Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society
Abstract
:1. Introduction
2. Photocatalysis
3. Types of Hybridization Photocatalyst
3.1. Metal-Doped Photocatalyst
3.2. Coupling Heterojunction Photocatalyst
3.3. Supported Material Photocatalyst
4. Preparation Techniques of Photocatalyst
4.1. Preparation of Photocatalyst by Physical Techniques
4.2. Preparation of Photocatalyst by Chemical Techiques
4.2.1. Electrospinning Technique
4.2.2. Sol-Gel Technique
4.2.3. Co-Precipitation Technique
5. Degradation of Various Source of Pollutants
6. Effect of Parameters on the Efficiency of Photocatalytic Degradation Process
6.1. Photocatalyst Dosage
6.2. pH of Wastewater Sample
6.3. Irradiation Intensity
6.4. Temperature of Wastewater Sample
6.5. Initial Concentration of Wastewater Sample
6.6. Stability and Durability of Photocatalyst
7. Future Direction
8. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palaniappan, M.; Gleick, P.H.; Allen, L.; Cohen, M.J.; Christian-Smith, J.; Smith, C. References. In Clearing the Waters. A Focus on Water Quality Solutions; Ross, N., Ed.; Pacific Institute: Nairobi, Kenya, 2010; pp. 1–88. ISBN 978-92-807-3074-6. [Google Scholar]
- Fujushima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Matarangolo, M. Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites. Catal. Today 2018, 315, 230–236. [Google Scholar] [CrossRef]
- Truong, N.T.; Thi, H.P.N.; Ninh, H.D.; Phung, X.T.; Van Tran, C.; Nguyen, T.T.; Pham, T.D.; Dang, T.D.; Chang, S.W.; Rene, E.R.; et al. Facile fabrication of graphene@Fe-Ti binary oxide nanocomposite from ilmenite ore: An effective photocatalyst for dye degradation under visible light irradiation. J. Water Process Eng. 2020, 37, 101474. [Google Scholar] [CrossRef]
- He, Y.; Sutton, N.B.; Rijnaarts, H.H.H.; Langenhoff, A.A.M. Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Appl. Catal. B Environ. 2016, 182, 132–141. [Google Scholar] [CrossRef]
- Kosera, V.S.; Cruz, T.M.; Chaves, E.S.; Tiburtius, E.R.L. Triclosan degradation by heterogeneous photocatalysis using ZnO immobilized in biopolymer as catalyst. J. Photochem. Photobiol. A Chem. 2017, 344, 184–191. [Google Scholar] [CrossRef]
- Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 2016, 19, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Shaban, M.; Abdallah, S.; Khalek, A.A. Characterization and photocatalytic properties of cotton fibers modified with ZnO nanoparticles using sol–gel spin coating technique. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Abas, M.T. Physical Chemistry II, 3rd ed.; UiTM Press: Shah Alam, Malaysia, 2009. [Google Scholar]
- Wu, B.; Lu, S.; Xu, W.; Cui, S.; Li, J.; Han, P.F. Study on corrosion resistance and photocatalysis of cobalt superhydrophobic coating on aluminum substrate. Surf. Coat. Technol. 2017, 330, 42–52. [Google Scholar] [CrossRef]
- Stojadinović, S.; Tadić, N.; Radić, N.; Stojadinović, B.; Grbić, B.; Vasilić, R. Synthesis and characterization of Al2O3/ZnO coatings formed by plasma electrolytic oxidation. Surf. Coat. Technol. 2015, 276, 573–579. [Google Scholar] [CrossRef]
- Bansal, P.; Verma, A.; Talwar, S. Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode. Chem. Eng. J. 2018, 349, 838–848. [Google Scholar] [CrossRef]
- Bharatvaj, J.; Preethi, V.; Kanmani, S. Hydrogen production from sulphide wastewater using Ce3+–TiO2 photocatalysis. Int. J. Hydrogen Energy 2018, 43, 3935–3945. [Google Scholar] [CrossRef]
- Mera, A.C.; Martínez-de la Cruz, A.; Pérez-Tijerina, E.; Meléndrez, M.F.; Valdés, H. Nanostructured BiOI for air pollution control: Microwave-assisted synthesis, characterization and photocatalytic activity toward NO transformation under visible light irradiation. Mater. Sci. Semicond. Process. 2018, 88, 20–27. [Google Scholar] [CrossRef]
- Faraldos, M.; Kropp, R.; Anderson, M.A.; Sobolev, K. Photocatalytic hydrophobic concrete coatings to combat air pollution. Catal. Today 2016, 259, 228–236. [Google Scholar] [CrossRef]
- Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.M.A.; Hassan, M.A.; Taufiq-Yap, Y.H.; Ibrahim, M.L.; Othman, M.R.; Ali, A.A.M.; Shirai, Y. Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst. Renew. Energy 2017, 114, 638–643. [Google Scholar] [CrossRef]
- Ibrahim, M.L.; Nik, A.K.N.N.A.; Islam, A.; Rashid, U.; Ibrahim, S.F.; Mashuri, S.I.S.; Taufiq-Yap, Y.H. Preparation of Na2O supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy Convers. Manag. 2020, 205, 112445. [Google Scholar] [CrossRef]
- Mansir, N.; Hwa, S.T.; Lokman, I.M.; Taufiq-Yap, Y.H. Synthesis and application of waste egg shell derived CaO supported W-Mo mixed oxide catalysts for FAME production from waste cooking oil: Effect of stoichiometry. Energy Convers. Manag. 2017, 151, 216–226. [Google Scholar] [CrossRef]
- Ahmad, F.M.A.; Hassan, M.A.; Taufiq-Yap, Y.H.; Ibrahim, M.L.; Hasan, M.Y.; Ali, A.A.M.; Othman, M.R.; Shirai, Y. Kinetic and thermodynamic of heterogeneously K3PO4/AC-catalysed transesterification via pseudo-first order mechanism and Eyring-Polanyi equation. Fuel 2018, 232, 653–658. [Google Scholar] [CrossRef]
- Ibrahim, S.F.; Asikin-Mijan, N.; Ibrahim, M.L.; Abdulkareem-Alsultan, G.; Izham, S.M.; Taufiq-Yap, Y.H. Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Convers. Manag. 2020, 210, 112698. [Google Scholar] [CrossRef]
- Mahlambi, M.M.; Ngila, C.J.; Mamba, B.B. Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanoparticles-A review. J. Nanomater. 2015, 2015, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res. 2004, 8, 501–551. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Ho, W. Graphene-based photocatalysts for CO2 reduction to solar fuel. J. Phys. Chem. Lett. 2015, 6, 4244–4251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geißen, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Sirota, J.; Baiser, B.; Gotelli, N.J.; Ellison, A.M. Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem. Proc. Natl. Acad. Sci.USA 2013, 110, 7742–7747. [Google Scholar] [CrossRef] [Green Version]
- Cheshme, K.A.H.; Mahjoub, A.; Bayat, R.M. Low temperature one-pot synthesis of Cu-doped ZnO/Al2O3 composite by a facile rout for rapid methyl orange degradation. J. Photochem. Photobiol. B Biol. 2017, 175, 37–45. [Google Scholar] [CrossRef]
- Nasr, M.; Viter, R.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Optical and structural properties of Al2O3 doped ZnO nanotubes prepared by ALD and their photocatalytic application. Surf. Coat. Technol. 2018, 343, 24–29. [Google Scholar] [CrossRef]
- Gao, J.; Gao, Y.; Sui, Z.; Dong, Z.; Wang, S.; Zou, D. Hydrothermal synthesis of BiOBr/FeWO4 composite photocatalysts and their photocatalytic degradation of doxycycline. J. Alloys Compd. 2018, 732, 43–51. [Google Scholar] [CrossRef]
- Al-Balushi, B.S.M.; Al-Marzouqi, F.; Al-Wahaibi, B.; Kuvarega, A.T.; Al-Kindy, S.M.Z.; Kim, Y.; Selvaraj, R. Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Appl. Surf. Sci. 2018, 457, 559–565. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, Y.; Xu, Y.; Li, L.; Li, C.; Liu, X.; Niu, L. All-solid-state Z-scheme CdTe/TiO2 heterostructure photocatalysts with enhanced visible-light photocatalytic degradation of antibiotic wastewater. Chem. Eng. J. 2018, 350, 257–267. [Google Scholar] [CrossRef]
- Wang, D.; Jia, F.; Wang, H.; Chen, F.; Fang, Y.; Dong, W.; Zeng, G.; Li, X.; Yang, Q.; Yuan, X. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci. 2018, 519, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lei, X.; Chen, Q.; Kang, C.; Li, W.; Liu, B. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4. J. Photochem. Photobiol. A Chem. 2018, 364, 794–800. [Google Scholar] [CrossRef]
- Osotsi, M.I.; Macharia, D.K.; Zhu, B.; Wang, Z.; Shen, X.; Liu, Z.; Zhang, L.; Chen, Z. Synthesis of ZnWO4−x nanorods with oxygen vacancy for efficient photocatalytic degradation of tetracycline. Prog. Nat. Sci. Mater. Int. 2018, 28, 408–415. [Google Scholar] [CrossRef]
- Vinoth, K.J.; Karthik, R.; Chen, S.M.; Chen, K.H.; Sakthinathan, S.; Muthuraj, V.; Chiu, T.W. Design of novel 3D flower-like neodymium molybdate: An efficient and challenging catalyst for sensing and destroying pulmonary toxicity antibiotic drug nitrofurantoin. Chem. Eng. J. 2018, 346, 11–23. [Google Scholar] [CrossRef]
- Tu, H.; Li, D.; Yi, Y.; Liu, R.; Wu, Y.; Dong, X.; Shi, X.; Deng, H. Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos. Commun. 2019, 15, 58–63. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, C.; Liang, T.; Sun, Q.; Wang, H. Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: Optimization of physicochemical parameters and kinetics studies. Chem. Eng. Sci. 2018, 183, 231–239. [Google Scholar] [CrossRef]
- Liu, S.J.; Li, F.T.; Li, Y.L.; Hao, Y.J.; Wang, X.J.; Li, B.; Liu, R.H. Fabrication of ternary g-C3N4/Al2O3/ZnO heterojunctions based on cascade electron transfer toward molecular oxygen activation. Appl. Catal. B Environ. 2017, 212, 115–128. [Google Scholar] [CrossRef]
- Stojadinović, S.; Vasilić, R.; Radić, N.; Tadić, N.; Stefanov, P.; Grbić, B. The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis. Appl. Surf. Sci. 2016, 377, 37–43. [Google Scholar] [CrossRef]
- Moyet, M.A.; Arthur, R.B.; Lueders, E.E.; Breeding, W.P.; Patterson, H.H. The role of Copper (II) ions in Cu-BiOCl for use in the photocatalytic degradation of atrazine. J. Environ. Chem. Eng. 2018, 6, 5595–5601. [Google Scholar] [CrossRef]
- Singh, P.; Mondal, K.; Sharma, A. Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J. Colloid Interface Sci. 2013, 394, 208–215. [Google Scholar] [CrossRef]
- Elhalil, A.; Elmoubarki, R.; Farnane, M.; Machrouhi, A.; Sadiq, M.; Mahjoubi, F.Z.Z.; Qourzal, S.; Barka, N. Photocatalytic degradation of caffeine as a model pharmaceutical pollutant on Mg doped ZnO-Al2O3 heterostructure. Environ. Nanotechnol. Monit. Manag. 2018, 10, 63–72. [Google Scholar] [CrossRef]
- Takanabe, K. Photocatalytic water splitting: Quantitative approaches toward photocatalyst by design. ACS Catal. 2017, 7, 8006–8022. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.K.; Zheng, P.; Senty, T.; Meng, F.; Bristow, A.D.; Manivannan, A.; Wu, N. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 2014, 136, 8438–8449. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.C.; Zakaria, R.; Ying, J.Y. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 1998, 102, 10871–10878. [Google Scholar] [CrossRef]
- Ge, L.; Han, C.; Liu, J.; Li, Y. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A Gen. 2011, 409–410, 215–222. [Google Scholar] [CrossRef]
- Cao, J.; Yang, Z.H.; Xiong, W.P.; Zhou, Y.Y.; Peng, Y.R.; Li, X.; Zhou, C.Y.; Xu, R.; Zhang, Y.R. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chem. Eng. J. 2018, 353, 126–137. [Google Scholar] [CrossRef]
- Gupta, V.K.; Fakhri, A.; Azad, M.; Agarwal, S. Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine as a poison: Charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy. J. Colloid Interface Sci. 2018, 510, 95–102. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.C.; Juang, R.S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Zhang, L.; Jaroniec, M. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Appl. Surf. Sci. 2018, 430, 2–17. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Zheng, S.; Hu, C.; Qin, F.; Wei, L.; Zhang, C.; Duo, S.; Hu, Q. One-pot synthesis of Bi2O3/Bi2O4 p-n heterojunction for highly efficient photocatalytic removal of organic pollutants under visible light irradiation. J. Phys. Chem. Solids 2020, 140, 109376. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, H.; Ma, X.; Zhang, X.; Zhu, Y.; Zhang, A.; Cao, Y.; Yang, P. Construction of AgI/Bi2MoO6/AgBi(MoO4)2 multi-heterostructure composite nanosheets for visible-light photocatalysis. Mater. Today Commun. 2020, 23, 100903. [Google Scholar] [CrossRef]
- Lin, X.; Guo, X.; Shi, W.; Zhai, H.; Yan, Y.; Wang, Q. Quaternary heterostructured Ag-Bi2O2CO3/Bi3.64Mo0.36O6.55/Bi2MoO6 composite: Synthesis and enhanced visible-light-driven photocatalytic activity. J. Solid State Chem. 2015, 229, 68–77. [Google Scholar] [CrossRef]
- Sakata, Y.; Tamaura, Y.; Imamura, H.; Watanabe, M. Preparation of a new type of CaSiO3 with high surface area and property as a catalyst support. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2006; Volume 162, pp. 331–338. [Google Scholar]
- Zheng, Y.; Liu, J.; Cheng, B.; You, W.; Ho, W.; Tang, H. Hierarchical porous Al2O3@ZnO core-shell microfibres with excellent adsorption affinity for Congo red molecule. Appl. Surf. Sci. 2019, 473, 251–260. [Google Scholar] [CrossRef]
- IUPAC. Compendium of Chemical Terminology; Nič, M., Jirát, J., Košata, B., Jenkins, A., McNaught, A., Eds.; IUPAC: Research Triagle Park, NC, USA, 2009. [Google Scholar]
- Loddo, V.; Marcì, G.; Martín, C.; Palmisano, L.; Rives, V.; Sclafani, A. Preparation and characterisation of TiO2(anatase) supported on TiO2(rutile) catalysts employed for 4-nitrophenol photodegradation in aqueous medium and comparison with TiO2(anatase) supported on Al2O3. Appl. Catal. B Environ. 1999, 20, 29–45. [Google Scholar] [CrossRef]
- Li, Y.; Yeung, K.L. Polymeric catalytic membrane for ozone treatment of DEET in water. Catal. Today 2019, 331, 53–59. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Mashentseva, A.A.; Güven, O.; Gorin, Y.G.; Kozlovskiy, A.L.; Zdorovets, M.V.; Zhidkov, I.S.; Cholach, S.O. Electron/gamma radiation-induced synthesis and catalytic activity of gold nanoparticles supported on track-etched poly(ethylene terephthalate) membranes. Mater. Chem. Phys. 2018, 217, 31–39. [Google Scholar] [CrossRef]
- Popa, A.; Sasca, V.; Verdes, O.; Oszko, A. Preparation and catalytic properties of cobalt salts of Keggin type heteropolyacids supported on mesoporous silica. Catal. Today 2018, 306, 233–242. [Google Scholar] [CrossRef]
- Ren, J.; Hao, P.; Sun, W.; Shi, R.; Liu, S. Ordered mesoporous silica-carbon-supported copper catalyst as an efficient and stable catalyst for catalytic oxidative carbonylation. Chem. Eng. J. 2017, 328, 673–682. [Google Scholar] [CrossRef]
- Liu, P.; Wei, G.; He, H.; Liang, X.; Chen, H.; Xi, Y.; Zhu, J. The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides: Catalytic deactivation and regeneration. Appl. Surf. Sci. 2019, 464, 287–293. [Google Scholar] [CrossRef]
- Hu, E.; Wu, X.; Shang, S.; Tao, X.M.; Jiang, S.X.; Gan, L. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J. Clean. Prod. 2016, 112, 4710–4718. [Google Scholar] [CrossRef]
- Pawar, R.C.; Lee, C.S. Single-step sensitization of reduced graphene oxide sheets and CdS nanoparticles on ZnO nanorods as visible-light photocatalysts. Appl. Catal. B Environ. 2014, 144, 57–65. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L. Ultrasonic-assisted sol-gel synthesis of rugby-shaped SrFe2O4/reduced graphene oxide hybrid as versatile visible light photocatalyst. J. Taiwan Inst. Chem. Eng. 2016, 69, 156–162. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Matarangolo, M. ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis. Sep. Purif. Technol. 2018, 193, 303–310. [Google Scholar] [CrossRef]
- Sharifi, A.; Montazerghaem, L.; Naeimi, A.; Abhari, A.R.; Vafaee, M.; Ali, G.A.M.; Sadegh, H. Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation. J. Environ. Manag. 2019, 247, 624–632. [Google Scholar] [CrossRef]
- Zhang, G.; Jin, W.; Xu, N. Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 2018, 4, 848–860. [Google Scholar] [CrossRef]
- Neves, T.M.; Frantz, T.S.; do Schenque, E.C.C.; Gelesky, M.A.; Mortola, V.B. An investigation into an alternative photocatalyst based on CeO2/Al2O3 in dye degradation. Environ. Technol. Innov. 2017, 8, 349–359. [Google Scholar] [CrossRef]
- Boreriboon, N.; Jiang, X.; Song, C.; Prasassarakich, P. Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to hydrocarbons. J. CO2 Util. 2018, 25, 330–337. [Google Scholar] [CrossRef]
- Hu, D.; Liu, C.; Li, L.; Lv, K.L.; Zhang, Y.H.; Li, J.L. Carbon dioxide reforming of methane over nickel catalysts supported on TiO2 (001) nanosheets. Int. J. Hydrogen Energy 2018, 3, 21345–21354. [Google Scholar] [CrossRef]
- Nouri, F.; Rostamizadeh, S.; Azad, M. Synthesis of a novel ZnO nanoplates supported hydrazone-based palladacycle as an effective and recyclable heterogeneous catalyst for the Mizoroki-Heck cross-coupling reaction. Inorg. Chim. Acta 2018, 471, 664–673. [Google Scholar] [CrossRef]
- Fujita, S.I.; Mitani, H.; Zhang, C.; Li, K.; Zhao, F.; Arai, M. Pd and PdZn supported on ZnO as catalysts for the hydrogenation of cinnamaldehyde to hydrocinnamyl alcohol. Mol. Catal. 2017, 442, 12–19. [Google Scholar] [CrossRef]
- Mitoraj, D.; Lamdab, U.; Kangwansupamonkon, W.; Pacia, M.; Macyk, W.; Wetchakun, N.; Beranek, R. Revisiting the problem of using methylene blue as a model pollutant in photocatalysis: The case of InVO4/BiVO4 composites. J. Photochem. Photobiol. A Chem. 2018, 366, 103–110. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Wang, R. Support structure and reduction treatment effects on CO oxidation of SiO2 nanospheres and CeO2 nanorods supported ruthenium catalysts. J. Colloid Interface Sci. 2018, 531, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Larimi, A.; Khorasheh, F. Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported Ni-Pt bimetallic nano-catalysts. Renew. Energy 2018, 128, 188–199. [Google Scholar] [CrossRef]
- Shi, D.; Wang, H.; Kovarik, L.; Gao, F.; Wan, C.; Hu, J.Z.; Wang, Y. WOx supported on γ-Al2O3 with different morphologies as model catalysts for alkanol dehydration. J. Catal. 2018, 363, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, Y.; Zou, H.; Guo, X.; Wang, Z. Ni catalysts supported on nanosheet and nanoplate γ-Al2O3 for carbon dioxide methanation. J. Energy Chem. 2019, 29, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Sobhani-Nasab, A.; Maddahfar, M.; Hosseinpour-Mashkani, S.M. Ce(MoO4)2 nanostructures: Synthesis, characterization, and its photocatalyst application through the ultrasonic method. J. Mol. Liq. 2016, 216, 1–5. [Google Scholar] [CrossRef]
- Liang, B.; Han, D.; Sun, C.; Zhang, W.; Qin, Q. Synthesis of SnO/g-C3N4 visible light driven photocatalysts via grinding assisted ultrasonic route. Ceram. Int. 2018, 44, 7315–7318. [Google Scholar] [CrossRef]
- Rokesh, K.; Nithya, A.; Jeganathan, K.; Jothivenkatachalam, K. A facile solid state synthesis of cone-like ZnO microstructure an efficient solar-light driven photocatalyst for Rhodamine B degradation. Mater. Today Proc. 2016, 3, 4163–4172. [Google Scholar] [CrossRef]
- Miwa, T.; Kaneco, S.; Katsumata, H.; Suzuki, T.; Ohta, K.; Verma, S.C.; Sugihara, K. Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. Int. J. Hydrogen Energy 2010, 35, 6554–6560. [Google Scholar] [CrossRef]
- Yang, Z.X.; Zhu, F.; Zhou, W.M.; Zhang, Y.F. Novel nanostructures of β-Ga2O3 synthesized by thermal evaporation. Phys. E Low-Dimens. Syst. Nanostruct. 2005, 30, 93–95. [Google Scholar] [CrossRef]
- Zou, C.; Liang, F.; Xue, S. Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation. Res. Chem. Intermed. 2015, 41, 5167–5176. [Google Scholar] [CrossRef]
- Pan, Z.W. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhao, Y.; Wang, C.; Li, D.; Gao, K. Fabrication and characterization unique ribbon-like porous Ag/LaFeO3 nanobelts photocatalyst via electrospinning. Mater. Lett. 2016, 170, 122–125. [Google Scholar] [CrossRef]
- Ahluwalia, S.; Prakash, N.T.; Prakash, R.; Pal, B. Improved degradation of methyl orange dye using bio-co-catalyst Se nanoparticles impregnated ZnS photocatalyst under UV irradiation. Chem. Eng. J. 2016, 306, 1041–1048. [Google Scholar] [CrossRef]
- Parida, K.M.; Pradhan, A.C.; Das, J.; Sahu, N. Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater. Chem. Phys. 2009, 113, 244–248. [Google Scholar] [CrossRef]
- Amouzegar, Z.; Naghizadeh, R.; Rezaie, H.R.; Ghahari, M.; Aminzare, M. Cubic ZnWO4 nano-photocatalysts synthesized by the microwave-assisted precipitation technique. Ceram. Int. 2015, 41, 1743–1747. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y. Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J. Phys. Chem. C 2010, 114, 890–896. [Google Scholar] [CrossRef]
- Ayyub, P.; Multani, M.; Barma, M.; Palkar, V.R.; Vijayaraghavan, R. Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3. J. Phys. C Solid State Phys. 1988, 21, 2229–2245. [Google Scholar] [CrossRef]
- Kumar, H.; Rani, R. Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int. Lett. Chem. Phys. Astron. 2013, 19, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Karbassi, M.; Zarrintaj, P.; Ghafarinazari, A.; Saeb, M.R.; Mohammadi, M.R.; Yazdanpanah, A.; Rajadas, J.; Mozafari, M. Microemulsion-based synthesis of a visible-light-responsive Si-doped TiO2 photocatalyst and its photodegradation efficiency potential. Mater. Chem. Phys. 2018, 220, 374–382. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Liu, H.; Li, R.; Xue, M.; Zhu, G. Facile sol-gel foaming synthesized nano foam Bi2Mo3O12 as novel photocatalysts for Microcystis aeruginosa treatment. Mater. Res. Bull. 2018, 107, 8–13. [Google Scholar] [CrossRef]
- Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Warner, J.H.; Schäffel, F.; Bachmatiuk, A.; Rümmeli, M.H. Methods for Obtaining Graphene. In Graphene; Elsevier: Amsterdam, The Netherlands, 2013; pp. 129–228. [Google Scholar]
- Taylor, A.C. Advances in nanoparticle reinforcement in structural adhesives. In Advances in Structural Adhesive Bonding; Elsevier: Amsterdam, The Netherlands, 2010; pp. 151–182. [Google Scholar]
- Cheaburu-Yilmaz, C.N.; Karasulu, H.Y.; Yilmaz, O. Nanoscaled Dispersed Systems Used in Drug-Delivery Applications; Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar]
- Tian, C.; Zhang, Q.; Wu, A.; Jiang, M.; Liang, Z.; Jiang, B.; Fu, H. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012, 48, 2858–2860. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.D.; Muthukumar, H.; Chandrasekaran, N.I.; Matheswaran, M. Photocatalytic degradation of naphthalene using calcined Fe–ZnO/ PVA nanofibers. Chemosphere 2018, 205, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.G.; Mukherjee, D.; Reddy, B.M. Novel Approaches for Preparation of Nanoparticles. In Nanostructures for Novel Therapy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–36. [Google Scholar]
- Mahdavi, R.; Ashraf Talesh, S.S. The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrason. Sonochem. 2017, 39, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Shi, L.; Yao, L.; Cui, L. Synthesis of novel magnetically separable Fe3O4/Bi12O17Cl2 photocatalyst with boosted visible-light photocatalytic activity. Mater. Res. Bull. 2020, 129, 110888. [Google Scholar] [CrossRef]
- Salman, S.R. Chemical Reactions Studied by Electronic Spectroscopy. In Encyclopedia of Spectroscopy and Spectrometry; Elsevier: Amsterdam, The Netherlands, 1999; pp. 246–252. [Google Scholar]
- Zhang, Y.; Li, G.; Yang, X.; Yang, H.; Lu, Z.; Chen, R. Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities. J. Alloys Compd. 2013, 551, 544–550. [Google Scholar] [CrossRef]
- Bharathi, P.; Harish, S.; Archana, J.; Navaneethan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Shimomura, M.; Hayakawa, Y. Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: The synergistic effect of photocatalysis for the mineralization of organic pollutant in water. Appl. Surf. Sci. 2019, 484, 884–891. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Zhao, S.; Chen, X.; Yu, Y. Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites. Appl. Surf. Sci. 2018, 453, 394–404. [Google Scholar] [CrossRef]
- Wei, X.N.; Ou, C.L.; Guan, X.X.; Peng, Z.K.; Zheng, X.C. Facile assembly of CdS-reduced graphene oxide heterojunction with enhanced elimination performance for organic pollutants in wastewater. Appl. Surf. Sci. 2019, 469, 666–673. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Zhou, W.; Gao, H.; Tian, G. Tuning in BiVO4/Bi4V2O10 porous heterophase nanospheres for synergistic photocatalytic degradation of organic pollutants. Appl. Surf. Sci. 2019, 470, 631–638. [Google Scholar] [CrossRef]
- Li, K.; Zhong, Y.; Luo, S.; Deng, W. Fabrication of powder and modular H3PW12O40/Ag3PO4 composites: Novel visible-light photocatalysts for ultra-fast degradation of organic pollutants in water. Appl. Catal. B Environ. 2020, 278, 119313. [Google Scholar] [CrossRef]
- Deng, Y.; Xiao, Y.; Zhou, Y.; Zeng, T.; Xing, M.; Zhang, J. A structural engineering-inspired CdS based composite for photocatalytic remediation of organic pollutant and hexavalent chromium. Catal. Today 2019, 335, 101–109. [Google Scholar] [CrossRef]
- Mbiri, A.; Taffa, D.H.; Gatebe, E.; Wark, M. Zirconium doped mesoporous TiO2 multilayer thin films: Influence of the zirconium content on the photodegradation of organic pollutants. Catal. Today 2019, 328, 71–78. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarath, C.K.; Kim, D.H.; Madras, G.; Sarkar, D. Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv. Powder Technol. 2018, 29, 1591–1600. [Google Scholar] [CrossRef]
- Bai, X.; Du, Y.; Hu, X.; He, Y.; He, C.; Liu, E.; Fan, J. Synergy removal of Cr(VI) and organic pollutants over RP-MoS2/rGO photocatalyst. Appl. Catal. B Environ. 2018, 239, 204–213. [Google Scholar] [CrossRef]
- Haque, M.M.; Muneer, M. Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. J. Hazard. Mater. 2007, 145, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xie, Y.; Cao, H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 2015, 121, 1–17. [Google Scholar] [CrossRef]
- Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly active Zr co-doped Ag-ZnO photocatalyst for the mineralization of Acid Black 1 under UV-A light illumination. Mater. Chem. Phys. 2013, 141, 114–120. [Google Scholar] [CrossRef]
- Daneshvar, N.; Rabbani, M.; Modirshahla, N.; Behnajady, M.A. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. J. Photochem. Photobiol. A Chem. 2004, 168, 39–45. [Google Scholar] [CrossRef]
- Tekin, D.; Saygi, B. Photoelectrocatalytic decomposition of Acid Black 1 dye using TiO2 nanotubes. J. Environ. Chem. Eng. 2013, 1, 1057–1061. [Google Scholar] [CrossRef]
- Bhatia, V.; Malekshoar, G.; Dhir, A.; Ray, A.K. Enhanced photocatalytic degradation of atenolol using graphene TiO2 composite. J. Photochem. Photobiol. A Chem. 2017, 332, 182–187. [Google Scholar] [CrossRef]
- Tambat, S.; Umale, S.; Sontakke, S. Photocatalytic degradation of Milling Yellow dye using sol-gel synthesized CeO2. Mater. Res. Bull. 2016, 76, 466–472. [Google Scholar] [CrossRef]
- Ateş, S.; Baran, E.; Yazıcı, B. Fabrication of Al2O3 nanopores/SnO2 and its application in photocatalytic degradation under UV irradiation. Mater. Chem. Phys. 2018, 214, 17–27. [Google Scholar] [CrossRef]
- Taddesse, A.M.; Alemu, M.; Kebede, T. Enhanced photocatalytic activity of p-n-n heterojunctions ternary composite Cu2O/ZnO/Ag3PO4 under visible light irradiation. J. Environ. Chem. Eng. 2020, 8, 104356. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Mei, J.Y.; Yi, S.S.; Guan, X.X. Constructing of Z-scheme 3D g-C3N4-ZnO@graphene aerogel heterojunctions for high-efficient adsorption and photodegradation of organic pollutants. Appl. Surf. Sci. 2019, 492, 808–817. [Google Scholar] [CrossRef]
- Tayebee, R.; Esmaeili, E.; Maleki, B.; Khoshniat, A.; Chahkandi, M.; Mollania, N. Photodegradation of methylene blue and some emerging pharmaceutical micropollutants with an aqueous suspension of WZnO-NH2@H3PW12O40 nanocomposite. J. Mol. Liq. 2020, 317, 113928. [Google Scholar] [CrossRef]
- Mahat, M.M.; Aris, A.H.M.; Jais, U.S.; Yahya, M.F.Z.R.; Ramli, R.; Bonnia, N.N.; Mamat, M.T. A preliminary study on microbiologically influenced corrosion (MIC) of mild steel by Pseudomonas aeruginosa by using infinite focus microscope (IFM). AIP Conf. Proceed. J. 2012, 1455, 117–123. [Google Scholar]
Type of Organic Pollutant | Treat | Photocatalyst | Light Source | Band Gap | Degradation Rate (%) | Ref. |
---|---|---|---|---|---|---|
Analgesics | Acetaminophen | CdS sub-microspheres | 50 W LED visible light λ = 455 nm | 2.16 eV | Acetaminophen: 85% Levofloxacin: 70% in 240 min | [29] |
Paracetamol | TiO2-graphite composites | UV lamp 8 W λ = 365 nm | 3.24 eV | UV: 100% in 120 min TOC: 88% in 180 min | [30] | |
Antibiotics | Doxycycline | BiOBr/FeWO4 | 300 W Xenon lamp with a 400-nm cutoff filter | 2.46 eV | 90.4% in 60 min | [31] |
Levofloxacin | CdS sub-microspheres | 50 W LED visible light λ = 455 nm | 2.16 eV | Levofloxacin: 70% in 240 min | [29] | |
Tetracycline hydrochloride | CdTe/TiO2 | 400 W halogen lamp equipped with a cutoff filter (λ > 400 nm) | 1.39 eV | 78% in 30 min | [32] | |
tetracycline | Fe-based metal–organic frameworks | 300 W Xenon lamp visible lamp λ > 420 nm | 1.88 eV | 96.6% in 3 h | [33] | |
Tetracycline hydrochloride | ZnFe2O4 porous hollow cube | 300 W Xe Lamp equipped with 350 nm–780 nm reflection filter and 420 nm cutoff filter (irradiation wavelength of 420 nm–780 nm) | 1.5 eV | 84.08% in 60 min | [34] | |
Tetracycline | ZnWO4−x nanorods | UV lamp mercury 300 W Xenon lamp 300 W | 3.1 eV | 91% in 80 min | [35] | |
Nitrofurantoin | Nd2Mo3O9 | 300 W tungsten incandescent lamp lamp intensity is 150 mW/cm2 | 2.82 eV | 99% in 45 min | [36] | |
Dyes | Rhodamine B | polycaprolactone/TiO2 nanofibrous | 25 W of 254 nm UV light | - | 100% in 300 min | [37] |
Methyl orange | Cu-doped ZnO/Al2O3 | Visible light 400 W high-pressure mercury-vapor lamp λ = 546.8 nm | 2.18 eV | 100% in 50 min | [28] | |
Orange G | Sepiolite-TiO2 nanocomposites | 300 W Xe lamp | - | 98.8% in 150 min | [38] | |
Nitroblue tetrazolium Methylene blue | Ternary g-C3N4/Al2O3/ZnO | Visible light 300 W xenon lamp with λ > 420 nm cut-off filter | ZnO 3.20 eV Al2O3 4.86 eV g-C3N4 2.76 eV | 85% in 50 min | [39] | |
Methyl orange | Tungsten doped Al2O3/ZnO coating aluminum | Simulate solar irradiation 300 W | - | 95% in 10 h | [40] | |
Herbicide | atrazine | Cu-BiOCl | Mercury UV lamp Λ = 254 nm | 3.0 eV | 35% in 30 min | [41] |
Pesticide | naphthalene | ZnO | 254 nm irradiation under 50 W mercury lamp | 2.98 eV | 70% in 2 h | [42] |
Stimulant | Caffeine | Mg doped ZnO-Al2O3 | UV mercury lamp 400 W | - | 89.18% in 70 min | [43] |
Catalysts | Quantity of Dopant | Morphological Characterization | Adsorption Capacity (wt.% Dopant: % Adsorption) | Photocatalytic Degradation (wt.% Dopant: % Degradation) | Ref. |
---|---|---|---|---|---|
Cu-doped ZnO/Al2O3 | Minimum dopant loading | Undoped ZnO/Al2O3 observed as spherical morphology | - | 0.0 wt.%: 6.4% 2.5 wt.%: 39.5% 5.0 wt.%: ~93.0% | [28] |
Optimum dopant loading | After doping, the surface became lamellar morphology and XRD peaks relative intensity showed slightly decreased | - | 7.5 wt.%: 100% | ||
Maximum dopant loading | - | - | 10.0 wt.%: ~93.0% | ||
Mg-doped ZnO-Al2O3 | Minimum dopant loading | Crystallite size 21 nm; Observable porosity on surface | 0.0 wt.%: 7.0% | 0.0 wt.%: 89.2% | [43] |
Optimum dopant loading | Crystallite size 8 nm; The surface increase in grain size | 1.0 wt.%: 11.1% | 1.0 wt.%: 98.9% | ||
Maximum dopant loading | Crystallite size ≤ 35 nm | 3.0 wt.%: 6.7% 5.0 wt.%: 1.2% | 3.0 wt.%: <98.9% 5.0 wt.%: <98.9% | ||
Co-doped Zr6O4(OH4)BDC12 | Minimum dopant loading | Agglomerated cubic morphology with diameter of 230 nm; surface area was 584 m2g−1 | 0.0 wt.%: 9.9% | 0.0 wt.%: <78.5% | [48] |
Optimum dopant loading | Dispersive and uniform cubic with diameter of 170 nm; increase surface area to 815 m2g−1 | 1.0 wt.%: 68.1% | 1.0 wt.%: 78.5% | ||
Maximum dopant loading | The higher amount of Co doped, the higher surface area observed | 2.0 wt.%: 61.3% 4.0 wt.%: 58.6% 8.0 wt.%: 55.4% | 2.0 wt.%: <78.5% 4.0 wt.%: <78.5% 8.0 wt.%: <78.5% | ||
Ag-doped ZnS | Minimum dopant loading | Average diameter was 3.0–5.0 nm; surface area was 78 m2g−1 | - | No dopant: 79.7% | [49] |
Optimum dopant loading | Average diameter was 3.0–5.3 nm; increase surface area to 89 m2g−1 | - | With dopant: 92.8% | ||
Maximum dopant loading | - | - | - |
Type of Method | Method | Photocatalyst | Reference |
---|---|---|---|
Solid-based method | Sonication | Cu-doped ZnO/Al2O3 | [28] |
Ce(MoO4)2 | [80] | ||
SnO/g-C3N4 | [81] | ||
Solid-state | Mg doped ZnO-Al2O3 | [43] | |
ZnO | [82] | ||
CuO/Al2O3/TiO2 | [83] | ||
Thermal evaporation | SnO2 | [84] | |
ZnO | [85] | ||
ZnO | [86] | ||
Solution-based method | Hydrothermal | Sepiolite-TiO2 | [38] |
CdS | [29] | ||
CdTe/TiO2 | [32] | ||
Electrospinning | ZnO | [42] | |
polycaprolactone/TiO2 | [37] | ||
Ag/LaFeO3 | [87] | ||
Impregnation | Mg-ZnO/Al2O3 | [43] | |
Cu-BiOCl | [41] | ||
Se-ZnS | [88] | ||
Precipitation | TiO2-graphite | [30] | |
γ-Al2O3 | [89] | ||
ZnWO4 | [90] | ||
Co-precipitation | g-C3N4/Al2O3/ZnO | [39] | |
Mg doped ZnO-Al2O3 | [43] | ||
ZnFe2O4 | [34] | ||
Cu-doped ZnO/Al2O3 | [28] | ||
ZnO | [91] | ||
Microemulsion | Fe2O3 | [92] | |
ZnO | [93] | ||
Si doped TiO2 | [94] | ||
Sol-gel | Nd2Mo3O9 | [36] | |
TiO2 | [94] | ||
Bi2Mo3O12 | [95] |
Photocatalyst | Type of Light Used | Source of Pollution | Condition Set | Degradation | Ref. | |||
---|---|---|---|---|---|---|---|---|
Catalyst Loading | Initial Concentration | Reaction Time | pH | |||||
BiVO4/CHCOO(BiO) | Visible light using 300 W Xenon lamp | Sulfamethoxazole | 1 g/L | 10 mg/L | 5 h | 6 | 85% | [107] |
Bisphenol A | 1 g/L | 10 mg/L | 5 h | 6 | 99% | |||
4-aminoantipyrine | 1 g/L | 10 mg/L | 5 h | 6 | 46% | |||
Ibuprofen | 1 g/L | 10 mg/L | 5 h | 6 | 65% | |||
CuO/ZnO | 500 W visible lamp | Methylene blue | 1 g/L | 10 mg/L | 25 min | - | 96.57% | [108] |
BiVO4/carbon | 350 W Xenon lamp with 400 nm cut off filter | Methylene blue | 1.0 g/L | 0.0001 mol/L | 180 min | - | 95% | [109] |
Rhodamine B | 1.0 g/L | 1 × 10−5 mol/L | 180 min | - | 80% | |||
Phenol | 1.0 g/L | 5 mg/L | 5 h | - | 50.13% | |||
CdS-reduced graphene oxide | 300 W Xenon lamp with UV cut off filter | Rhodamine B | 0.4 g/L | 20 mg/L | 60 min | - | 97.2% | [110] |
Acid chrome blue K | 0.4 g/L | 20 mg/L | 60 min | - | 65.7% | |||
BiVO4/Bi4V2O10 | 300 W Xenon lamp with 400 nm cut off filter | Rhodamine B | 1 g/L | 20 mg/L | 15 min | - | 100% | [111] |
Methylene blue | 250 g/L | 20 mg/L | 60 min | - | 75% | |||
Phenol | 1 g/L | 30 mg/L | 60 min | - | 95% | |||
H3PW12O40/Ag3PO4 | 300 W Xe lamp λ > 420 nm | 4-fluorophenol | 3 g/L | 10 mg/L | 720 s | 7 | 100% | [112] |
Methyl orange | 3 g/L | 10 mg/L | 720 s | 7 | 100% | |||
ZnS:Mn/MWCNT | Low-pressure mercury lamp | AR18 dye | 0.1 g/L | 20 mg/L | 180 min | - | 70% | [68] |
CdS/TiO2 | 300 W xenon lamp with 420 nm cut off filter | Hexavalent chromium | 2 g/L | 10 mg/L | 5 h | 3.5 | 100% | [113] |
Phenol | 1 g/L | 10 mg/L | 3 h | - | 78% | |||
Rhodamine B | 1 g/L | 10 mg/L | 60 min | - | 83% | |||
Zr/TiO2 | 300 W Xenon lamp with 320 nm cut off filter | Chloridazon | 0.1 g/L | 0.005 mM | 4 h | 5 | 100% | [114] |
Phenol | 0.1 g/L | 0.001 mM | 4 h | 5.45 | 90% | |||
4-chlorophenol | 0.1 g/L | 0.001 mM | 4 h | 5.53 | 95% | |||
WO3 | 400 W metal halide lamp. Light intensity ≈ 86,800 lx | Rhodamine B | 1 g/L | 20 mg/L | 3 h | - | 95% | [115] |
RP-MoS2/rGO | 300 W Xenon lamp 420 nm cut off filter | Rhodamine B | 0.4 g/L | 20 mg/L | 30 min | - | 99.3% | [116] |
Hexavalent chromium | 0.4 g/L | 40 mg/L | 30 min | - | 98% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinar Mashuri, S.I.; Ibrahim, M.L.; Kasim, M.F.; Mastuli, M.S.; Rashid, U.; Abdullah, A.H.; Islam, A.; Asikin Mijan, N.; Tan, Y.H.; Mansir, N.; et al. Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts 2020, 10, 1260. https://doi.org/10.3390/catal10111260
Sinar Mashuri SI, Ibrahim ML, Kasim MF, Mastuli MS, Rashid U, Abdullah AH, Islam A, Asikin Mijan N, Tan YH, Mansir N, et al. Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts. 2020; 10(11):1260. https://doi.org/10.3390/catal10111260
Chicago/Turabian StyleSinar Mashuri, Salma Izati, Mohd Lokman Ibrahim, Muhd Firdaus Kasim, Mohd Sufri Mastuli, Umer Rashid, Abdul Halim Abdullah, Aminul Islam, Nurul Asikin Mijan, Yie Hua Tan, Nasar Mansir, and et al. 2020. "Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society" Catalysts 10, no. 11: 1260. https://doi.org/10.3390/catal10111260
APA StyleSinar Mashuri, S. I., Ibrahim, M. L., Kasim, M. F., Mastuli, M. S., Rashid, U., Abdullah, A. H., Islam, A., Asikin Mijan, N., Tan, Y. H., Mansir, N., Mohd Kaus, N. H., & Yun Hin, T. -Y. (2020). Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts, 10(11), 1260. https://doi.org/10.3390/catal10111260