Solid-State NaBH4 Composites as Hydrogen Generation Material: Effect of Thermal Treatment of a Catalyst Precursor on the Hydrogen Generation Rate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study of Catalyst Precursors
2.2. Study of Catalytic Sodium Borohydride Hydrolysis
2.3. Study of Catalysts after Reaction
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sinigaglia, T.; Lewiski, F.; Santos Martins, M.E.; Mairesse Siluk, J.C. Production, storage, fuel stations of hydrogen and its utilization in automotive applications—A review. Int. J. Hydrogen Energy 2017, 42, 24597–24611. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen storage for mobility: A review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [Green Version]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Staffel, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Oetjen, H.-F.; Schmidt, V.M.; Stimming, U.; Trila, F. Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas. J. Electrochem. Soc. 1996, 143, 3838–3842. [Google Scholar] [CrossRef]
- Hongrapipat, J.; Saw, W.L.; Pang, S. Removal of ammonia from producer gas in biomass gasification: Integration of gasification optimisation and hot catalytic gas cleaning. Biomass Conv. Biorefin. 2012, 2, 327–348. [Google Scholar] [CrossRef]
- Job, N.; Chatenet, M.; Berthon-Fabry, S.; Hermans, S.; Maillard, F. Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: Avoid chloride-based Pt salts! J. Power Sour. 2013, 240, 294–305. [Google Scholar] [CrossRef]
- Hsueh, C.-L.; Liu, C.-H.; Chen, B.-H.; Lee, M.-S.; Chen, C.-Y.; Lu, Y.-W.; Tsau, F.; Ku, J.-R. A novel design of solid-state NaBH4 composite as a hydrogen source for 2 W PEMFC applications. J. Power Sour. 2011, 196, 3530–3538. [Google Scholar] [CrossRef]
- Boran, A.; Erkan, S.; Eroglu, I. Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications. Int. J. Hydrogen Energy 2019, 44, 18915–18926. [Google Scholar] [CrossRef]
- Liu, Y.; Heere, M.; Contreras Vasquez, L.; Paterakis, C.; Sørby, M.H.; Hauback, B.C.; Book, D. Dehydrogenation and rehydrogenation of a 0.62LiBH4-0.38NaBH4 mixture with nano-sized Ni. Int. J. Hydrogen Energy 2018, 43, 16782–16792. [Google Scholar] [CrossRef]
- Kalantzopoulos, G.N.; Guzik, M.N.; Deledda, S.; Heyn, R.H.; Muller, J.; Hauback, B.C. Destabilization effect of transition metal fluorides on sodium borohydride. Phys. Chem. Chem. Phys. 2014, 16, 20483–20491. [Google Scholar] [CrossRef]
- Olsen, J.E.; Sørby, M.H.; Hauback, B.C. Chloride-substitution in sodium borohydride. J. Alloys Compd. 2011, 509, L228–L231. [Google Scholar] [CrossRef]
- Netskina, O.V.; Filippov, T.N.; Komova, O.V.; Simagina, V.I. Hydrogen generation by acidic and catalytic hydrolysis of sodium borohydride. Catal. Sustain. Energy 2018, 5, 41–48. [Google Scholar] [CrossRef]
- Kim, T. Hydrogen production from solid sodium borohydride with hydrogen peroxide decomposition reaction. Int. J. Hydrogen Energy 2010, 35, 12870–12877. [Google Scholar] [CrossRef]
- Liu, C.-H.; Kuo, Y.-C.; Chen, B.-H.; Hsueh, C.-L.; Hwang, K.-J.; Ku, J.-R.; Tsau, F.; Jeng, M.-S. Synthesis of solid-state NaBH4/Co-based catalyst composite for hydrogen storage through a high-energy ball-milling. Int. J. Hydrogen Energy 2010, 35, 4027–4040. [Google Scholar] [CrossRef]
- Netskina, O.V.; Komova, O.V.; Simagina, V.I. Developing effective cobalt catalysts for hydrogen-generating solid-state NaBH4 composite. Catal. Ind. 2018, 10, 166–172. [Google Scholar] [CrossRef]
- Prosini, P.P.; Gislon, P. Water consumption during solid state sodium borohydride hydrolysis. Int. J. Hydrogen Energy 2010, 35, 12234–12238. [Google Scholar] [CrossRef]
- Demirci, U.B. Sodium borohydride for the near-future energy: A «Rough Diamond» for Turkey. Turk. J. Chem. 2018, 42, 193–220. [Google Scholar] [CrossRef]
- Lai, Q.; Alligier, D.; Aguey-Zinsou, K.-F.; Demirci, U.B. Hydrogen generation from a sodium borohydride–nickel core@shell structure under hydrolytic conditions. Nanoscale Adv. 2019, 1, 2707–2717. [Google Scholar] [CrossRef] [Green Version]
- Netskina, O.V.; Kochubey, D.I.; Prosvirin, I.P.; Malykhin, S.E.; Komova, O.V.; Kanazhevskiy, V.V.; Chukalkin, Y.G.; Bobrovskii, V.I.; Kellerman, D.G.; Ishchenko, A.V.; et al. Cobalt-boron catalyst for NaBH4 hydrolysis: The state of the active component forming from cobalt chloride in a reaction medium. Mol. Catal. 2017, 441, 100–108. [Google Scholar] [CrossRef]
- Netskina, O.V.; Tayban, E.S.; Ozerova, A.M.; Komova, O.V.; Simagina, V.I. Solid-state NaBH4/Co composite as hydrogen storage material: Effect of the pressing pressure on hydrogen generation rate. Energies 2019, 12, 1184. [Google Scholar] [CrossRef] [Green Version]
- Netskina, O.V.; Ozerova, A.M.; Komova, O.V.; Odegova, G.V.; Simagina, V.I. Hydrogen storage systems based on solid-state NaBH4/CoxB composite: Influence of catalyst properties on hydrogen generation rate. Catal. Today 2015, 245, 86–92. [Google Scholar] [CrossRef]
- Simagina, V.I.; Ozerova, A.M.; Komova, O.V.; Odegova, G.V.; Kellerman, D.G.; Fursenko, R.V.; Odintsov, E.S.; Netskina, O.V. Cobalt boride catalysts for small-scale energy application. Catal. Today 2015, 242, 221–229. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kanungo, S.B. Thermal dehydration and decomposition of nickel chloride hydrate (NiCl2xH2O). J. Therm. Anal. 1992, 38, 2417–2436. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kanungo, S.B. Thermal dehydration and decomposition of cobalt chloride hydrate (CoCl2xH2O). J. Therm. Anal. 1992, 38, 2437–2454. [Google Scholar] [CrossRef]
- Gamo, I. Infrared spectra of water of crystallization in some inorganic chlorides and Sulfates. Bull. Chem. Soc. Jpn. 1961, 34, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Brubach, J.B.; Mermet, A.; Filabozzi, A.; Gerschel, A.; Roy, P. Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys. 2005, 122, 184509. [Google Scholar] [CrossRef]
- Vasylieva, A.; Doroshenko, I.; Doroshenko, O.; Pogorelov, V. Effect of argon environment on small water clusters in matrix isolation. Low Temp. Phys. 2019, 45, 627. [Google Scholar] [CrossRef]
- Carlin, R.L. Inorganic Electronic Spectroscopy (Lever, A.B.P.); ACS Publications: Washington, DC, USA, 1984. [Google Scholar]
- Howell, O.R.; Jackson, A. The change in the absorption spectrum of cobalt chloride in aqueous solution with increasing concentration of hydrochloric acid. Proc. R. Soc. A Math. Phys. 1933, 142, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Huheey, J.E.; Keiter, E.A.; Keiter, R.L. Inorganic Chemistry: Principles of Structure and Reactivity; Harper-Collins: New York, NY, USA, 1993. [Google Scholar]
- Pan, P.; Susak, N.J. Co(II)-chloride and bromide complexes in aqueous solutions up to 5 m NaX and 90 °C: Spectrophotometric study and geological implications. Geochim. Cosmochim. Acta 1989, 53, 327–341. [Google Scholar] [CrossRef]
- Uchikoshi, M. Determination of the distribution of cobalt-chloro complexes in hydrochloric acid solutions at 298 K J. Solut. Chem. 2018, 47, 2021–2038. [Google Scholar] [CrossRef]
- De vries, C.G. A Study of the Vogel Reaction for the Determination of Cobalt. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 1949. Available online: https://digitalcommons.lsu.edu/gradschool_disstheses/7927 (accessed on 15 October 2019).
- Netskina, O.V.; Komova, O.V.; Simagina, V.I.; Odegova, G.V.; Prosvirin, I.P.; Bulavchenko, O.A. Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts. Renew. Energy 2016, 99, 1073–1081. [Google Scholar] [CrossRef]
- Netskina, O.V.; Kochubey, D.I.; Prosvirin, I.P.; Kellerman, D.G.; Simagina, V.I.; Komova, O.V. Role of the electronic state of rhodium in sodium borohydride hydrolysis. J. Mol. Catal. A Chem. 2014, 390, 125–132. [Google Scholar] [CrossRef]
Temperature of Treatment, °C | Color | Metal Content, wt % | Chlorine Content, wt % | Estimated Water Content, wt % 1 | Empirical Formula of Catalyst Precursor 2 |
---|---|---|---|---|---|
Cobalt chloride hydrate | |||||
Untreated | Pink | 24.6 | 29.8 | 45.6 | CoCl2·6.1H2O |
150 | Violet | 36.7 | 43.8 | 19.5 | CoCl2·1.7H2O |
300 | Blue | 39.0 | 47.2 | 13.8 | CoCl2·1.2H2O |
Nickel chloride hydrate | |||||
Untreated | Green | 24.2 | 29.4 | 46.4 | NiCl2·6.3H2O |
150 | Yellow | 33.5 | 39.8 | 26.7 | NiCl2·2.6H2O |
300 | Ocher | 38.1 | 45.2 | 16.7 | NiCl2·1.4H2O |
Empirical Formula of Catalyst Precursor | Tablet Mass, g | Metal Mass, g | Hydrogen Content, wt % | Catalytic Activity, cm3H2/s·gM |
---|---|---|---|---|
Cobalt catalysts | ||||
CoCl2·6.1H2O | 0.0495 | 0.0024 | 8.45 | 118 |
CoCl2·1.7H2O | 0.0525 | 0.0039 | 8.40 | 135 |
CoCl2·1.2H2O | 0.0573 | 0.0045 | 8.40 | 152 |
Nickel catalysts | ||||
NiCl2·6.3H2O | 0.0502 | 0.0024 | 8.45 | 23 |
NiCl2·2.6H2O | 0.0551 | 0.0037 | 8.41 | 27 |
NiCl2·1.4H2O | 0.0537 | 0.0041 | 8.41 | 34 |
Empirical Formula of Catalyst Precursor | Phase | Average Particle Size 1, nm | Content, wt % | ||
---|---|---|---|---|---|
Co | Ni | B | |||
Cobalt catalysts | |||||
CoCl2·6.1H2O | amorphous | 16.7 | 64.3 | - | 4.1 |
CoCl2·1.7H2O | 14.9 | 63.2 | - | 4.5 | |
CoCl2·1.2H2O | 13.2 | 61.6 | - | 4.5 | |
Nickel catalysts | |||||
NiCl2·6.3H2O | amorphous | 7.2 | - | 73.9 | 4.6 |
NiCl2·2.6H2O | 6.3 | - | 72.5 | 5.1 | |
NiCl2·1.4H2O | 5.5 | - | 72.6 | 5.2 |
Reduction Half-reactions: | Oxidation Half-Reactions: |
---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netskina, O.V.; Pochtar, A.A.; Komova, O.V.; Simagina, V.I. Solid-State NaBH4 Composites as Hydrogen Generation Material: Effect of Thermal Treatment of a Catalyst Precursor on the Hydrogen Generation Rate. Catalysts 2020, 10, 201. https://doi.org/10.3390/catal10020201
Netskina OV, Pochtar AA, Komova OV, Simagina VI. Solid-State NaBH4 Composites as Hydrogen Generation Material: Effect of Thermal Treatment of a Catalyst Precursor on the Hydrogen Generation Rate. Catalysts. 2020; 10(2):201. https://doi.org/10.3390/catal10020201
Chicago/Turabian StyleNetskina, Olga V., Alena A. Pochtar, Oxana V. Komova, and Valentina I. Simagina. 2020. "Solid-State NaBH4 Composites as Hydrogen Generation Material: Effect of Thermal Treatment of a Catalyst Precursor on the Hydrogen Generation Rate" Catalysts 10, no. 2: 201. https://doi.org/10.3390/catal10020201
APA StyleNetskina, O. V., Pochtar, A. A., Komova, O. V., & Simagina, V. I. (2020). Solid-State NaBH4 Composites as Hydrogen Generation Material: Effect of Thermal Treatment of a Catalyst Precursor on the Hydrogen Generation Rate. Catalysts, 10(2), 201. https://doi.org/10.3390/catal10020201