Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway
Abstract
:1. Introduction
2. Results
2.1. Construction of a Malonyl-CoA Synthesis Pathway and Disruption of Lactate Synthesis
2.2. Enhancement of Acetate Reuse for 3-HP Production
2.3. 3-HP Production from a Mixture of Glucose and Acetate
2.4. Enhancement of 3-HP Production by Inhibiting the Fatty Acid Synthesis Pathway
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Construction of Strains and Plasmids
4.3. Culture Conditions
4.4. Analytical Techniques
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Valdehuesa, K.N.G.; Liu, H.; Nisola, G.M.; Chung, W.-J.; Lee, S.H.; Park, S.J. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl. Microbiol. Biotechnol. 2013, 97, 3309–3321. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Ashok, S.; Park, S. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 2013, 31, 945–961. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Meng, X.; Xian, M. Biosynthetic pathways for 3-hydroxypropionic acid production. Appl. Microbiol. Biotechnol. 2009, 82, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- De Fouchécour, F.; Sánchez-Castañeda, A.K.; Saulou-Bérion, C.; Spinnler, H.É. Process engineering for microbial production of 3-hydroxypropionic acid. Biotechnol. Adv. 2018, 36, 1207–1222. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xiang, S.; Zhao, G.; Wang, B.; Ma, Y.; Liu, W.; Tao, Y. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metab. Eng. 2019, 51, 121–130. [Google Scholar] [CrossRef]
- Zhao, P.; Ma, C.; Xu, L.; Tian, P. Exploiting tandem repetitive promoters for high-level production of 3-hydroxypropionic acid. Appl. Microbiol. Biotechnol. 2019, 103, 4017–4031. [Google Scholar] [CrossRef]
- Xinlei, Y.; Yufeng, M.; Xiaoxia, Z.; Lingxue, L.; Zhiwen, W.; Tao, C. Recent progress in microbial production of 3-hydroxypropionic acid. Chem. Ind. Eng. Prog. 2018, 37, 312–321. [Google Scholar]
- Li, Y.; Wang, X.; Ge, X.; Tian, P. High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci. Rep. 2016, 6, 26932. [Google Scholar] [CrossRef]
- Liu, C.; Ding, Y.; Xian, M.; Liu, M.; Liu, H.; Ma, Q.; Zhao, G. Malonyl-CoA pathway: A promising route for 3-hydroxypropionate biosynthesis. Crit. Rev. Biotechnol. 2017, 37, 933–941. [Google Scholar] [CrossRef]
- Borodina, I.; Kildegaard, K.R.; Jensen, N.B.; Blicher, T.H.; Maury, J.; Sherstyk, S.; Schneider, K.; Lamosa, P.; Herrgård, M.J.; Rosenstand, I.; et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab. Eng. 2015, 27, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ding, Y.; Zhang, R.; Liu, H.; Xian, M.; Zhao, G. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis. Metab. Eng. 2016, 34, 104–111. [Google Scholar] [CrossRef]
- Kildegaard, K.R.; Jensen, N.B.; Schneider, K.; Czarnotta, E.; Özdemir, E.; Klein, T.; Maury, J.; Ebert, B.E.; Christensen, H.B.; Chen, Y.; et al. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb. Cell Factories 2016, 15, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Bao, J.; Kim, I.-K.; Siewers, V.; Nielsen, J. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab. Eng. 2014, 22, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chen, Y.; Siewers, V.; Nielsen, J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suyama, A.; Higuchi, Y.; Urushihara, M.; Maeda, Y.; Takegawa, K. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains. J. Biosci. Bioeng. 2017, 124, 392–399. [Google Scholar] [CrossRef]
- Cheng, Z.; Jiang, J.; Wu, H.; Li, Z.; Ye, Q. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Bioresour. Technol. 2016, 200, 897–904. [Google Scholar] [CrossRef]
- Liang, B.; Sun, G.; Wang, Z.; Xiao, J.; Yang, J. Production of 3-hydroxypropionate using a novel malonyl-CoA-mediated biosynthetic pathway in genetically engineered: E. coli strain. Green Chem. 2019, 21, 6103–6115. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Chen, W.-J.; Yang, J.; Zhou, Y.-M.; Hu, B.; Zhang, M.; Zhu, L.-P.; Wang, G.-Y.; Yang, S. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Microb. Cell Factories 2017, 16, 179. [Google Scholar] [CrossRef] [Green Version]
- Lian, H.; Zeldes, B.M.; Lipscomb, G.L.; Hawkins, A.B.; Han, Y.; Loder, A.J.; Nishiyama, D.; Adams, M.W.W.; Kelly, R.M. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus. Biotechnol. Bioeng. 2016, 113, 2652–2660. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, A.B.; Lian, H.; Zeldes, B.M.; Loder, A.J.; Lipscomb, G.L.; Schut, G.J.; Keller, M.W.; Adams, M.W.W.; Kelly, R.M. Bioprocessing analysis of Pyrococcus furiosus strains engineered for CO2-based 3-hydroxypropionate production. Biotechnol. Bioeng. 2015, 112, 1533–1543. [Google Scholar] [CrossRef] [Green Version]
- Lan, E.I.; Chuang, D.S.; Shen, C.R.; Lee, A.M.; Ro, S.Y.; Liao, J.C. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. Metab. Eng. 2015, 31, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sun, T.; Gao, X.; Shi, M.; Wu, L.; Chen, L.; Zhang, W. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng. 2016, 34, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Rohles, C.M.; Wittmann, C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab. Eng. 2018, 50, 122–141. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.F.; Fu, J.; Tao, R.; Huang, C.; Wang, Z.W.; Tang, Y.J.; Chen, T.; Zhao, X.M. Systematic metabolic engineering of Corynebacterium glutamicum for the industrial-level production of optically pure D-(-)-acetoin. Green Chem. 2017, 19, 5691–5702. [Google Scholar] [CrossRef]
- Okino, S.; Inui, M.; Yukawa, H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 2005, 68, 475–480. [Google Scholar] [CrossRef]
- Mao, Y.; Li, G.; Chang, Z.; Tao, R.; Cui, Z.; Wang, Z.; Tang, Y.J.; Chen, T.; Zhao, X. Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate. Biotechnol. Biofuels 2018, 11, 95. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, J.; Wu, Y.; Wu, W.; Zhang, Y.; Liu, D. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab. Eng. 2017, 39, 151–158. [Google Scholar] [CrossRef]
- Milke, L.; Ferreira, P.; Kallscheuer, N.; Braga, A.; Vogt, M.; Kappelmann, J.; Oliveira, J.; Silva, A.R.; Rocha, I.; Bott, M.; et al. Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl-CoA availability and increases plant polyphenol synthesis. Biotechnol. Bioeng. 2019, 116, 1380–1391. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Xia, H.; Yang, J.; Zhao, X.; Chen, T. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Biotechnol. Lett. 2014, 36, 553–560. [Google Scholar] [CrossRef]
- Jakoby, M.; Ngouoto-Nkili, C.-E.; Burkovski, A. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol. Tech. 1999, 13, 437–441. [Google Scholar] [CrossRef]
- Kirchner, O.; Tauch, A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J. Biotechnol. 2003, 104, 287–299. [Google Scholar] [CrossRef]
- Zhu, N.; Xia, H.; Wang, Z.; Zhao, X.; Chen, T. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PLoS ONE 2013, 8, e60659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerstmeir, R.; Wendisch, V.F.; Schnicke, S.; Ruan, H.; Farwick, M.; Reinscheid, D.; Eikmanns, B.J. Acetate metabolism and its regulation in Corynebacterium glutamicum. J. Biotechnol. 2003, 104, 99–122. [Google Scholar] [CrossRef]
- Wendisch, V.F.; De Graaf, A.A.; Sahm, H.; Eikmanns, B.J. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 2000, 182, 3088–3096. [Google Scholar] [CrossRef] [Green Version]
- Milke, L.; Kallscheuer, N.; Kappelmann, J.; Marienhagen, J. Tailoring Corynebacterium glutamicum towards increased malonyl-CoA availability for efficient synthesis of the plant pentaketide noreugenin. Microb. Cell Factories 2019, 18, 71. [Google Scholar] [CrossRef]
- Takeno, S.; Takasaki, M.; Urabayashi, A.; Mimura, A.; Muramatsu, T.; Mitsuhashi, S.; Ikeda, M. Development of fatty acid-producing Corynebacterium glutamicum strains. Appl. Environ. Microbiol. 2013, 79, 6775–6783. [Google Scholar] [CrossRef] [Green Version]
- Stansen, C.; Uy, D.; Delaunay, S.; Eggeling, L.; Goergen, J.L.; Wendisch, V.F. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 2005, 71, 5920–5928. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.G.; Lee, J.H.; Noh, M.H.; Jung, G.Y. Rediscovering acetate metabolism: Its potential sources and utilization for biobased transformation into value-added chemicals. J. Agric. Food Chem. 2018, 66, 3998–4006. [Google Scholar] [CrossRef]
- Jo, M.; Noh, M.H.; Lim, H.G.; Kang, C.W.; Im, D.K.; Oh, M.K.; Jung, G.Y. Precise tuning of the glyoxylate cycle in Escherichia coli for efficient tyrosine production from acetate. Microb. Cell Factories 2019, 18. [Google Scholar] [CrossRef]
- Lee, J.H.; Cha, S.; Kang, C.W.; Lee, G.M.; Lim, H.G.; Jung, G.Y. Efficient conversion of acetate to 3-hydroxypropionic acid by engineered Escherichia coli. Catalysts 2018, 8, 525. [Google Scholar] [CrossRef] [Green Version]
Strains or Plasmids | Relevant Characteristics | Source/Reference |
---|---|---|
E. coli DH5α | Host for plasmid construction | Invitrogen |
ATCC 13032 | C. glutamicum wild type, biotin auxotrophic | ATCCa |
Cgz1 | ATCC 13032; pX-mcr* | This study |
Cgz2 | ATCC 13032△ldhA | [29] |
Cgz3 | Cgz2; pX-mcr* | This study |
Cgz4 | Cgz2; pX-mcr*, pEC-XK99E | This study |
Cgz5 | Cgz2; pX-mcr*, pEC-pta | This study |
Cgz6 | Cgz2; pX-mcr*, pEC-pta-ackA | This study |
Cgz7 | Cgz2; pX-mcr*, pEacsA | This study |
Plasmids | ||
pXMJ19 | CmR, Ptac, lacIq, C. glutamicum/E. coli shuttle vector | [30] |
pX-mcr* | pXMJ19 with inserted mcr* gene | This study |
pEC-XK99E | KanR; Ptrc, lacIq; C. glutamicum/E. coli shuttle vector | [31] |
pEC-pta | derived from pEC-XK99E, for the overexpression of pta | This study |
pEC-pta-ackA | derived from pEC-XK99E, for the overexpression of pta and ackA | This study |
pEacsA | derived from pEC-XK99E, for the overexpression of acsA | [32] |
Initial Actate Ratio (%) | Consumption of Substrates (g/L) | OD600 | 3-HP Titer (g/L) | 3-HP Yield (mg/g Substrate) | |
---|---|---|---|---|---|
Glucose | Acetate | ||||
0 | 21.56 ± 0.16 | 0 | 34.52 ± 0.39 | 0.68 ± 0.01 | 32 ± 0.46 |
25 | 15.10 ± 0.31 | 5.02 ± 0.12 | 33.56 ± 0.80 | 1.33 ± 0.04 | 66 ± 3.60 |
50 | 10.04 ± 0.47 | 6.56 ± 0.35 | 27.14 ± 0.47 | 1.21 ± 0.05 | 73 ± 2.10 |
75 | 5.67 ± 0.20 | 10.11 ± 0.12 | 21.38 ± 0.12 | 0.89 ± 0.05 | 56 ± 3.40 |
100 | 0 | 13.70 ± 0.22 | 16.45 ± 0.11 | 0.63 ± 0.01 | 46 ± 3.20 |
Name | Sequence (5′-3′) |
---|---|
pX-mcr-F | TTCGGTCTAGAAAAGGAGGACAACCATGTCCGGCACTGGCCGTTTAGCTG |
pX-mcr-R | TCCAAGAGCTCTTACACGGTGATAGCACGACCAC |
pEC-pta-F | ATTCGGAGCTCAAAGGAGGACAACCATGTCTGACACACCGACCTCAGCTCT |
pEC-pta-R | TTCAAGGTACCTTAGCTGCGTCCTCCTGCCTGAATTGCTG |
pEC-ackA-F | TCAGGGGATCCAAAGGAGGACAACCATGGCATTGGCACTTGTTTTGAA |
pEC-ackA-R | AATCGTCTAGACTAAGCGAACTTCACCGCGTACCTAGC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Z.; Dai, W.; Mao, Y.; Cui, Z.; Wang, Z.; Chen, T. Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway. Catalysts 2020, 10, 203. https://doi.org/10.3390/catal10020203
Chang Z, Dai W, Mao Y, Cui Z, Wang Z, Chen T. Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway. Catalysts. 2020; 10(2):203. https://doi.org/10.3390/catal10020203
Chicago/Turabian StyleChang, Zhishuai, Wei Dai, Yufeng Mao, Zhenzhen Cui, Zhiwen Wang, and Tao Chen. 2020. "Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway" Catalysts 10, no. 2: 203. https://doi.org/10.3390/catal10020203
APA StyleChang, Z., Dai, W., Mao, Y., Cui, Z., Wang, Z., & Chen, T. (2020). Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway. Catalysts, 10(2), 203. https://doi.org/10.3390/catal10020203