Pd–Ce/ZIF-8 Nanocomposite for Catalytic Extraction of Sinomenine from Sinomenium acutum
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Equipment
3.2. Analysis Methods
3.3. General Procedure for Synthesizing Transition Metal Nanoparticles-Based Supported Catalysts
3.4. General Procedure for Sinomenine Extraction Reactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pugner, K.M.; Scott, D.I.; Holmes, J.W.; Hieke, K. The costs of rheumatoid arthritis: An international long-term view. Semin. Arthritis Rheum. 2000, 29, 305–320. [Google Scholar] [CrossRef]
- Giovagnoni, A.; Valeri, G.; Burroni, E.; Amici, F. Rheumatoid arthritis: Follow-up and response to treatment. Eur. J. Radiol. 1998, 27 (Suppl. 1), S25–S30. [Google Scholar] [CrossRef]
- Korczowska, L. Rheumatoid arthritis susceptibility genes: An overview. World J. Orthop. 2014, 5, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Kurkó, J.; Besenyei, T.; Laki, J.; Glant, T.T.; Mikecz, K.; Szekanecz, Z. Genetics of rheumatoid arthritis—A comprehensive review. Clin. Rev. Allergy Immunol. 2013, 45, 170–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.mayoclinic.org/diseases-conditions/rheumatoid-arthritis/symptoms-causes/syc-20353648 (accessed on 21 August 2019).
- Liu, L.; Riese, J.; Resch, K.; Kaever, V. Impairment of macrophage eicosanoid and nitric oxide production by an alkaloid from Sinomenium acutum. Arzneimittel-Forschung 1994, 44, 1223–1226. [Google Scholar] [PubMed]
- Long, L.H.; Wu, P.F.; Chen, X.L.; Zhang, Z.; Chen, Y.; Li, Y.Y.; Jin, Y.; Chen, J.G.; Wang, F. HPLC and LC-MS analysis of sinomenine and its application in pharmacokinetic studies in rats. Acta Pharmacol. Sin. 2010, 31, 1508–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamasaki, H. Pharmacology of sinomenine, an anti-rheumatic alkaloid from Sinomenium acutum. Acta Med. Okayama 1976, 30, 1–20. [Google Scholar] [PubMed]
- Masarone, D.; Limongelli, G.; Rubino, M.; Valente, F.; Vastarella, R.; Ammendola, E.; Gravino, R.; Verrengia, M.; Salerno, G.; Pacileo, G. Management of Arrhythmias in Heart Failure. J. Cardiovasc. Dev. Dis. 2017, 28, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Pharmacopoeia Committee. Chinese Pharmacopoeia; China Medical Science and Technology Press: Beijing, China, 2010; Pt 1, p. 623. [Google Scholar]
- Li, Q.; Wu, S.; Wang, C.; Yi, Y.; Zhou, W.; Wang, H.; Li, F.; Tan, Z. Ultrasonic-assisted extraction of sinomenine from Sinomenium acutum using magnetic ionic liquids coupled with further purification by reversed micellar extraction. Process Biochem. 2017, 58, 282–288. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Li, Y.; Zhang, X.; Lu, S.; Wen, X.; Hu, J.; Zou, K. Research progress on Sabia medicinal plants in China. Biotic Resour. 2018, 40, 477–490. [Google Scholar]
- Luo, J.; Melissa, P.; Zhao, W.; Wang, Z.; Zhu, Y. Selective Lignin Oxidation towards Vanillin in Phenol Media. ChemistrySelect 2016, 1, 4596–4601. [Google Scholar] [CrossRef]
- Bai, Z.; Phuan, W.C.; Ding, J.; Heng, T.H.; Luo, J.; Zhu, Y. Production of Terephthalic Acid from Lignin-Based Phenolic Acids by a Cascade Fixed-Bed Process. ACS Catal. 2016, 6, 6141–6145. [Google Scholar] [CrossRef]
- Procopio, A.; Dalpozzo, R.; de Nino, A.; Maiuolo, L.; Nardi, M.; Romeo, G. Mild and efficient method for the cleavage of benzylidene acetals by using erbium (III) triflate. Org. Biomol. Chem. 2005, 3, 4129–4133. [Google Scholar] [CrossRef]
- Mamaghani, M.; Shirini, F.; Mahmoodi, N.; Azimi-Roshan, A.; Hashemlou, H. A green, efficient and recyclable Fe+3@K10 catalyst for the synthesis of bioactive pyrazolo[3,4-b]pyridin-6(7H)-ones under “on water” conditions. J. Mol. Struct. 2013, 1051, 169–176. [Google Scholar] [CrossRef]
- Kushairi, A.; Ong-Abdullah, M.; Nambiappan, B.; Hishamuddin, E.; Izuddin, Z.; Ghazali, R.; Subramaniam, V.; Sundram, S.; Kadir, A.P.G. Oil palm economic performance in Malaysia and R&D progress in 2018. J. Oil Palm Res. 2019, 31, 165–194. [Google Scholar]
- Hu, Y.; Gianmario, M.; Zhang, J.; Higashimoto, S.; Salvatore, C.; Masakazu, A. Characterization of the Local Structures of Ti-MCM-41 and Their Photocatalytic Reactivity for the Decomposition of NO into N2 and O2. J. Phys. Chem. B 2006, 110, 1680−1685. [Google Scholar]
- Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. A Rationale for the Large Breathing’ of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J. 2004, 10, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Part II, Standard XPS Spectra of the Elements. In Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics Inc.: Chanhassen, MN, USA, 1995; pp. 118–119. [Google Scholar]
- Li, X.; Tjiptoputro, A.K.; Ding, J.; Xue, J.M.; Zhu, Y. Pd-Ce nanoparticles supported on functional Fe-MIL-101-NH2: An efficient catalyst for selective glycerol oxidation. Catal. Today 2017, 279, 77–83. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Part II, Standard XPS Spectra of the Elements. In Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics Inc.: Chanhassen, MN, USA, 1995; pp. 142–143. [Google Scholar]
- Bêche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 2008, 40, 264–267. [Google Scholar] [CrossRef]
- Guadix-Montero, S.; Sankar, M. Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Top. Catal. 2018, 61, 183–198. [Google Scholar] [CrossRef] [Green Version]
Entry | Catalyst | Support Surface Area (m2/g) | Total Metal Loading Amount (wt%) | Sinomenine Yield (%) | TOF (Pd-based, h−1) | |
---|---|---|---|---|---|---|
Before Loading | After Loading | |||||
1 | Contrast | NA | NA | NA | 0.24 | NA |
2 | PdAc2 | NA | NA | 47.4 | 1.73 | 0.16 |
3 | Pd/C | 200 | ND | 4.3 | 0.75 | 0.75 |
4 | Pd/MWCNTs | 220 | 195 | 4.6 | 1.02 | 0.96 |
5 | Pd-Au/MWCNTs | 220 | 140 | 4.5 | 1.05 | 1.76 |
6 | Pd-Ru/MWCNTs | 220 | 163 | 4.4 | 1.13 | 1.95 |
7 | Pd-Ni/MWCNTs | 220 | ND | 5.4 | 0.69 | 1.19 |
8 | Pd-Ce/MWCNTs | 220 | 152 | 5.2 | 1.25 | 2.15 |
9 | Pd/SiO2 | 200 | ND | 4.7 | 0.84 | 0.72 |
10 | Pd/γ-Al2O3 | 100 | ND | 5.2 | 0.92 | 0.79 |
11 | Pd/TiO2 | 50 | ND | 4.8 | 0.77 | 0.66 |
12 | Pd/MCM-41(mole ratio Si/Ti = 25:1) | 915[18] | ND | 4.5 | 0.59 | 0.51 |
13 | Pd/MIL-53 (Al) | 1590[19] | ND | 5.4 | 0.72 | 0.62 |
14 | Pd/ZIF-8 | 1550 | 1253 | 4.6 | 0.85 | 0.73 |
15 | Pd-Ce/ ZIF-8 | 1550 | 1304 | 5.1 | 2.15 | 3.70 |
152nd | Pd-Ce/ ZIF-8 | 1550 | ND | 5.1 | 2.10 | 3.62 |
153rd | Pd-Ce/ ZIF-8 | 1550 | ND | 5.1 | 2.08 | 3.58 |
154th | Pd-Ce/ ZIF-8 | 1550 | ND | 5.1 | 2.11 | 3.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Bai, Z. Pd–Ce/ZIF-8 Nanocomposite for Catalytic Extraction of Sinomenine from Sinomenium acutum. Catalysts 2020, 10, 174. https://doi.org/10.3390/catal10020174
Zhu Y, Bai Z. Pd–Ce/ZIF-8 Nanocomposite for Catalytic Extraction of Sinomenine from Sinomenium acutum. Catalysts. 2020; 10(2):174. https://doi.org/10.3390/catal10020174
Chicago/Turabian StyleZhu, Yinghuai, and Zhiyu Bai. 2020. "Pd–Ce/ZIF-8 Nanocomposite for Catalytic Extraction of Sinomenine from Sinomenium acutum" Catalysts 10, no. 2: 174. https://doi.org/10.3390/catal10020174
APA StyleZhu, Y., & Bai, Z. (2020). Pd–Ce/ZIF-8 Nanocomposite for Catalytic Extraction of Sinomenine from Sinomenium acutum. Catalysts, 10(2), 174. https://doi.org/10.3390/catal10020174