Acyl Sonogashira Cross-Coupling: State of the Art and Application to the Synthesis of Heterocyclic Compounds
Abstract
:1. Introduction
2. The Acyl Sonogashira Reaction
2.1. PdCl2(PPh3)2 Catalyzed acyl Sonogashira Reactions
2.1.1. General Experimental Conditions for PdCl2(PPh3)2 Catalyzed acyl Sonogashira Reactions
2.1.2. PdCl2(PPh3)2 Catalyzed Acyl Sonogashira Reactions of Silylated Alkynes
2.1.3. Synthesis of Polyfunctionalized Ynones via PdCl2(PPh3)2-Catalyzed Acyl Sonogashira Reactions
2.1.4. Synthesis of Ynones via PdCl2(PPh3)2 Catalyzed Acyl Sonogashira Reactions Starting from Different Substrates
2.2. Pd(OAc)2 Catalysed Acyl Sonogashira Reactions
2.3. Palladium(II) Complexes as Catalysts for Acyl Sonogashira Reactions
2.4. Palladium Supported Catalysts for Acyl Sonogashira Reactions
2.5. Copper-Based Catalysts for Acyl Sonogashira Reactions
3. Application of Acyl Sonogashira Reaction to the Synthesis of Heterocyclic Compounds
3.1. Synthesis of N-Heterocycles by Acyl Sonogashira Reactions
3.1.1. Synthesis of Five-Membered N-Containing Monocyclic Compounds
3.1.2. Synthesis of Six-Membered N-Containing Monocyclic Compounds
3.1.3. Synthesis of N-Containing Bicyclic Compounds
3.1.4. Synthesis of N-Containing Polycyclic Compounds
3.2. Synthesis of N,O-Heterocycles by Acyl Sonogashira Reactions
3.3. Synthesis of N,S-Heterocycles by Acyl Sonogashira Reactions
3.4. Synthesis of O-Heterocycles by Acyl Sonogashira Reactions
3.4.1. Synthesis of Five- and Six-Membered O-Containing Monocyclic Compounds
3.5. Synthesis of S-Heterocycles by Acyl Sonogashira Reactions
3.5.1. Synthesis of Five-Membered S-Heterocyclic Compounds
3.5.2. Synthesis of Six-Membered S-Heterocyclic Compounds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chinchilla, R.; Nájera, C. The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry. Chem. Rev. 2007, 107, 874–922. [Google Scholar] [CrossRef] [PubMed]
- Doucet, H.; Hierso, J.-C. Palladium-Based Catalytic Systems for the Synthesis of Conjugated Enynes by Sonogashira Reactions and Related Alkynylations. Angew. Chem. Int. Ed. 2007, 46, 834–871. [Google Scholar] [CrossRef] [PubMed]
- Chinchilla, R.; Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 2011, 40, 5084–5121. [Google Scholar] [CrossRef] [PubMed]
- Brennführer, A.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylation Reactions of Aryl Halides and Related Compounds. Angew. Chem. Int. Ed. 2009, 48, 4114–4133. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-F.; Neumann, H.; Beller, M. A General and Convenient Palladium-Catalyzed Carbonylative Sonogashira Coupling of Aryl Bromides. Chem. Eur. J. 2010, 16, 12104–12107. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-F.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 2011, 40, 4986–5009. [Google Scholar] [CrossRef] [PubMed]
- Genelot, M.; Dufaud, V.; Djakovitch, L. Carbonylative Sonogashira Coupling in the Synthesis of Ynones: A Study of “Boomerang” Phenomena. Adv. Synth. Catal. 2013, 355, 2604–2616. [Google Scholar] [CrossRef]
- Gadge, S.T.; Bhanage, B.M. Recent developments in palladium catalysed carbonylation reactions. RSC Adv. 2014, 4, 10367–10389. [Google Scholar] [CrossRef]
- Willy, B.; Müller, T.J.J. Consecutive multi-component syntheses of heterocycles via palladium-copper catalyzed generation of alkynones. ARKIVOC 2008, 2008, 195–208. [Google Scholar]
- Willy, B.; Muller, T.J.J. Multi-component Heterocycle Syntheses via Catalytic Generation of Alkynones. Curr. Org. Chem. 2009, 13, 1777–1790. [Google Scholar] [CrossRef]
- Whittaker, R.E.; Dermenci, A.; Dong, G. Synthesis of Ynones and Recent Application in Transition-Metal-Catalyzed Reactions. Synthesis 2016, 48, 161–183. [Google Scholar]
- Gers-Panther, C.F.; Müller, T.J.J. Multicomponent Syntheses of Heterocycles Initiated by Catalytic Generation of Ynones and Ynediones. In Advances in Heterocyclic Chemistry; Scriven, E.F.V., Ramsden, C.A., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 120, pp. 67–98. [Google Scholar]
- Nájera, C.; Sydnes, L.K.; Yus, M. Conjugated Ynones in Organic Synthesis. Chem. Rev. 2019, 119, 11110–11244. [Google Scholar] [CrossRef] [PubMed]
- Tohda, Y.; Sonogashira, K.; Hagihara, N. A Convenient Synthesis of 1-Alkynyl Ketones and 2-Alkynamides. Synthesis 1977, 1977, 777–778. [Google Scholar] [CrossRef]
- Cox, R.J.; Ritson, D.J.; Dane, T.A.; Berge, J.; Charmant, J.P.H.; Kantacha, A. Room temperature palladium catalysed coupling of acyl chlorides with terminal alkynes. Chem. Commun. 2005, 1037–1039. [Google Scholar] [CrossRef]
- Kumar, B.; Maity, J.; Kumar, A.; Khatri, V.; Shankar, B.; Prasad, A.K. Synthesis of novel 3-[(1-glycosyl-1H-1,2,3-triazol-4-yl)- methylamino]ket-2-en-1-ones. Chem. Heterocycl. Compd. 2018, 54, 362–368. [Google Scholar] [CrossRef]
- Breuer, N.; Müller, T.J.J. Consecutive Alkynylation–Michael Addition–Cyclocondensation (AMAC) Multicomponent Syntheses of α-Pyrones and α-Pyridones. Synthesis 2018, 50, 2741–2752. [Google Scholar]
- Albano, G.; Aronica, L.A.; Biver, T.; Detti, R.; Pucci, A. Tris-Ethynylphenyl-amine Fluorophores: Synthesis, Characterisation and Test of Performances in Luminescent Solar Concentrators. Chem. Sel. 2018, 3, 1749–1754. [Google Scholar] [CrossRef]
- Albano, G.; Colli, T.; Nucci, L.; Charaf, R.; Biver, T.; Pucci, A.; Aronica, L.A. Synthesis of new bis[1-(thiophenyl)propynones] as potential organic dyes for colorless luminescent solar concentrators (LSCs). Dyes Pigm. 2019. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, C.-J. A Remarkably Efficient Coupling of Acid Chlorides with Alkynes in Water. Org. Lett. 2004, 6, 3151–3153. [Google Scholar] [CrossRef]
- Ma, C.; Ren, Y.; Zhang, Q.; Ding, K.; Zhao, J.; Zhang, D. A Novel One-pot Synthesis of Pyrroloquinoline and Pyrroloisoquinoline Derivatives in Ionic Liquid. Chem. Lett. 2007, 36, 1152–1153. [Google Scholar] [CrossRef]
- Atobe, S.; Masuno, H.; Sonoda, M.; Suzuki, Y.; Shinohara, H.; Shibata, S.; Ogawa, A. Pd-catalyzed coupling reaction of acid chlorides with terminal alkynes using 1-(2-pyridylethynyl)-2-(2-thienylethynyl)benzene ligand. Tetrahedron Lett. 2012, 53, 1764–1767. [Google Scholar] [CrossRef]
- Karpov, A.S.; Müller, T.J.J. New Entry to a Three-Component Pyrimidine Synthesis by TMS−Ynones via Sonogashira Coupling. Org. Lett. 2003, 5, 3451–3454. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.M.; Müller, T.J.J. Catalytic alkynone generation by Sonogashira reaction and its application in three-component pyrimidine synthesis. Nat. Protoc. 2008, 3, 1660–1665. [Google Scholar] [CrossRef] [PubMed]
- Friscourt, F.; Boons, G.-J. One-Pot Three-Step Synthesis of 1,2,3-Triazoles by Copper-Catalyzed Cycloaddition of Azides with Alkynes formed by a Sonogashira Cross-Coupling and Desilylation. Org. Lett. 2010, 12, 4936–4939. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Bae, H.; Kim, S.; Kim, S. An efficient and high-yielding one-pot synthesis of 4-acyl-1,2,3-triazoles via triisopropylsilyl-protected ynones. Tetrahedron 2012, 68, 1460–1465. [Google Scholar] [CrossRef]
- Niesobski, P.; Klukas, F.; Berens, H.; Makhloufi, G.; Janiak, C.; Müller, T.J.J. De Novo Ring-Forming Consecutive Four-Component Syntheses of 4-Pyrazolyl-1,2,3-triazoles from (Triisopropylsilyl)butadiyne as a C4 Building Block. J. Org. Chem. 2018, 83, 4851–4858. [Google Scholar] [CrossRef]
- Cheremnykh, K.P.; Savel’ev, V.A.; Shkurko, O.P.; Shults, E.E. Synthesis of hybrid molecules containing pyrimidine and diterpene alkaloid lappaconitine fragments. Chem. Heterocycl. Compd. 2018, 54, 1131–1138. [Google Scholar] [CrossRef]
- Mailyan, A.K.; Peregudov, A.S.; Dixneuf, P.H.; Bruneau, C.; Osipov, S.N. Cyclobutene Ring-Opening of Bicyclo[4.2.0]octa-1,6-dienes: Access to CF3-Substituted 5,6,7,8-Tetrahydro-1,7-naphthyridines. J. Org. Chem. 2012, 77, 8518–8526. [Google Scholar] [CrossRef]
- Yin, J.; Wang, X.; Liang, Y.; Wu, X.; Chen, B.; Ma, Y. Synthesis of Ferrocenylethynyl Ketones by Coupling of Ferrocenylethyne with Acyl Chlorides. Synthesis 2004, 2004, 331–333. [Google Scholar] [CrossRef]
- Md Tohid, S.F.; Ziedan, N.I.; Stefanelli, F.; Fogli, S.; Westwell, A.D. Synthesis and evaluation of indole-containing 3,5-diarylisoxazoles as potential pro-apoptotic antitumour agents. Eur. J. Med. Chem. 2012, 56, 263–270. [Google Scholar] [CrossRef]
- Götzinger, A.C.; Müller, T.J.J. Rapid access to unsymmetrical tolanes and alkynones by sequentially palladium-catalyzed one-pot processes. Org. Biomol. Chem. 2016, 14, 3498–3500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, D.-W.; El-Shazly, M.; Balaji, D.B.; Chung, Y.-M.; Chang, F.-R.; Wu, Y.-C. Synthesis of Flavones and γ-Benzopyranones Using Mild Sonogashira Coupling and 18-Crown-6 Ether Mediated 6-endo Cyclization. Eur. J. Org. Chem. 2012, 2012, 4533–4540. [Google Scholar] [CrossRef]
- Boersch, C.; Merkul, E.; Müller, T.J.J. Catalytic Syntheses of N-Heterocyclic Ynones and Ynediones by In Situ Activation of Carboxylic Acids with Oxalyl Chloride. Angew. Chem. Int. Ed. 2011, 50, 10448–10452. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Wu, H.; Jian, J.; Wang, H.; Liu, C.; Daniel, S.; Zeng, Z. Palladium-catalyzed Sonogashira coupling of amides: Access to ynones via C–N bond cleavage. Chem. Commun. 2016, 52, 12076–12079. [Google Scholar] [CrossRef]
- Palimkar, S.S.; Kumar, P.H.; Jogdand, N.R.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Copper-, ligand- and solvent-free synthesis of ynones by coupling acid chlorides with terminal alkynes. Tetrahedron Lett. 2006, 47, 5527–5530. [Google Scholar] [CrossRef]
- Palimkar, S.S.; More, V.S.; Srinivasan, K.V. Simple and Efficient One-Pot, Three-Component, Solvent-Free Synthesis of β-Enaminones via Sonogashira Coupling–Michael Addition Sequences. Synth. Commun. 2008, 38, 1456–1469. [Google Scholar] [CrossRef]
- Hoshi, M.; Yamazaki, H.; Okimoto, M. One-Pot Synthesis of Conjugated (E)-Enynones via Two Types of Cross-Coupling Reaction. Synlett 2010, 2010, 2461–2464. [Google Scholar] [CrossRef]
- Baxendale, I.R.; Schou, S.C.; Sedelmeier, J.; Ley, S.V. Multi-Step Synthesis by Using Modular Flow Reactors: The Preparation of Yne Ones and Their Use in Heterocycle Synthesis. Chem. Eur. J. 2010, 16, 89–94. [Google Scholar] [CrossRef]
- Alonso, D.A.; Nájera, C.; Pacheco, M.C. Synthesis of Ynones by Palladium-Catalyzed Acylation of Terminal Alkynes with Acid Chlorides. J. Org. Chem. 2004, 69, 1615–1619. [Google Scholar] [CrossRef]
- Debono, N.; Canac, Y.; Duhayon, C.; Chauvin, R. An Atropo-Stereogenic Diphosphane Ligand with a Proximal Cationic Charge: Specific Catalytic Properties of a Palladium Complex Thereof. Eur. J. Inorg. Chem. 2008, 2008, 2991–2999. [Google Scholar] [CrossRef]
- Bakherad, M.; Amin, A.H.; Keivanloo, A.; Bahramian, B.; Raessi, M. Using Pd–salen complex as an efficient catalyst for the copper- and solvent-free coupling of acyl chlorides with terminal alkynes under aerobic conditions. Chin. Chem. Lett. 2010, 21, 656–660. [Google Scholar] [CrossRef]
- Ryabukhin, D.S.; Sorokoumov, V.N.; Savicheva, E.A.; Boyarskiy, V.P.; Balova, I.A.; Vasilyev, A.V. Catalytic activity of palladium acyclic diaminocarbene complexes in the synthesis of 1,3-diarylpropynones via Sonogashira reaction: Cross- versus homo-coupling. Tetrahedron Lett. 2013, 54, 2369–2372. [Google Scholar] [CrossRef]
- Islas, R.E.; Cárdenas, J.; Gaviño, R.; García-Ríos, E.; Lomas-Romero, L.; Morales-Serna, J.A. Phosphinito palladium(ii) complexes as catalysts for the synthesis of 1,3-enynes, aromatic alkynes and ynones. RSC Adv. 2017, 7, 9780–9789. [Google Scholar] [CrossRef] [Green Version]
- Likhar, P.R.; Subhas, M.S.; Roy, M.; Roy, S.; Kantam, M.L. Copper-Free Sonogashira Coupling of Acid Chlorides with Terminal Alkynes in the Presence of a Reusable Palladium Catalyst: An Improved Synthesis of 3-Iodochromenones (=3-Iodo-4H-1-benzopyran-4-ones). Helv. Chim. Acta 2008, 91, 259–264. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, S.K.; Mandadapu, A.K.; Gauniyal, H.M.; Kundu, B. Three-component tandem reaction involving acid chlorides, terminal alkynes, and ethyl 2-amino-1H-indole-3-carboxylates: Synthesis of highly diversified pyrimido[1,2-a]indoles via sequential Sonogashira and [3 + 3] cyclocondensation reactions. Tetrahedron Lett. 2011, 52, 4288–4291. [Google Scholar] [CrossRef]
- Rocha, D.H.A.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis of 4,5-disubstituted-1H-1,2,3-triazoles. Mon. Chem. 2019, 150, 1479–1486. [Google Scholar] [CrossRef]
- Bakherad, M.; Keivanloo, A.; Bahramian, B.; Kalantar, Z.; Ashrafi, N.F. Coupling Reaction of Acid Chlorides with Terminal Alkynes Catalyzed by Diatomite-Supported Palladium(II) Salophen Complex. Lett. Org. Chem. 2011, 8, 364–367. [Google Scholar] [CrossRef]
- Bakherad, M.; Keivanloo, A.; Bahramian, B.; Rajaie, M. A copper- and solvent-free coupling of acid chlorides with terminal alkynes catalyzed by a polystyrene-supported palladium(0) complex under aerobic conditions. Tetrahedron Lett. 2010, 51, 33–35. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Lin, T.-C.; Chen, S.-C.; Chen, A.-J.; Mou, C.-Y.; Tsai, F.-Y. Highly-efficient and recyclable nanosized MCM-41 anchored palladium bipyridyl complex-catalyzed coupling of acyl chlorides and terminal alkynes for the formation of ynones. Tetrahedron 2009, 65, 10134–10141. [Google Scholar] [CrossRef]
- Sharma, R.K.; Yadav, M.; Gaur, R.; Gupta, R.; Adholeya, A.; Gawande, M.B. Synthesis of Iron Oxide Palladium Nanoparticles and Their Catalytic Applications for Direct Coupling of Acyl Chlorides with Alkynes. ChemPlusChem 2016, 81, 1312–1319. [Google Scholar] [CrossRef]
- Hossain, S.; Park, J.-H.; Park, M.-K.; Jin, M.-J. Silica gel-Supported Palladium Catalyst for the Acyl Sonogashira Reaction. J. Korean Chem. Soc. 2013, 57, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Shirai, M.; Ikushima, Y.; Arai, M. The leaching and re-deposition of metal species from and onto conventional supported palladium catalysts in the Heck reaction of iodobenzene and methyl acrylate in N-methylpyrrolidone. J. Mol. Catal. A Chem. 2002, 180, 211–219. [Google Scholar] [CrossRef]
- Albano, G.; Interlandi, S.; Evangelisti, C.; Aronica, L.A. Polyvinylpyridine-Supported Palladium Nanoparticles: A Valuable Catalyst for the Synthesis of Alkynyl Ketones via Acyl Sonogashira Reactions. Catal. Lett. 2019. [Google Scholar] [CrossRef]
- Santra, S.; Dhara, K.; Ranjan, P.; Bera, P.; Dash, J.; Mandal, S.K. A supported palladium nanocatalyst for copper free acyl Sonogashira reactions: One-pot multicomponent synthesis of N-containing heterocycles. Green Chem. 2011, 13, 3238–3247. [Google Scholar] [CrossRef]
- Santra, S.; Ranjan, P.; Bera, P.; Ghosh, P.; Mandal, S.K. Anchored palladium nanoparticles onto single walled carbon nanotubes: Efficient recyclable catalyst for N-containing heterocycles. RSC Adv. 2012, 2, 7523–7533. [Google Scholar] [CrossRef]
- Loganathan, R.K.; Ramachandra, S.N.; Shekharappa; Sureshbabu, V.V. Montmorillonite K-10-Supported Palladium Nanoparticles for Copper-Free Acyl Sonogashira Reaction. Chem. Sel. 2017, 2, 8059–8062. [Google Scholar] [CrossRef]
- Chowdhury, C.; Kundu, N.G. Copper(I)-catalysed acylation of terminal alkynes. Tetrahedron Lett. 1996, 37, 7323–7324. [Google Scholar] [CrossRef]
- Chowdhury, C.; Kundu, N.G. Studies on copper(I) catalysed cross-coupling reactions: A convenient and facile method for the synthesis of diversely substituted α,β-acetylenic ketones. Tetrahedron 1999, 55, 7011–7016. [Google Scholar] [CrossRef]
- Wang, J.-X.; Wei, B.; Hu, Y.; Liu, Z.; Fu, Y. Microwave-assisted coupling reaction by copper(I)-catalyzed of terminal alkynes with aroyl chlorides. Synth. Commun. 2001, 31, 3527–3532. [Google Scholar] [CrossRef]
- Yin, W.; He, H.; Zhang, Y.; Luo, D.; He, H. A Highly Active CuI/TMEDA Catalytic System for the Coupling Reaction of Acid Chlorides with Terminal Alkynes under Solvent-Free Conditions. Synthesis 2014, 46, 2617–2621. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, E.; Movassagh, B.; Navidi, M. Palladium- and Solvent-Free Synthesis of Ynones by Copper(I)-Catalyzed Acylation of Terminal Alkynes with Acyl Chlorides under Aerobic Conditions. Helv. Chim. Acta 2014, 97, 70–75. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Wu, X.; Yao, X. Palladium-, ligand-, and solvent-free synthesis of ynones by the coupling of acyl chlorides and terminal alkynes in the presence of a reusable copper nanoparticle catalyst. Green Chem. 2013, 15, 2356–2360. [Google Scholar] [CrossRef]
- Bhosale, M.A.; Sasaki, T.; Bhanage, B.M. A facile and rapid route for the synthesis of Cu/Cu2O nanoparticles and their application in the Sonogashira coupling reaction of acyl chlorides with terminal alkynes. Catal. Sci. Technol. 2014, 4, 4274–4280. [Google Scholar] [CrossRef]
- Wang, K.; Yang, L.; Zhao, W.; Cao, L.; Sun, Z.; Zhang, F. A facile synthesis of copper nanoparticles supported on an ordered mesoporous polymer as an efficient and stable catalyst for solvent-free sonogashira coupling Reactions. Green Chem. 2017, 19, 1949–1957. [Google Scholar] [CrossRef]
- Kim, S.; Kang, S.W.; Kim, A.; Yusuf, M.; Park, J.C.; Park, K.H. A highly efficient nano-sized Cu2O/SiO2 egg-shell catalyst for C–C coupling reactions. RSC Adv. 2018, 8, 6200–6205. [Google Scholar] [CrossRef] [Green Version]
- Matloubi Moghaddam, F.; Pourkaveh, R.; Ahangarpour, M. Nano CoCuFe2O4 catalyzed coupling reaction of acid chlorides with terminal alkynes: A powerful toolbox for palladium-free ynone synthesis. Catal. Commun. 2017, 102, 71–75. [Google Scholar] [CrossRef]
- Merkul, E.; Boersch, C.; Frank, W.; Müller, T.J.J. Three-Component Synthesis of N-Boc-4-iodopyrroles and Sequential One-Pot Alkynylation. Org. Lett. 2009, 11, 2269–2272. [Google Scholar] [CrossRef]
- Nordmann, J.; Müller, T.J.J. A one-pot coupling–addition–cyclocondensation sequence (CACS) to 2-substituted 3-acylpyrroles initiated by a copper-free alkynylation. Org. Biomol. Chem. 2013, 11, 6556–6561. [Google Scholar] [CrossRef]
- Liu, H.-L.; Jiang, H.-F.; Zhang, M.; Yao, W.-J.; Zhu, Q.-H.; Tang, Z. One-pot three-component synthesis of pyrazoles through a tandem coupling-cyclocondensation sequence. Tetrahedron Lett. 2008, 49, 3805–3809. [Google Scholar] [CrossRef]
- Willy, B.; Müller, T.J.J. Regioselective Three-Component Synthesis of Highly Fluorescent 1,3,5-Trisubstituted Pyrazoles. Eur. J. Org. Chem. 2008, 2008, 4157–4168. [Google Scholar] [CrossRef]
- Willy, B.; Müller, T.J.J. Rapid One-Pot, Four-Step Synthesis of Highly Fluorescent 1,3,4,5-Tetrasubstituted Pyrazoles. Org. Lett. 2011, 13, 2082–2085. [Google Scholar] [CrossRef] [PubMed]
- Denißen, M.; Nordmann, J.; Dziambor, J.; Mayer, B.; Frank, W.; Müller, T.J.J. Sequential palladium catalyzed coupling–cyclocondensation–coupling (C3) four-component synthesis of intensively blue luminescent biarylsubstituted pyrazoles. RSC Adv. 2015, 5, 33838–33854. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Yao, F.; Yin, L.; Cai, M. A highly efficient heterogeneous palladium-catalyzed cascade three-component reaction of acid chlorides, terminal alkynes and hydrazines leading to pyrazoles. J. Organomet. Chem. 2016, 804, 108–113. [Google Scholar] [CrossRef]
- Thirukovela, N.S.; Balaboina, R.; Botla, V.; Vadde, R.; Jonnalagadda, S.B.; Vasam, C.S. One-pot regioselective synthesis of substituted pyrazoles and isoxazoles in PEG-400/water medium by Cu-free nano-Pd catalyzed sequential acyl Sonogashira coupling–intramolecular cyclization. Catal. Sci. Technol. 2019, 9, 6471–6481. [Google Scholar] [CrossRef]
- Keivanloo, A.; Bakherad, M.; Samangooei, S. Synthesis of 3,5-Disubstituted-1H-Pyrazoles from Acid Chlorides, Alkynes, and Hydrazine in the Presence of Silica-Supported-Zinc Bromide. J. Chem. Res. 2015, 39, 484–486. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Zhang, Y.; Li, J.; Chen, B. Facile One-Pot Synthesis of 4,5-Disubstituted 1,2,3-(NH)-Triazoles through Sonogashira Coupling/1,3-Dipolar Cycloaddition of Acid Chlorides, Terminal Acetylenes, and Sodium Azide. Org. Lett. 2009, 11, 3024–3027. [Google Scholar] [CrossRef] [PubMed]
- Dohe, J.; Müller, T.J.J. Consecutive three- and four-component coupling-Bagley-Bohlmann-Rahtz syntheses of tri- and tetrasubstituted pyridines. Z. Naturforsch. B Chem. Sci. 2016, 71, 705–718. [Google Scholar] [CrossRef]
- Nordmann, J.; Breuer, N.; Müller, T.J.J. Efficient Consecutive Four-Component Synthesis of 5-Acylpyrid-2-ones Initiated by Copper-Free Alkynylation. Eur. J. Org. Chem. 2013, 2013, 4303–4310. [Google Scholar] [CrossRef]
- Nordmann, J.; Müller, T.J.J. Anilines as Substrates in Consecutive Four-Component Synthesis of Novel 1-Aryl-5-benzoyl-6-phenyl-3,4-dihydropyridin-2(1H)-ones. Synthesis 2014, 46, 522–530. [Google Scholar] [CrossRef]
- Karpov, A.S.; Müller, T.J.J. Straightforward Novel One-Pot Enaminone and Pyrimidine Syntheses by Coupling-Addition-Cyclocondensation Sequences. Synthesis 2003, 2003, 2815–2826. [Google Scholar] [CrossRef]
- Gao, G.-L.; Niu, Y.-N.; Yan, Z.-Y.; Wang, H.-L.; Wang, G.-W.; Shaukat, A.; Liang, Y.-M. Unexpected Domino Reaction via Pd-Catalyzed Sonogashira Coupling of Benzimidoyl Chlorides with 1,6-Enynes and Cyclization To Synthesize Quinoline Derivatives. J. Org. Chem. 2010, 75, 1305–1308. [Google Scholar] [CrossRef] [PubMed]
- Rotzoll, S.; Willy, B.; Schönhaber, J.; Rominger, F.; Müller, T.J.J. Regiospecific Three-Component Access to Fluorescent 2,4-Disubstituted Quinolines via One-Pot Coupling-Addition-Cyclocondensation-Sulfur Extrusion Sequence. Eur. J. Org. Chem. 2010, 2010, 3516–3524. [Google Scholar] [CrossRef]
- Gers, C.F.; Nordmann, J.; Kumru, C.; Frank, W.; Müller, T.J.J. Solvatochromic Fluorescent 2-Substituted 3-Ethynyl Quinoxalines: Four-Component Synthesis, Photophysical Properties, and Electronic Structure. J. Org. Chem. 2014, 79, 3296–3310. [Google Scholar] [CrossRef] [PubMed]
- Palimkar, S.S.; Lahoti, R.J.; Srinivasan, K.V. A novel one-pot three-component synthesis of 2,4-disubstituted-3 H-benzo[b][1,4]diazepines in water. Green Chem. 2007, 9, 146–152. [Google Scholar] [CrossRef]
- Willy, B.; Dallos, T.; Rominger, F.; Schönhaber, J.; Müller, T.J.J. Three-Component Synthesis of Cryofluorescent 2,4-Disubstituted 3H-1,5-Benzodiazepines—Conformational Control of -Emission Properties. Eur. J. Org. Chem. 2008, 2008, 4796–4805. [Google Scholar] [CrossRef]
- Rotaru, A.V.; Druta, I.D.; Oeser, T.; Müller, T.J.J. A Novel Coupling 1,3-Dipolar Cycloaddition Sequence as a Three-Component Approach to Highly Fluorescent Indolizines. Helv. Chim. Acta 2005, 88, 1798–1812. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, B.; Kundu, B. Three-Component Tandem Reaction Involving Acid Chlorides, Terminal Alkynes, and 2-Aminoindole Hydrochlorides: Synthesis of α-Carboline Derivatives in Aqueous Conditions via Regioselective [3 + 3] Cyclocondensation. J. Org. Chem. 2011, 76, 10154–10162. [Google Scholar] [CrossRef]
- Karpov, A.S.; Oeser, T.; Müller, T.J.J. A novel one-pot four-component access to tetrahydro-β-carbolines by a coupling-amination-aza-annulation-Pictet–Spengler sequence (CAAPS). Chem. Commun. 2004, 35, 1502–1503. [Google Scholar] [CrossRef]
- Karpov, A.S.; Rominger, F.; Müller, T.J.J. A diversity oriented four-component approach to tetrahydro-β-carbolines initiated by Sonogashira coupling. Org. Biomol. Chem. 2005, 3, 4382–4391. [Google Scholar] [CrossRef]
- Merkul, E.; Müller, T.J.J. A new consecutive three-component oxazole synthesis by an amidation–coupling–cycloisomerization (ACCI) sequence. Chem. Commun. 2006, 4817–4819. [Google Scholar] [CrossRef]
- Merkul, E.; Grotkopp, O.; Müller, T.J.J. 2-Oxazol-5-ylethanones by Consecutive Three-Component Amidation-Coupling-Cycloisomerization (ACCI) Sequence. Synthesis 2009, 2009, 502–507. [Google Scholar] [CrossRef]
- Grotkopp, O.; Ahmad, A.; Frank, W.; Müller, T.J.J. Blue-luminescent 5-(3-indolyl)oxazoles via microwave-assisted three-component coupling–cycloisomerization–Fischer indole synthesis. Org. Biomol. Chem. 2011, 9, 8130–8140. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-L.; Geng, Z.-F.; Zhang, S.-Y.; Han, J. One-Pot Three-Component Synthesis of 3,5-Disubstituted Isoxazoles by a Coupling-Cyclocondensation Sequence. Heterocycles 2014, 89, 1221–1227. [Google Scholar] [CrossRef]
- Willy, B.; Rominger, F.; Müller, T.J.J. Novel Microwave-Assisted One-Pot Synthesis of Isoxazoles by a Three-Component Coupling-Cycloaddition Sequence. Synthesis 2008, 2008, 293–303. [Google Scholar] [CrossRef]
- Willy, B.; Frank, W.; Rominger, F.; Müller, T.J.J. One-pot three-component synthesis, structure and redox properties of ferrocenyl isoxazoles. J. Organomet. Chem. 2009, 694, 942–949. [Google Scholar] [CrossRef]
- Görgen, C.; Müller, T.J.J. Facile consecutive three-component synthesis of 3,5-disubstituted isoxazoles. Chem. Heterocycl. Compd. 2017, 53, 422–429. [Google Scholar] [CrossRef]
- Willy, B.; Müller, T.J.J. Three-component synthesis of benzo[b][1,5]thiazepines via coupling–addition–cyclocondensation sequence. Mol. Divers. 2010, 14, 443–453. [Google Scholar] [CrossRef]
- Karpov, A.S.; Merkul, E.; Oeser, T.; Müller, T.J.J. A novel one-pot three-component synthesis of 3-halofurans and sequential Suzuki coupling. Chem. Commun. 2005, 2581–2583. [Google Scholar] [CrossRef]
- Karpov, A.S.; Merkul, E.; Oeser, T.; Müller, T.J.J. One-Pot Three-Component Synthesis of 3-Halofurans and 3-Chloro-4-iodofurans. Eur. J. Org. Chem. 2006, 2006, 2991–3000. [Google Scholar] [CrossRef]
- Teiber, M.; Müller, T.J.J. Rapid consecutive three-component coupling-Fiesselmann synthesis of luminescent 2,4-disubstituted thiophenes and oligothiophenes. Chem. Commun. 2012, 48, 2080–2082. [Google Scholar] [CrossRef]
- Teiber, M.; Giebeler, S.; Lessing, T.; Müller, T.J.J. Efficient pseudo-five-component coupling-Fiesselmann synthesis of luminescent oligothiophenes and their modification. Org. Biomol. Chem. 2013, 11, 3541–3552. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Hu, R.; Zhao, E.; Chan, C.Y.K.; Lam, J.W.Y.; Tang, B.Z. One-Pot Three-Component Tandem Polymerization Toward Functional Poly(arylene thiophenylene) with Aggregation-Enhanced Emission Characteristics. Macromolecules 2014, 47, 4920–4929. [Google Scholar] [CrossRef]
- Chen, D.; Xing, G.; Yao, J.; Zhou, H. Applicable β-sulfonium carbanions: Facile construction of thiophene derivatives. Org. Chem. Front. 2017, 4, 1042–1045. [Google Scholar] [CrossRef]
- Willy, B.; Müller, T.J.J. A Novel Consecutive Three-Component Coupling-Addition-SNAr (CASNAR) Synthesis of 4H-Thiochromen-4-ones. Synlett 2009, 2009, 1255–1260. [Google Scholar] [CrossRef]
- Willy, B.; Frank, W.; Müller, T.J.J. Microwave-assisted three-component coupling-addition-SNAr (CASNAR) sequences to annelated 4H-thiopyran-4-ones. Org. Biomol. Chem. 2010, 8, 90–95. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albano, G.; Aronica, L.A. Acyl Sonogashira Cross-Coupling: State of the Art and Application to the Synthesis of Heterocyclic Compounds. Catalysts 2020, 10, 25. https://doi.org/10.3390/catal10010025
Albano G, Aronica LA. Acyl Sonogashira Cross-Coupling: State of the Art and Application to the Synthesis of Heterocyclic Compounds. Catalysts. 2020; 10(1):25. https://doi.org/10.3390/catal10010025
Chicago/Turabian StyleAlbano, Gianluigi, and Laura Antonella Aronica. 2020. "Acyl Sonogashira Cross-Coupling: State of the Art and Application to the Synthesis of Heterocyclic Compounds" Catalysts 10, no. 1: 25. https://doi.org/10.3390/catal10010025
APA StyleAlbano, G., & Aronica, L. A. (2020). Acyl Sonogashira Cross-Coupling: State of the Art and Application to the Synthesis of Heterocyclic Compounds. Catalysts, 10(1), 25. https://doi.org/10.3390/catal10010025