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Kaiser, S.K.; Hauert, R.; Pérez-Ramírez, J. Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination. ACS Catal. 2018, 8, 1114–1121. [Google Scholar] [CrossRef]
- Song, Z.; Liu, G.; He, D.; Pang, X.; Tong, Y.; Wu, Y.; Yuan, D.; Liu, Z.; Xu, Y. Acetylene hydrochlorination over 13X zeolite catalysts at high temperature. Green Chem. 2016, 18, 5994–5998. [Google Scholar] [CrossRef]
- Zhao, J.; Gu, S.; Xu, X.; Zhang, T.; Di, X.; Pan, Z.; Li, X. Promotional effect of copper(II) on an activated carbon supported low content bimetallic gold-cesium(I) catalyst in acetylene hydrochlorination. RSC Adv. 2015, 5, 101427–101436. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, B.; Yue, Y.; Di, S.; Zhai, Y.; He, H.; Sheng, G.; Lai, H.; Zhu, Y.; Guo, L.; et al. Towards a greener approach for the preparation of highly active gold/carbon catalyst for the hydrochlorination of ethyne. J. Catal. 2018, 365, 153–162. [Google Scholar] [CrossRef]
- Zhao, J.; Gu, S.; Xu, X.; Zhang, T.; Yu, Y.; Di, X.; Ni, J.; Pan, Y.; Li, X. Supported ionic-liquid-phase-stabilized Au(III) catalyst for acetylene hydrochlorination. Catal. Sci. Technol. 2016, 6, 3263–3270. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, B.; Xu, X.; Yu, Y.; Di, S.; Xu, H.; Zhai, Y.; He, H.; Guo, L.; Pan, Z.; et al. Alternative solvent to aqua regia to activate Au/AC catalysts for the hydrochlorination of acetylene. J. Catal. 2017, 350, 149–158. [Google Scholar] [CrossRef]
- Zhao, J.; Yue, Y.; Sheng, G.; Wang, B.; Lai, H.; Di, S.; Zhai, Y.; Guo, L.; Li, X. Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene. Chem. Eng. J. 2019, 360, 38–46. [Google Scholar] [CrossRef]
- He, H.; Zhao, J.; Wang, B.; Yue, Y.; Sheng, G.; Wang, Q.; Yu, L.; Hu, Z.-T.; Li, X. Design strategies for the development of a Pd-based acetylene hydrochlorination catalyst: Improvement of catalyst stability by nitrogencontaining ligands. RSC Adv. 2019, 9, 21557–21563. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Xu, J.; Xu, J.; Zhang, T.; Di, X.; Ni, j.; Li, X. Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support. Chem. Eng. J. 2015, 262, 1152–1160. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, J.; Yue, Y.; Sheng, G.; Lai, H.; Rui, J.; He, H.; Hu, Z.; Feng, F.; Zhang, Q.; et al. Carbon with surface-enriched nitrogen and sulfur supported au catalysts for acetylene hydrochlorination. ChemCatChem 2019, 11, 1002–1009. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wang, B.; Yue, Y.; Sheng, G.; Lai, H.; Wang, S.; Yu, L.; Zhang, Q.; Feng, F.; Hu, Z.-T.; et al. Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene Hydrochlorination. J. Catal. 2019, 373, 240–249. [Google Scholar] [CrossRef]
- Lai, H.; Wang, B.; Yue, Y.; Sheng, G.; Wang, S.; Feng, F.; Zhang, Q.; Zhao, J.; Li, X. An alternative carbon carrier in green preparation of efficient gold/carbon catalyst for acetylene hydrochlorination. ChemCatChem 2019, 11, 3318–3326. [Google Scholar] [CrossRef]
- Nkosi, B.; Coville, N.J.; Hutchings, G.J. Vapour phase hydrochlorination of acetylene with group VIII and IB metal chloride catalysts. Appl. Catal. 1988, 43, 33–39. [Google Scholar] [CrossRef]
- Song, Q.; Wang, S.; Shen, B.; Zhao, J. Palladium-based catalysts for the hydrochlorination of acetylene: reasons for deactivation and its regeneration. Petrol. Sci. Technol. 2010, 28, 1825–1833. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Wang, J.; Tang, X.; Zhao, Y.; Yang, D.; Jia, F.; Hao, T. Hydrochlorination of acetylene to vinyl chloride over Pd supported on zeolite Y. React. Kinet. Mech. Catal. 2013, 110, 187–194. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Wang, J.; Zhao, Y.; Wang, Y.; Yang, D. Bimetallic Pd-K/Y-zeolite catalyst in acetylene hydrochlorination for PVC production. React. Kinet. Mech. Catal. 2014, 114, 725–734. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Wang, J. Catalytic properties of Pd/HY catalysts modified with NH4F for acetylene hydrochlorination. Catal. Commun. 2015, 65, 41–45. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Wang, J. Effect of K promoter on the stability of Pd/NFY catalysts for acetylene hydrochlorination. Catal. Commun. 2016, 83, 9–13. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Wang, J. Enhanced stability of hydrochlorination of acetylene using polyaniline- modified Pd/HY catalysts. Catal. Commun. 2016, 74, 55–59. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Wang, J. Non-mercury catalytic acetylene hydrochlorination over the NH4F-Urea-modified Pd/HY catalyst for vinylchloride monomer production. New J. Chem. 2016, 40, 3019–3023. [Google Scholar] [CrossRef]
- Gesi, K. Dielectric study on the phase transition in (NH4)2PdCl4 and (ND4)2PdCl4. Ferroelectrics 2001, 262, 143–148. [Google Scholar] [CrossRef]
- Di, X.; Zhao, J.; Yu, Y.; Xu, X.; Gu, S.; He, H.; Zhang, T.; Li, X. One-pot synthesis of nitrogen and sulfur co-doped activated carbon supported AuCl3 as efficient catalysts for acetylene hydrochlorination. Chin. Chem. Lett. 2016, 27, 1567–1571. [Google Scholar] [CrossRef]
- Zhou, K.; Li, B.; Zhang, Q.; Huang, J.; Tian, G.; Jia, J.; Zhao, M.; Luo, G.; Su, D.; Wei, F. The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes. ChemSusChem 2014, 7, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.; Carley, A.; Attard, G.; Herzing, A.; Kiely, C.; Hutchings, G.J. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. J. Catal. 2008, 257, 190–198. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, B.; Wang, X.; Li, W.; Han, Y.; Gu, J.; Zhang, J. Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Co(III)/SAC catalysts for vinyl chloride monomer production. Green Chem. 2013, 15, 829–836. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, W.; Wang, W.; Xu, Y.; Wang, X.; Xia, R.; Li, J.; Zhang, C.; Pang, X.; Xie, D.; et al. A Low Content Gold Complex Catalyst for Acetylene Hydrochlorination. Chinese Patent CN201310146639, 25 April 2013. [Google Scholar]
- Luo, G.; Zhou, K.; Wei, F.; Si, J.; Li, C.; Zhou, J. A Catalyst Supported on Nitrogen Doped Carbon Material. Chinese Patent CN201310289144.9, 10 July 2013. [Google Scholar]
- Yang, X.; Jiang, C.; Yang, Z.; Zhang, J. Hydrochlorination of acetylene using SiC foam supported structured C/Au catalysts. Mater. Sci. Technol. 2014, 30, 434–440. [Google Scholar] [CrossRef]
- Conte, M.; Davies, C.J.; Morgan, D.J.; Davies, T.E.; Elias, D.J.; Carley, A.F.; Johnston, P.; Hutchings, G.J. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. J. Catal. 2013, 297, 128–136. [Google Scholar] [CrossRef]
- Tian, X.; Hong, G.; Liu, Y.; Jiang, B.; Yang, Y. Catalytic performance of Au(III) supported on SiO2 modified activated carbon. RSC Adv. 2014, 4, 36316–36324. [Google Scholar] [CrossRef]
- Nkosi, B.; Coville, N.J.; Hutchings, G.J. Reactivation of a supported gold catalyst for acetylene hydrochlorination. J. Chem. Soc. Chem. Commun. 1988, 71–72. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, M.; Kang, L.; Li, X.; Dai, B. Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction. Chem. Eng. J. 2014, 242, 69–75. [Google Scholar] [CrossRef]
- Wittanadecha, W.; Laosiripojana, N.; Ketcong, A.; Ningnuek, N.; Praserthdam, P.; Monnier, J.R.; Assabumrungrat, S. Preparation of Au/C catalysts using microwave-assisted and ultrasonic-assisted methods for acetylene hydrochlorination. React. Kinet. Mech. Catal. 2014, 112, 189–198. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, M.; Kang, L.; Dai, B. A novel high-stability Au(III)/Schiff-based catalyst for acetylene hydrochlorination reaction. Catal. Commun. 2014, 54, 61–65. [Google Scholar] [CrossRef]
- Wang, B.; Yu, L.; Zhang, J.; Pu, Y.; Zhang, H.; Li, W. Phosphorus-doped carbon supports enhance gold-based catalysts for acetylene hydrochlorination. RSC Adv. 2014, 4, 15877–15885. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Li, W.; Sun, M.; Guo, C.; Zhang, J. Bimetallic Au–Sn/AC catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 2016, 35, 177–184. [Google Scholar] [CrossRef]
- Ke, J.; Zhao, Y.; Yin, Y.; Chen, K.; Duan, X.; Ye, L.; Yuan, Y. Yttrium chloride-modified Au/AC catalysts for acetylene hydrochlorination with improved activity and stability. J. Rare Earths 2017, 35, 1083–1091. [Google Scholar] [CrossRef]
- Zhou, K.; Jia, J.; Li, C.; Xu, H.; Zhou, J.; Luo, G.; Wei, F. A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes. Green Chem. 2015, 17, 356–364. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Q.; Yang, L.; Zhang, Z.; Su, B.; Bao, Z.; Ren, Q.; Xing, H.; Dai, S. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene. ACS Catal. 2015, 5, 6724–6731. [Google Scholar] [CrossRef]
- Ordóñez, S.; Díez, F.V.; Sastre, H. Characterisation of the deactivation of platinum and palladium supported on activated carbon used as hydrodechlorination catalysts. Appl. Catal. B Environ. 2001, 31, 113–122. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, X.; Li, X.; Wang, J.G. Promotion of Sn on the Pd/AC catalyst for the selective hydrogenation of cinnamaldehyde. Catal. Commun. 2014, 43, 102–106. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Yu, Q.; Chen, Y.; Chai, Z.; Zhao, G.; Liu, S.; Cheong, W.-C.; Pan, Y.; Zhang, Q.; et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 2019, 141, 9305–9311. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Wang, B.; Sheng, G.; Lai, H.; Wang, S.; Chen, Z.; Hu, Z.-T.; Zhao, J.; Li, X. An ultra-high H2S-resistant gold-based imidazolium ionic liquid catalyst for acetylene hydrochlorination. New J. Chem. 2019, 43, 12767–12775. [Google Scholar] [CrossRef]
- Denuault, G.; Milhano, C.; Pletcher, D. Mesoporous palladium-the surface electrochemistry of palladium in aqueous sodium hydroxide and the cathodic reduction of nitrite. Phys. Chem. Chem. Phys. 2005, 7, 3545–3551. [Google Scholar] [CrossRef]
- Van der Lubbe, S.C.C.; Zaccaria, F.; Sun, X.; Guerra, C.F. Secondary electrostatic interaction model revised: prediction comes mainly from measuring charge accumulation in hydrogenbonded monomers. J. Am. Chem. Soc. 2019, 141, 4878–4885. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-S.; Alkan, F.; Su, H.-F.; Aikens, C.M.; Tung, C.-H.; Sun, D. [Ag48(C≡CtBu)20(CrO4)7]: An atomically precise silver nanocluster co-protected by inorganic and organic ligands. J. Am. Chem. Soc. 2019, 141, 4460–4467. [Google Scholar] [CrossRef]
- Lei, Z.; Dai, C.; Chen, B. Gas solubility in ionic liquids. Chem. Rev. 2014, 114, 1289–1326. [Google Scholar] [CrossRef]
- Xu, H.; Luo, G. Green production of PVC from laboratory to industrialization: State-of-the-art review of heterogeneous non-mercury catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 2018, 65, 13–25. [Google Scholar] [CrossRef]
Catalysts | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) |
---|---|---|
AC | 1215 | 0.67 |
Pd/AC | 1179 | 0.62 |
Pd-IL/AC | 653 | 0.36 |
Pd-A/AC | 1154 | 0.60 |
Pd-0.5A-IL/AC | 688 | 0.37 |
Pd-1A-IL/AC | 732 | 0.40 |
Pd-2A-IL/AC | 747 | 0.41 |
Pd-3A-IL/AC | 705 | 0.37 |
Catalysts | Nominal Loading (wt%) | Results of ICP (wt%) | Loss of Pd (wt%) | |
---|---|---|---|---|
Fresh | Used | |||
Pd/AC | 0.5 | 0.54 | 0.28 | 48.1 |
Pd-IL/AC | 0.5 | 0.49 | 0.45 | 8.2 |
Pd-2A-IL/AC | 0.5 | 0.51 | 0.49 | 3.9 |
Pd-A/AC | 0.5 | 0.52 | 0.40 | 23.1 |
Pd-2EDA-IL/AC | 0.5 | 0.49 | 0.47 | 4.1 |
Pd-2PR-IL/AC | 0.5 | 0.47 | 0.45 | 4.3 |
Pd-2PD-IL/AC | 0.5 | 0.51 | 0.48 | 5.9 |
Catalysts | Elemental Composition (wt%) | ||||
---|---|---|---|---|---|
Pd 3d | C 1s | O 1s | Cl 2p | N 1s | |
Fresh | 0.43 | 94.74 | 1.10 | 1.68 | 2.05 |
Used | 0.36 | 94.59 | 1.22 | 1.76 | 2.07 |
Catalysts | Coke Deposition Amount 1 (%) |
---|---|
Pd/AC | 6.87 |
Pd-IL/AC | 2.12 |
Pd-0.5A-IL/AC | 2.30 |
Pd-1A-IL/AC | 1.09 |
Pd-2A-IL/AC | 1.16 |
Pd-3A-IL/AC | 1.13 |
Pd-2PR-IL/AC | 1.28 |
Pd-2EDA-IL/AC | 1.61 |
Pd-2PD-IL/AC | 1.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, Y.; Yue, Y.; Wang, S.; Lu, J.; Wang, B.; Jin, C.; Guo, L.; Hu, Z.-T.; Zhao, J. Adsorption Behavior and Electron Structure Engineering of Pd-Based Catalysts for Acetylene Hydrochlorination. Catalysts 2020, 10, 24. https://doi.org/10.3390/catal10010024
Cen Y, Yue Y, Wang S, Lu J, Wang B, Jin C, Guo L, Hu Z-T, Zhao J. Adsorption Behavior and Electron Structure Engineering of Pd-Based Catalysts for Acetylene Hydrochlorination. Catalysts. 2020; 10(1):24. https://doi.org/10.3390/catal10010024
Chicago/Turabian StyleCen, Yaqing, Yuxue Yue, Saisai Wang, Jinyue Lu, Bolin Wang, Chunxiao Jin, Lingling Guo, Zhong-Ting Hu, and Jia Zhao. 2020. "Adsorption Behavior and Electron Structure Engineering of Pd-Based Catalysts for Acetylene Hydrochlorination" Catalysts 10, no. 1: 24. https://doi.org/10.3390/catal10010024
APA StyleCen, Y., Yue, Y., Wang, S., Lu, J., Wang, B., Jin, C., Guo, L., Hu, Z. -T., & Zhao, J. (2020). Adsorption Behavior and Electron Structure Engineering of Pd-Based Catalysts for Acetylene Hydrochlorination. Catalysts, 10(1), 24. https://doi.org/10.3390/catal10010024