SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane
Abstract
:1. Introduction
2. Results and Discussion
2.1. SILP Preparation
2.2. Textural Properties of SILP Materials
2.3. Catalytic Activity
2.4. Nature of Catalyst
2.5. Leaching of IL and Catalyst from SILP Material
2.6. Comparison of TOF
3. Materials and Methods
3.1. Synthesis of Ionic Liquids
3.2. Synthesis of Catalysts
3.3. Preparation of SILP Materials
3.4. Reactions Using SILP Catalysts
3.5. 1H NMR Spectra
3.6. FT-IR Spectra
3.7. Determination of Surface Area, Pore Volume, and Pore Diameter
3.8. GC, GC/MS/MS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lee, V.Y. (Ed.) Organosilicon Compounds. Theory and Experiment (Synthesis); Elsevier: London, UK, 2017. [Google Scholar] [CrossRef]
- Januszewski, R.; Kownacki, I.; Maciejewski, H.; Marciniec, B.; Szymańska, A. An Efficient Catalytic Route for the Synthesis of Silane Coupling Agents Based on the 1,1,3,3-Tetramethyldisiloxane Core. Eur. J. Inorg. Chem. 2017, 2017, 851–856. [Google Scholar] [CrossRef]
- Hiyama, T.; Shirakawa, E. Organosilicon Compounds. Chemin 2003, 34, 169–218. [Google Scholar] [CrossRef]
- Yamane, Y.; Koike, N.; Yamaguchi, K.; Kishita, H. Fluorine-Containing Organopolysiloxane, a Surface Treatment Composition Comprising the Same and an Article Treated with the Composition. European Patent EP1813640B1, 24 February 2010. [Google Scholar]
- Sakurai, I.; Matsumoto, N.; Miyoshi, K.; Yamada, K. Heat-Conductive Silicone Composition and Cured Product Thereof. U.S. Patent US8119758B2, 21 February 2012. [Google Scholar]
- Leatherman, M.D.; Policello, G.A.; Rajaraman, K. Extreme Environment Surfactant Compositions Comprising Hydrolysis Resistant Organomodified Disiloxane Surfactants. U.S. Patent US7645720B2, 12 January 2010. [Google Scholar]
- Brook, M.A. Silicon in Organic, Organometallic and Polymer Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Marciniec, B.; Maciejewski, H.; Pietraszuk, C.; Pawluć, P. Hydrosilylation. A Comprehensive Review on Recent Advances; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Troegel, D.; Stohrer, J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Co-Ord. Chem. Rev. 2011, 255, 1440–1459. [Google Scholar] [CrossRef]
- Marciniec, B.; Maciejewski, H.; Pietraszuk, C.; Pawluc, P. Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B., Hermmann, W.A., Belier, M., Pawelo, R., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 569–620. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Nie, Y.-X.; Tang, R.-H.; Yin, G.-W.; Cao, J.; Xu, Z.; Cui, Y.-M.; Zheng, Z.-J.; Xu, L.-W. Enantioselective Rhodium-Catalyzed Desymmetric Hydrosilylation of Cyclopropenes. ACS Catal. 2019, 9, 9110–9116. [Google Scholar] [CrossRef]
- Wen, H.; Wang, K.; Zhang, Y.; Liu, G.; Huang, Z. Cobalt-Catalyzed Regio- and Enantioselective Markovnikov 1,2-Hydrosilylation of Conjugated Dienes. ACS Catal. 2019, 9, 1612–1618. [Google Scholar] [CrossRef]
- Schuhknecht, D.; Spaniol, T.P.; Maron, L.; Okuda, J. Regioselective Hydrosilylation of Olefins Catalyzed by a Molecular Calcium Hydride Cation. Angew. Chem. Int. Ed. 2020, 59, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Raya-Barón, Á.; Oña-Burgos, P.; Fernández, I. Iron-Catalyzed Homogeneous Hydrosilylation of Ketones and Aldehydes: Advances and Mechanistic Perspective. ACS Catal. 2019, 9, 5400–5417. [Google Scholar] [CrossRef]
- Jankowska-Wajda, M.; Bartlewicz, O.; Pietras, P.; Maciejewski, H. Piperidinium and Pyrrolidinium Ionic Liquids as Precursors in the Synthesis of New Platinum Catalysts for Hydrosilylation. Catalysts 2020, 10, 919. [Google Scholar] [CrossRef]
- Wu, C.; Peng, J.; Li, J.; Bai, Y.; Hu, Y.; Lai, G. Synthesis of poly(ethylene glycol) (PEG) functionalized ionic liquids and the application to hydrosilylation. Catal. Commun. 2008, 10, 248–250. [Google Scholar] [CrossRef]
- Pawlowska-Zygarowicz, A.; Kukawka, R.; Maciejewski, H.; Smiglak, M. Optimization and intensification of hydrosilylation reactions using a microreactor system. New J. Chem. 2018, 42. [Google Scholar] [CrossRef]
- Cano, R.; Yus, M.; Ramón, D.J. Impregnated Platinum on Magnetite as an Efficient, Fast, and Recyclable Catalyst for the Hydrosilylation of Alkynes. ACS Catal. 2012, 2, 1070–1078. [Google Scholar] [CrossRef]
- Jankowska-Wajda, M.; Kukawka, R.; Smiglak, M.; Maciejewski, H. The effect of the catalyst and the type of ionic liquid on the hydrosilylation process under batch and continuous reaction conditions. New J. Chem. 2018, 42, 5229–5236. [Google Scholar] [CrossRef]
- Fehrmann, R.; Riisager, A.; Haumann, M. (Eds.) Supported Ionic Liquids: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar] [CrossRef]
- Van Doorslaer, C.; Wahlen, J.; Mertens, P.; Binnemans, K.; De Vos, D. Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Trans. 2010, 39, 8377–8390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riisager, A.; Fehrmann, R.; Haumann, M.; Wasserscheid, P. Supported Ionic Liquid Phase (SILP) Catalysis: An Innovative Concept for Homogeneous Catalysis in Continuous Fixed-Bed Reactors. Eur. J. Inorg. Chem. 2006, 2006, 695–706. [Google Scholar] [CrossRef]
- Sowińska, A.; Maciejewska, M.; Guo, L.; Delebecq, E. Effect of SILPs on the Vulcanization and Properties of Ethylene–Propylene–Diene Elastomer. Polymers 2020, 12, 1220. [Google Scholar] [CrossRef] [PubMed]
- Kukawka, R.; Pawlowska-Zygarowicz, A.; Dzialkowska, J.; Pietrowski, M.; Maciejewski, H.; Bica, K.; Smiglak, M. Highly Effective Supported Ionic Liquid-Phase (SILP) Catalysts: Characterization and Application to the Hydrosilylation Reaction. ACS Sustain. Chem. Eng. 2019, 7, 4699–4706. [Google Scholar] [CrossRef]
- Geier, D.; Schmitz, P.; Walkowiak, J.; Leitner, W.; Franciò, G. Continuous Flow Asymmetric Hydrogenation with Supported Ionic Liquid Phase Catalysts Using Modified CO2 as the Mobile Phase: From Model Substrate to an Active Pharmaceutical Ingredient. ACS Catal. 2018, 8, 3297–3303. [Google Scholar] [CrossRef]
- Giacalone, F.; Gruttadauria, M. Covalently Supported Ionic Liquid Phases: An Advanced Class of Recyclable Catalytic Systems. ChemCatChem 2016, 8, 664–684. [Google Scholar] [CrossRef]
- Kudo, S.; Goto, N.; Sperry, J.; Norinaga, K.; Hayashi, J.-I. Production of Levoglucosenone and Dihydrolevoglucosenone by Catalytic Reforming of Volatiles from Cellulose Pyrolysis Using Supported Ionic Liquid Phase. ACS Sustain. Chem. Eng. 2017, 5, 1132–1140. [Google Scholar] [CrossRef]
- Bartlewicz, O.; Dąbek, I.; Szymańska, A.; Maciejewski, H. Heterogeneous Catalysis with the Participation of Ionic Liquids. Catalysts 2020, 10, 1227. [Google Scholar] [CrossRef]
- Kukawka, R.; Januszewski, R.; Kownacki, I.; Smiglak, M.; Maciejewski, H. An efficient method for synthesizing monofunctionalized derivatives of 1,1,3,3-tetramethyldisiloxane in ionic liquids as recoverable solvents for rhodium catalyst. Catal. Commun. 2018, 108, 59–63. [Google Scholar] [CrossRef]
- Maciejewski, H.; Wawrzynczak, A.; Dutkiewicz, M.; Fiedorow, R. Silicone waxes—synthesis via hydrosilylation in homo- and heterogeneous systems. J. Mol. Catal. A Chem. 2006, 257, 141–148. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Lewis, L.N.; Uriarte, R.J. Hydrosilylation catalyzed by metal colloids: A relative activity study. Organometallics 1990, 9, 621–625. [Google Scholar] [CrossRef]
- Wasserscheid, P.; Welton, T. (Eds.) Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar] [CrossRef]
- Zieliński, W.; Kukawka, R.; Maciejewski, H.; Smiglak, M. Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction. Molecules 2016, 21, 1115. [Google Scholar] [CrossRef] [Green Version]
- Marciniec, B.; Krzyżanowski, P. Synthesis, characterization and some reactions of [(diene)Rh(μ-OSiMe3)]2. J. Organomet. Chem. 1995, 493, 261–266. [Google Scholar] [CrossRef]
SILP Material | IL | Complex (Catalyst) |
---|---|---|
(A1) | [P4441][NTf2] | [Rh(PPh3)3Cl] |
(A2) | [P4441][NTf2] | [{Rh(μ-OSiMe3)(cod)}2] |
(A3) | [P4441][NTf2] | [{Rh(µ-Cl)(cod)}]2 |
(B1) | [P8888][NTf2] | [Rh(PPh3)3Cl] |
(B2) | [P8888][NTf2] | [{Rh(μ-OSiMe3)(cod)}2] |
(B3) | [P8888][NTf2] | [{Rh(µ-Cl)(cod)}]2 |
(C1) | [P66614][NTf2] | [Rh(PPh3)3Cl] |
(C2) | [P66614][NTf2] | [{Rh(cod)(µ-SiMe3)}2] |
(C3) | [P66614][NTf2] | [{Rh(µ-Cl)(cod)}]2 |
Sample | BET Surface Area [m2/g] | Total Pore Volume [cm3/g] | Average Pore Diameter [nm] | α 1 | Layer Thickness 2 [nm] |
---|---|---|---|---|---|
SiO2 calcined | 326.5 | 1.10 | 11.0 | - | - |
SILP (A1) | 220.5 | 0.88 | 15.8 | 0.21 | 0.67 |
SILP (B1) | 227.4 | 0.88 | 15.3 | 0.21 | 0.67 |
SILP (C1) | 251.0 | 0.75 | 11.8 | 0.32 | 1.07 |
Catalyst | (A1) | (B1) | (C1) | (A2) | (B2) | (C2) | (A3) | (B3) | (C3) | (A1) | (B1) | (C1) | (A2) | (B2) | (C2) | (A3) | (B3) | (C3) | (A1) | (B1) | (C1) | (A2) | (B2) | (C2) | (A3) | (B3) | (C3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle Number | Molar Ratio TMDSO:1-oct:[Rh] 2:1:2 × 10−5 | Molar Ratio TMDSO:1-oct:[Rh] 2:1:2 × 10−6 | Molar Ratio TMDSO:1-oct:[Rh] 2:1:2 × 10−7 | ||||||||||||||||||||||||
1 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | 79 | >99 | >99 | 64 | 32 | 26 | 100 | >99 | 10 | 12 | 99 |
2 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | 73 | >99 | 62 | 52 | 11 | 0 | 7 | 56 | 0 | 0 | 63 |
3 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | 77 | >99 | 22 | 44 | 3 | 28 | |||||
4 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | 61 | 91 | >99 | 95 | >99 | >99 | 71 | >99 | 11 | 9 | 5 | ||||||
5 | >99 | 86 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | 84 | 80 | 32 | 81 | >99 | >99 | 65 | >99 | 3 | ||||||||
6 | >99 | 70 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | 79 | 77 | 64 | 37 | >99 | >99 | 58 | >99 | ||||||||||
7 | >99 | 68 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | 53 | 46 | 48 | 28 | 53 | >99 | 42 | >99 | ||||||||||
8 | >99 | 62 | >99 | >99 | >99 | >99 | >99 | >99 | >99 | 28 | 60 | 46 | 19 | 46 | >99 | 34 | >99 | ||||||||||
9 | >99 | 54 | >99 | 90 | >99 | >99 | >99 | >99 | >99 | 15 | 24 | 32 | 10 | 32 | >99 | 23 | 99 | ||||||||||
10 | >99 | 51 | >99 | 85 | >99 | >99 | >99 | >99 | >99 | 58 | 9 | 24 | >99 | 18 | 87 | ||||||||||||
11 | >99 | >99 | 77 | >99 | >99 | >99 | >99 | >99 | >99 | 55 | |||||||||||||||||
12 | >99 | >99 | 61 | >99 | >99 | >99 | >99 | >99 | >99 | 39 | |||||||||||||||||
13 | >99 | >99 | 52 | >99 | >99 | >99 | >99 | >99 | >99 | 38 | |||||||||||||||||
14 | >99 | >99 | 35 | 73 | >99 | >99 | >99 | >99 | >99 | 20 | |||||||||||||||||
15 | >99 | 98 | 15 | 26 | >99 | >99 | >99 | >99 | 87 | 26 | |||||||||||||||||
16 | >99 | 98 | >99 | >99 | >99 | >99 | 75 | ||||||||||||||||||||
17 | 95 | 98 | >99 | >99 | >99 | >99 | 65 | ||||||||||||||||||||
18 | 82 | 96 | >99 | >99 | >99 | >99 | 34 | ||||||||||||||||||||
19 | 61 | 92 | >99 | >99 | >99 | >99 | |||||||||||||||||||||
20 | 39 | 90 | >99 | >99 | >99 | >99 | |||||||||||||||||||||
TOF [h−1 × 103] | 3722 | 1574 | 3916 | 2414 | 2772 | 3960 | 3960 | 3960 | 3960 | 1340 | 1496 | 1432 | 856 | 1152 | 1498 | 3294 | 1080 | 2312 | 394 | 536 | 92 | 52 | 214 | 310 | 20 | 24 | 390 |
Cycle Number | I SILP (B1) | II SILP (B1) | III SILP (C2) | IV SILP (C2) |
---|---|---|---|---|
1 | >99 | 7 | >99 | 10 |
2 | >99 | 6 | >99 | 10 |
3 | >99 | 6 | >99 | 9 |
4 | >99 | 4 | >99 | 7 |
5 | 86 | 6 | >99 | 6 |
10 | - | 7 | >99 | 7 |
20 | - | - | >99 | 6 |
30 | - | - | >99 | 7 |
40 | - | - | >99 | 6 |
50 | - | - | >99 | 6 |
TMDSO:1-oct:[Rh] (Reactants/Catalyst Concentration) | IL | SILP System | TOF |
---|---|---|---|
2:1:2 × 10 −4 | - | - | 20 1,4 |
2:1:2 × 10−5 | - | - | 1928 2,4 |
2:1:2 × 10−4 | [P8888][NTf2] | - | 169 1,4 |
2:1:2 × 10−4 | [P66614][NTf2] | - | 375 1,4 |
2:1:2 × 10−5 | [P8888][NTf2] | (B3) | 3960 2,3 |
2:1:2 × 10−5 | [P66614][NTf2] | (C3) | 3960 2,3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukawka, R.; Pawlowska-Zygarowicz, A.; Januszewski, R.; Dzialkowska, J.; Pietrowski, M.; Zielinski, M.; Maciejewski, H.; Smiglak, M. SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane. Catalysts 2020, 10, 1414. https://doi.org/10.3390/catal10121414
Kukawka R, Pawlowska-Zygarowicz A, Januszewski R, Dzialkowska J, Pietrowski M, Zielinski M, Maciejewski H, Smiglak M. SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane. Catalysts. 2020; 10(12):1414. https://doi.org/10.3390/catal10121414
Chicago/Turabian StyleKukawka, Rafal, Anna Pawlowska-Zygarowicz, Rafal Januszewski, Joanna Dzialkowska, Mariusz Pietrowski, Michal Zielinski, Hieronim Maciejewski, and Marcin Smiglak. 2020. "SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane" Catalysts 10, no. 12: 1414. https://doi.org/10.3390/catal10121414
APA StyleKukawka, R., Pawlowska-Zygarowicz, A., Januszewski, R., Dzialkowska, J., Pietrowski, M., Zielinski, M., Maciejewski, H., & Smiglak, M. (2020). SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane. Catalysts, 10(12), 1414. https://doi.org/10.3390/catal10121414