An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bibliometric Analysis of Research on Membrane Coated Electrodes (2001–2019)
2.1.1. Publication Year, Document Type, and Language of Documents
2.1.2. Distribution of Output in Subject Categories and Journals
2.1.3. Publication Distribution of Countries and Institutions
2.1.4. Most Cited Papers and Author Keywords
2.2. Some Keynotes for Discussion
2.2.1. Role of Membranes for CO2 Electroreduction
2.2.2. Membrane-Coated Electrodes in the Framework of CO2 Electroreduction
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lattner, J.R. Carbon dioxide mitigation using renewable power. Curr. Opin. Chem. Eng. 2020, 29, 51–58. [Google Scholar] [CrossRef]
- Yang, W.; Dastafkan, K.; Jia, C.; Zhao, C. Design of electrocatalysts and electrochemical cells for carbon dioxide reduction reactions. Adv. Mater. Technol. 2018, 3, 1–20. [Google Scholar] [CrossRef]
- Merino-Garcia, I.; Alvarez-Guerra, E.; Albo, J.; Irabien, A. Electrochemical membrane reactors for the utilisation of carbon dioxide. Chem. Eng. J. 2016, 305, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Endrődi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C. Continuous-flow electroreduction of carbon dioxide. Prog. Energy Combust. Sci. 2017, 62, 133–154. [Google Scholar] [CrossRef]
- Lin, R.; Guo, J.; Li, X.; Patel, P.; Seifitokaldani, A. Electrochemical reactors for CO2 conversion. Catalysts 2020, 10, 473. [Google Scholar] [CrossRef]
- Vennekötter, J.B.; Scheuermann, T.; Sengpiel, R.; Wessling, M. The electrolyte matters: Stable systems for high rate electrochemical CO2 reduction. J. CO2 Util. 2019, 32, 202–213. [Google Scholar] [CrossRef]
- Kumar, B.; Brian, J.P.; Atla, V.; Kumari, S.; Bertram, K.A.; White, R.T.; Spurgeon, J.M. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction. Catal. Today 2016, 270, 19–30. [Google Scholar] [CrossRef]
- Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry; Vayenas, C.G., White, R.E., Eds.; Springer: New York, NY, USA, 2008; pp. 89–189. ISBN 0076-9924. [Google Scholar]
- Larrazábal, G.O.; Martín, A.J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. Enhanced Reduction of CO2 to CO over Cu-In electrocatalysts: Catalyst evolution is the Key. ACS Catal. 2016, 6, 6265–6274. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B.C.; Kawi, S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004. [Google Scholar] [CrossRef]
- Hazarika, J.; Manna, M.S. Electrochemical reduction of CO2 to methanol with synthesized Cu2O nanocatalyst: Study of the selectivity. Electrochim. Acta 2019, 328, 135053. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Adegoke, R.O.; Ibrahim, A.O.; Adegoke, S.A.; Bello, O.S. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu-based materials. Sustain. Mater. Technol. 2020, 25, e00200. [Google Scholar] [CrossRef]
- Günay, M.E.; Türker, L.; Tapan, N.A. Decision tree analysis for efficient CO2 utilization in electrochemical systems. J. CO2 Util. 2018, 28, 83–95. [Google Scholar] [CrossRef]
- Kas, R.; Yang, K.; Bohra, D.; Kortlever, R.; Burdyny, T.; Smith, W.A. Electrochemical CO2 reduction on nanostructured metal electrodes: Fact or defect? Chem. Sci. 2020, 11, 1738–1749. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Leung, K.Y.; Michaud, S.E.; Soucy, T.L.; McCrory, C.C.L. Controlled Substrate Transport to Electrocatalyst Active Sites for Enhanced Selectivity in the Carbon Dioxide Reduction Reaction. Comments Inorg. Chem. 2019, 39, 242–269. [Google Scholar] [CrossRef]
- Fang, J.; Jin, X.; Huang, K. Life cycle analysis of a combined CO2 capture and conversion membrane reactor. J. Membr. Sci. 2018, 549, 142–150. [Google Scholar] [CrossRef]
- Costentin, C.; Robert, M.; Savéant, J.M. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion. Acc. Chem. Res. 2015, 48, 2996–3006. [Google Scholar] [CrossRef]
- Esposito, D.V. Membrane-Coated Electrocatalysts—An alternative approach to achieving stable and tunable electrocatalysis. ACS Catal. 2018, 8, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Ahualli, S.; Jiménez, M.L.; Delgado, Á.V. Kinetics of ion transport in a porous electrode. In Interface Science and Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 24, pp. 19–37. ISBN 9780128113707. [Google Scholar]
- Brée, L.C.; Wessling, M.; Mitsos, A. Modular modeling of electrochemical reactors: Comparison of CO2-electolyzers. Comput. Chem. Eng. 2020, 139, 106890. [Google Scholar] [CrossRef]
- Dinh, C.; Burdyny, T.; Kibria, G.; Seifitokaldani, A.; Gabardo, C.M.; de Arquer, F.P.G.; Kiani, A.; Edwards, J.P.; De Luna, P.; Bushuyev, O.S.; et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Cruz, L.; Casado-Coterillo, C.; Iniesta, J.; Montiel, V.; Irabien, Á. Chitosan: Poly (vinyl) alcohol composite alkaline membrane incorporating organic ionomers and layered silicate materials into a PEM electrochemical reactor. J. Membr. Sci. 2016, 498, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P.J.A. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 2016, 301, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Kutz, R.B.; Chen, Q.; Yang, H.; Sajjad, S.D.; Liu, Z.; Masel, I.R. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 2017, 5, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Kaczur, J.J.; Sajjad, S.D.; Masel, R.I. Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes. J. CO2 Util. 2017, 20, 208–217. [Google Scholar] [CrossRef]
- Yang, K.; Kas, R.; Smith, W.A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 2019, 141, 15891–15900. [Google Scholar] [CrossRef]
- Díaz-Sainz, G.; Alvarez-Guerra, M.; Solla-Gullón, J.; García-Cruz, L.; Montiel, V.; Irabien, A. Catalyst coated membrane electrodes for the gas phase CO2 electroreduction to formate. Catal. Today 2018, 346, 58–64. [Google Scholar] [CrossRef]
- Marcos-Madrazo, A.; Casado-Coterillo, C.; Irabien, Á. Sustainable membrane-coated electrodes for CO2 electroreduction to methanol in alkaline media. ChemElectroChem 2019, 6, 5273–5282. [Google Scholar] [CrossRef]
- Abejón, R.; Pérez-Acebo, H.; Garea, A. A bibliometric analysis of research on supported ionic liquid membranes during the 1995–2015 period: Study of the main applications and trending topics. Membranes 2017, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Ma, Z.; Su, W.; Wang, Q.; Wang, X.; Zhang, H. Analysis of research status of CO2 conversion technology based on bibliometrics. Catalysts 2020, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Elsevier Scopus. Available online: https://www.scopus.com/search/form.uri?display=basic (accessed on 31 May 2020).
- Robinson, J.E.; Labrador, N.Y.; Chen, H.; Sartor, B.E.; Esposito, D.V. Silicon oxide-encapsulated platinum thin films as highly active electrocatalysts for carbon monoxide and methanol oxidation. ACS Catal. 2018, 8, 11423–11434. [Google Scholar] [CrossRef]
- Labrador, N.Y.; Songcuan, E.L.; De Silva, C.; Chen, H.; Kurdziel, S.J.; Ramachandran, R.K.; Detavernier, C.; Esposito, D.V. Hydrogen evolution at the buried interface between Pt thin films and silicon oxide nanomembranes. ACS Catal. 2018, 8, 1767–1778. [Google Scholar] [CrossRef]
- O’Toole, T.R.; Meyer, T.J.; Sullivan, B.P. Electrocatalytic reduction of CO2 by thin polymeric films containing metallic rhodium. Chem. Mater. 1989, 1, 574–576. [Google Scholar] [CrossRef]
- O’Toole, T.R.; Sullivan, B.P.; Bruce, M.R.M.; Margerum, L.D.; Murray, R.W.; Meyer, T.J. Electrocatalytic reduction of CO2 by a complex of rhenium in thin polymeric films. J. Electroanal. Chem. Interfacial Electrochem. 1989, 259, 217–239. [Google Scholar] [CrossRef]
- Prakash, G.K.S.; Viva, F.A.; Olah, G.A. Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J. Power Sources 2013, 223, 68–73. [Google Scholar] [CrossRef]
- Aydin, R.; Doǧan, H.Ö.; Köleli, F. Electrochemical reduction of carbon dioxide on polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol. Appl. Catal. B Environ. 2013, 140–141, 478–482. [Google Scholar] [CrossRef]
- Schrebler, R.; Cury, P.; Herrera, F.; Gómez, H.; Córdova, R. Study of the electrochemical reduction of CO2 on electrodeposited rhenium electrodes in methanol media. J. Electroanal. Chem. 2002, 516, 23–30. [Google Scholar] [CrossRef]
- Grace, A.N.; Choi, S.Y.; Vinoba, M.; Bhagiyalakshmi, M.; Chu, D.H.; Yoon, Y.; Nam, S.C.; Jeong, S.K. Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode. Appl. Energy 2014, 120, 85–94. [Google Scholar] [CrossRef]
- Periasamy, A.P.; Ravindranath, R.; Kumar, S.M.S.; Wu, W.P.; Jian, T.R.; Chang, H.T. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol. Nanoscale 2018, 10, 11869–11880. [Google Scholar] [CrossRef]
- Ahn, S.; Klyukin, K.; Wakeham, R.J.; Rudd, J.A.; Lewis, A.R.; Alexander, S.; Carla, F.; Alexandrov, V.; Andreoli, E. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 2018, 8, 4132–4142. [Google Scholar] [CrossRef]
- Sánchez, O.G.; Birdja, Y.Y.; Bulut, M.; Vaes, J.; Breugelmans, T.; Pant, D. Recent advances in industrial CO2 electroreduction. Curr. Opin. Green Sustain. Chem. 2019, 16, 47–56. [Google Scholar] [CrossRef]
- Fleischer, M.; Jeanty, P.; Wiesner-Fleischer, K.; Hinrichsen, O. Industrial approach for direct electrochemical CO2 reduction in aqueous Electrolytes. In Zukünftige Kraftstoffe; Maus, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 224–250. ISBN 978-3-662-58005-9. [Google Scholar]
- Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672. [Google Scholar] [CrossRef] [Green Version]
- Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594, 1–19. [Google Scholar] [CrossRef]
- Beatty, M.E.S.; Chen, H.; Labrador, N.Y.; Lee, B.J.; Esposito, D.V. Structure-property relationships describing the buried interface between silicon oxide overlayers and electrocatalytic platinum thin films. J. Mater. Chem. A 2018, 6, 22287–22300. [Google Scholar] [CrossRef]
- Lin, Y.; Li, H.; Liu, C.; Xing, W.; Ji, X. Surface-modified Nafion membranes with mesoporous SiO2 layers via a facile dip-coating approach for direct methanol fuel cells. J. Power Sources 2008, 185, 904–908. [Google Scholar] [CrossRef]
- Tokita, S.; Imaya, H.; Abe, T.; Yoshida, T.; Kaneko, M.; Taguchi, F. Factors affecting selective electrocatalytic co2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. J. Electroanal. Chem. 1996, 412, 125–132. [Google Scholar] [CrossRef]
- Cruz, J.; Kawasaki, M.; Gorski, W. Electrode coatings based on chemically modified chitosan scaffolds. Anal. Chem. 2000, 72, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Ponnurangam, S.; Yun, C.M.; Chernyshova, I.V. Robust electroreduction of CO2 at a Poly(4-vinylpyridine)-copper electrode. ChemElectroChem 2016, 3, 74–82. [Google Scholar] [CrossRef]
- Lu, Q.; Jiao, F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439–456. [Google Scholar] [CrossRef] [Green Version]
- Weekes, D.M.; Salvatore, D.A.; Reyes, A.; Huang, A.; Berlinguette, C.P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A.R.; Mustain, W.E.; Nijmeijer, K.; Scott, K.; et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 2014, 7, 3135–3191. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kim, Y.E.; Youn, M.H.; Jeong, S.K.; Park, K.T. Catholyte-free Electrocatalytic CO2 reduction to formate. Angew. Chem. Int. Ed. 2018, 57, 6883–6887. [Google Scholar] [CrossRef]
- Aeshala, L.M.; Uppaluri, R.G.; Verma, A. Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel. J. CO2 Util. 2013, 3–4, 49–55. [Google Scholar] [CrossRef]
- Aeshala, L.M.; Rahman, S.U.; Verma, A. Effect of solid polymer electrolyte on electrochemical reduction of CO2. Sep. Purif. Technol. 2012, 94, 131–137. [Google Scholar] [CrossRef]
- Ziv, N.; Mustain, W.E.; Dekel, D.R. The effect of ambient carbon dioxide on anion-exchange membrane fuel cells. ChemSusChem 2018, 11, 1136–1150. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Pan, J.; Jiang, S.P.; Yang, H. Gas phase electrochemical conversion of humidified CO2 to CO and H2 on proton-exchange and alkaline anion-exchange membrane fuel cell reactors. J. CO2 Util. 2018, 23, 152–158. [Google Scholar] [CrossRef]
- Zheng, Y.; Ash, U.; Pandey, R.P.; Ozioko, A.G.; Ponce-gonza, J.; Handl, M.; Weissbach, T.; Varcoe, J.R.; Holdcroft, S.; Liberatore, M.W.; et al. Water uptake study of anion exchange membranes. Macromolecules 2018, 51, 3264–3278. [Google Scholar] [CrossRef]
- Dekel, D.R. Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 2018, 375, 158–169. [Google Scholar] [CrossRef]
- Diesendruck, C.E.; Dekel, D.R. Water—A key parameter in the stability of anion exchange membrane fuel cells. Curr. Opin. Electrochem. 2018, 9, 173–178. [Google Scholar] [CrossRef]
- Aeshala, L.M.; Uppaluri, R.; Verma, A. Electrochemical conversion of CO2 to fuels: Tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte. Phys. Chem. Chem. Phys. 2014, 16, 17588–17594. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, H.; Kutz, R.; Masel, R.I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using Sustainion membranes. J. Electrochem. Soc. 2018, 165, J3371–J3377. [Google Scholar] [CrossRef]
- Sacco, A. Electrochemical impedance spectroscopy as a tool to investigate the electroreduction of carbon dioxide: A short review. J. CO2 Util. 2018, 27, 22–31. [Google Scholar] [CrossRef]
- Phompan, W.; Hansupalak, N. Improvement of proton-exchange membrane fuel cell performance using platinum-loaded carbon black entrapped in crosslinked chitosan. J. Power Sources 2011, 196, 147–152. [Google Scholar] [CrossRef]
- Schrebler, R.; Cury, P.; Suárez, C.; Munñoz, E.; Córdova, R. Study of the electrochemical reduction of CO2 on a polypyrrole electrode modified by rhenium and copper-rhenium microalloy in methanol media. J. Electroanal. Chem. 2002, 533, 167–175. [Google Scholar] [CrossRef]
- Sato, S.; McNicholas, B.J.; Grubbs, R.H. Aqueous electrocatalytic CO2 reduction using metal complexes dispersed in polymer ion gels. Chem. Commun. 2020, 56, 4440–4443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnurangam, S.; Chernyshova, I.V.; Somasundaran, P. Nitrogen-containing polymers as a platform for CO2 electroreduction. Adv. Colloid Interface Sci. 2017, 244, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Du, X.; Chen, T.; Hao, X.; Abudula, A.; Tang, K.; Guan, G. A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions. Electrochim. Acta 2019, 306, 35–44. [Google Scholar] [CrossRef]
- Marcos-Madrazo, A.; Casado-Coterillo, C.; García-Cruz, L.; Iniesta, J.; Simonelli, L.; Sebastián, V.; Encabo-Berzosa, M.; Arruebo, M.; Irabien, A. Preparation and identification of optimal synthesis conditions for a novel alkaline anion-exchange membrane. Polymers 2018, 10, 913. [Google Scholar] [CrossRef] [Green Version]
- Perry, S.C.; Leung, P.K.; Wang, L.; de León, C.P. Developments on carbon dioxide reduction: Their promise, achievements, and challenges. Curr. Opin. Electrochem. 2020, 20, 88–98. [Google Scholar] [CrossRef]
- Pelayo-García-de Arquer, F.; Dinh, C.-T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A.R.; Nam, D.H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 2020, 367, 661–666. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, S.Y.; Hwang, D.S.; Shin, D.W.; Cho, D.H.; Lee, K.H.; Kim, T.W.; Kim, T.W.; Lee, M.; Kim, D.S.; et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483. [Google Scholar] [CrossRef]
- Vennekoetter, J.B.; Sengpiel, R.; Wessling, M. Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem. Eng. J. 2019, 364, 89–101. [Google Scholar] [CrossRef]
- Gabardo, C.M.; Adams-McGavin, R.C.; Fung, B.C.; Mahoney, E.J.; Fang, Q.; Soleymani, L. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling. Sci. Rep. 2017, 7, 42543. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Wang, D.; Xie, X.; Zhou, Y.; Yin, Y.; Du, Q.; Jiao, K. Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization. Renew. Energy 2016, 91, 166–177. [Google Scholar] [CrossRef]
Country | TP | SPR | ICPR | FAPR | CAPR |
---|---|---|---|---|---|
United States | 27 (19%) | 16 (11%) | 11 (8%) | 21 (15%) | 22 (15%) |
China | 18 (13%) | 10 (7%) | 8 (6%) | 14(10%) | 11 (8%) |
Japan | 18 (13%) | 16 (11%) | 2 (1%) | 16 (11%) | 18 (13%) |
India | 13 (9%) | 8 (6%) | 5 (4%) | 11 (8%) | 9 (6%) |
Australia | 11 (8%) | 9 (6%) | 2 (4%) | 9 (6%) | 10 (7%) |
South Korea | 9 (6%) | 7 (5%) | 2 (1%) | 8 (6%) | 8 (6%) |
Italy | 8 (5%) | 6 (75%) | 2 (25%) | 6 (75%) | 7 (88%) |
Canada | 7 (5 %) | 4 (4%) | 2 (1%) | 6 (4%) | 6 (4%) |
United Kingdom | 7 (5%) | 6 (4%) | 5 (4%) | 5 (4%) | 4 (3%) |
Spain | 4 (3%) | 2 (1%) | 2 (1%) | 4 (3%) | 3 (75%) |
Chile | 3 (2%) | 2 (1%) | 1 (1%) | 3 (2%) | 3 (2%) |
Turkey | 2 (2%) | 3 (2%) | 0 | 3 (2%) | 3 (2%) |
Ranking | Article | Times Cited |
---|---|---|
1 | Electrochemical reduction of CO2 over Sn–Nafion®-coated electrode for a fuel cell-like device Author(s): Prakash, G.K.S., Viva, F.A., Olah, A. Source: Journal of Power Sources Published: 2013 | 120 |
2 | Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode Author(s): Grace, A.N., Choi, S.Y., Vinoba, M., Bhagiyalakshmi, M., Chu, D.H., Yoon, Y., Nam, S.C., Jeong, S.K. Source: Applied Energy Published: 2014 | 61 |
3 | Electrochemical reduction of carbon dioxide on polypyrrole coated copper electrocatalyst under ambient and high pressure in methanol Authors: Aydin, R., Dogan, H.T., Koleli, F. Source: Applied Catalysis B: Environmental Published: 2013 | 44 |
5 | Electro and photoelectrochemical reduction of carbon dioxide on multimetallic porphyrins/polyoxotungstate modified electrodes Author(s): García M., Aguirre M.J., Canzi G., Kubiak C.P., Ohlbaum M., Isaacs M. Source: Electrochimica Acta Published: 2014 | 42 |
6 | Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical Reduction of Carbon Dioxide Authors: Ahn, S., Kiyukin, K., Wakeham, R.J., Rudd, J.A., Lewis, A.R., Alexander, S., Carla, F., Alexandrov, V., Andreoli, E. Source: ACS Catalysis Published: 2018 | 31 |
7 | Study of the electrochemical reduction of CO2 on a polypyrrole electrode modified by rhenium and copper-rhenium microalloy in methanol media Authors: Schrebler, R., Cury, P., Muñoz, E., Gómez, H., Córdova, R. Source: Journal of Electroanalytical Chemistry Published: 2002 | 28 |
8 | Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol Author(s): Periasamy A.P., Ravindranath R., Senthil Kumar S.M., Wu W.-P., Jian T.-R., Chang H.-T. Source: Nanoscale Published: 2018 | 15 |
9 | Sustainable membrane-coated electrodes for CO2 electroreduction to methanol in alkaline media Author(s): Marcos-Madrazo, A., Casado-Coterillo, C., Irabien, A. Source: ChemElectroChem Published: 2019 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casado-Coterillo, C.; Marcos-Madrazo, A.; Garea, A.; Irabien, Á. An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization. Catalysts 2020, 10, 1226. https://doi.org/10.3390/catal10111226
Casado-Coterillo C, Marcos-Madrazo A, Garea A, Irabien Á. An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization. Catalysts. 2020; 10(11):1226. https://doi.org/10.3390/catal10111226
Chicago/Turabian StyleCasado-Coterillo, Clara, Aitor Marcos-Madrazo, Aurora Garea, and Ángel Irabien. 2020. "An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization" Catalysts 10, no. 11: 1226. https://doi.org/10.3390/catal10111226
APA StyleCasado-Coterillo, C., Marcos-Madrazo, A., Garea, A., & Irabien, Á. (2020). An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization. Catalysts, 10(11), 1226. https://doi.org/10.3390/catal10111226