A Comprehensive Review of the Applications of Hierarchical Zeolite Nanosheets and Nanoparticle Assemblies in Light Olefin Production
Abstract
:1. Introduction
2. Design of Hierarchical Zeolites
2.1. Synthesis of Hierarchical Zeolite Nanosheets
2.2. Synthesis of Hierarchical Assembly of Zeolite Nanoparticles
3. Light Olefin Productions Obtained Using Hierarchical Zeolites
3.1. Methanol and Ethanol to Light Olefins
3.2. Catalytic Cracking and Dehydrogenation of Alkanes
3.3. CO2/CH4 to Light Olefins
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Corma, A.; Melo, F.V.; Sauvanaud, L.; Ortega, F. Light cracked naphtha processing: Controlling chemistry for maximum propylene production. Catal. Today 2005, 107–108, 699–706. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Wang, G.; Qi, Y.; Xu, L.; Xie, P.; He, Y. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature. In Studies in Surface Science and Catalysis; Čejka, J., Žilková, N., Nachtigall, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 158, pp. 1223–1230. [Google Scholar]
- Sadrameli, S.M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review. Fuel 2016, 173, 285–297. [Google Scholar] [CrossRef]
- Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2420. [Google Scholar] [CrossRef] [PubMed]
- Hillhouse, H.W.; Okubo, T.; van Egmond, J.W.; Tsapatsis, M. Preparation of supported mesoporous silica layers in a continuous flow cell. Chem. Mater. 1997, 9, 1505–1507. [Google Scholar] [CrossRef]
- Hirai, T.; Okubo, H.; Komasawa, I. Size-selective incorporation of CdS nanoparticles into mesoporous silica. J. Phys. Chem. B 1999, 103, 4228–4230. [Google Scholar] [CrossRef]
- Christensen, C.H.; Johannsen, K.; Schmidt, I.; Christensen, C.H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. J. Am. Chem. Soc. 2003, 125, 13370–13371. [Google Scholar] [CrossRef]
- Fan, W.; Snyder, M.A.; Kumar, S.; Lee, P.-S.; Yoo, W.C.; McCormick, A.V.; Lee Penn, R.; Stein, A.; Tsapatsis, M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat. Mater. 2008, 7, 984–991. [Google Scholar] [CrossRef]
- Pérez-Ramírez, J.; Christensen, C.H.; Egeblad, K.; Christensen, C.H.; Groen, J.C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530–2542. [Google Scholar] [CrossRef]
- Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246–249. [Google Scholar] [CrossRef]
- Na, K.; Choi, M.; Park, W.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J. Am. Chem. Soc. 2010, 132, 4169–4177. [Google Scholar] [CrossRef]
- Na, K.; Park, W.; Seo, Y.; Ryoo, R. Disordered assembly of MFI zeolite nanosheets with a large volume of intersheet mesopores. Chem. Mater. 2011, 23, 1273–1279. [Google Scholar] [CrossRef]
- Emdadi, L.; Wu, Y.; Zhu, G.; Chang, C.-C.; Fan, W.; Pham, T.; Lobo, R.F.; Liu, D. Dual template synthesis of meso- and microporous MFI zeolite nanosheet assemblies with tailored activity in catalytic reactions. Chem. Mater. 2014, 26, 1345–1355. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, H.; Wang, L.; Zhang, X.; Liu, G. Controllable fabrication and catalytic performance of nanosheet HZSM-5 films by vertical secondary growth. AIChE J. 2018, 64, 1923–1927. [Google Scholar] [CrossRef]
- Simone, N.; Carvalho, W.A.; Mandelli, D.; Ryoo, R. Nanostructured MFI-type zeolites as catalysts in glycerol etherification with tert-butyl alcohol. J. Mol. Catal. A Chem. 2016, 422, 115–121. [Google Scholar] [CrossRef]
- Park, W.; Yu, D.; Na, K.; Jelfs, K.E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets. Chem. Mater. 2011, 23, 5131–5137. [Google Scholar] [CrossRef]
- Choi, M.; Cho, H.S.; Srivastava, R.; Venkatesan, C.; Choi, D.-H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 2006, 5, 718–723. [Google Scholar] [CrossRef]
- Rani, P.; Srivastava, R.; Satpati, B. One-step dual template mediated synthesis of nanocrystalline zeolites of different framework structures. Cryst. Growth Des. 2016, 16, 3323–3333. [Google Scholar] [CrossRef]
- Barakov, R.; Shcherban, N.; Yaremov, P.; Bezverkhyy, I.; Baranchikov, A.; Trachevskii, V.; Tsyrina, V.; Ilyin, V. Synthesis of micro-mesoporous aluminosilicates on the basis of ZSM-5 zeolite using dual-functional templates at presence of micellar and molecular templates. Microporous Mesoporous Mater. 2017, 237, 90–107. [Google Scholar] [CrossRef]
- Xu, D.; Ma, Y.; Jing, Z.; Han, L.; Singh, B.; Feng, J.; Shen, X.; Cao, F.; Oleynikov, P.; Sun, H.; et al. π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nat. Commun. 2014, 5, 4262. [Google Scholar] [CrossRef]
- Liu, B.; Duan, Q.; Li, C.; Zhu, Z.; Xi, H.; Qian, Y. Template synthesis of the hierarchically structured MFI zeolite with nanosheet frameworks and tailored structure. New J. Chem. 2014, 38, 4380–4387. [Google Scholar] [CrossRef]
- Liu, B.; Chen, Z.; Huang, J.; Chen, H.; Fang, Y. Direct synthesis of hierarchically structured MFI zeolite nanosheet assemblies with tailored activity in benzylation reaction. Microporous Mesoporous Mater. 2019, 273, 235–242. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Xu, D.; Asahina, S.; Cychosz, K.A.; Agrawal, K.V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 2012, 336, 1684–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wannapakdee, W.; Wattanakit, C.; Paluka, V.; Yutthalekha, T.; Limtrakul, J. One-pot synthesis of novel hierarchical bifunctional Ga/HZSM-5 nanosheets for propane aromatization. RSC Adv. 2016, 6, 2875–2881. [Google Scholar] [CrossRef]
- Wannapakdee, W.; Suttipat, D.; Dugkhuntod, P.; Yutthalekha, T.; Thivasasith, A.; Kidkhunthod, P.; Nokbin, S.; Pengpanich, S.; Limtrakul, J.; Wattanakit, C. Aromatization of C5 hydrocarbons over Ga-modified hierarchical HZSM-5 nanosheets. Fuel 2019, 236, 1243–1253. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, W.; Zhai, Y.; Song, Y.; Zhao, X.; Ma, T.; Wei, J.; Gong, Y. Seed-fused ZSM-5 nanosheet as a superior MTP catalyst: Synergy of micro/mesopore and inter/external acidity. Microporous Mesoporous Mater. 2019, 276, 173–182. [Google Scholar] [CrossRef]
- Camarota, B.; Mann, S.; Onida, B.; Garrone, E. Hierarchical self-assembly in molecularly ordered phenylene-bridged mesoporous organosilica nanofilaments. ChemPhysChem 2007, 8, 2363–2366. [Google Scholar] [CrossRef]
- Ji, Q.; Guo, C.; Yu, X.; Ochs, C.J.; Hill, J.P.; Caruso, F.; Nakazawa, H.; Ariga, K. Flake-shell capsules: Adjustable inorganic structures. Small 2012, 8, 2345–2349. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ji, Q.; Imai, T.; Ariga, K.; Abe, H. Sintering-resistant nanoparticles in wide-mouthed compartments for sustained catalytic performance. Sci. Rep. 2017, 7, 41773. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yang, M.; Tian, P.; Xu, S.; Yang, Y.; Wang, D.; Yuan, Y.; Liu, Z. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J. Mater. Chem. A 2015, 3, 5608–5616. [Google Scholar] [CrossRef]
- Chen, H.; Wang, M.; Yang, M.; Shang, W.; Yang, C.; Liu, B.; Hao, Q.; Zhang, J.; Ma, X. Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance. J. Mater. Sci. 2019, 54, 8202–8215. [Google Scholar] [CrossRef]
- Inayat, A.; Knoke, I.; Spiecker, E.; Schwieger, W. Assemblies of mesoporous FAU-type zeolite nanosheets. Angew. Chem. Int. Ed. Engl. 2012, 51, 1962–1965. [Google Scholar] [CrossRef]
- Yutthalekha, T.; Wattanakit, C.; Warakulwit, C.; Wannapakdee, W.; Rodponthukwaji, K.; Witoon, T.; Limtrakul, J. Hierarchical FAU-type zeolite nanosheets as green and sustainable catalysts for benzylation of toluene. J. Clean. Prod. 2017, 142, 1244–1251. [Google Scholar] [CrossRef]
- Yutthalekha, T.; Suttipat, D.; Salakhum, S.; Thivasasith, A.; Nokbin, S.; Limtrakul, J.; Wattanakit, C. Aldol condensation of biomass-derived platform molecules over amine-grafted hierarchical FAU-type zeolite nanosheets (Zeolean) featuring basic sites. Chem. Commun. 2017, 53, 12185–12188. [Google Scholar] [CrossRef] [PubMed]
- Salakhum, S.; Yutthalekha, T.; Chareonpanich, M.; Limtrakul, J.; Wattanakit, C. Synthesis of hierarchical faujasite nanosheets from corn cob ash-derived nanosilica as efficient catalysts for hydrogenation of lignin-derived alkylphenols. Microporous Mesoporous Mater. 2018, 258, 141–150. [Google Scholar] [CrossRef]
- Wuamprakhon, P.; Wattanakit, C.; Warakulwit, C.; Yutthalekha, T.; Wannapakdee, W.; Ittisanronnachai, S.; Limtrakul, J. Direct synthesis of hierarchical ferrierite nanosheet assemblies via an organosilane template approach and determination of their catalytic activity. Microporous Mesoporous Mater. 2016, 219, 1–9. [Google Scholar] [CrossRef]
- Dugkhuntod, P.; Imyen, T.; Wannapakdee, W.; Yutthalekha, T.; Salakhum, S.; Wattanakit, C. Synthesis of hierarchical ZSM-12 nanolayers for levulinic acid esterification with ethanol to ethyl levulinate. RSC Adv. 2019, 9, 18087–18097. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhang, X.; Cheng, D.-G.; Chen, F.; Ren, X. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Front. Chem. Sci. Eng. 2018, 12, 780–789. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, D.-G.; Chen, F.; Zhan, X. n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: The effect of mesopores. Chem. Eng. Sci. 2017, 168, 352–359. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, X.; Wannapakdee, W.; Pestman, R.; Goesten, M.G.; Gao, L.; van Hoof, A.J.F.; Hensen, E.J.M. A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction. J. Catal. 2018, 361, 135–142. [Google Scholar] [CrossRef]
- Wattanakit, C.; Warakulwit, C.; Pantu, P.; Sunpetch, B.; Charoenpanich, M.; Limtrakul, J. The versatile synthesis method for hierarchical micro- and mesoporous zeolite: An embedded nanocarbon cluster approach. Can. J. Chem. Eng. 2012, 90, 873–880. [Google Scholar] [CrossRef]
- Imyen, T.; Wannapakdee, W.; Limtrakul, J.; Wattanakit, C. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes. Fuel 2019, 254, 115593. [Google Scholar] [CrossRef]
- Xue, T.; Li, S.; Wu, H.; Wu, P.; He, M. Eco-friendly and cost-effective synthesis of ZSM-5 aggregates with hierarchical porosity. Ind. Eng. Chem. Res. 2017, 56, 13535–13542. [Google Scholar] [CrossRef]
- Jin, L.; Liu, S.; Xie, T.; Wang, Y.; Guo, X.; Hu, H. Synthesis of hierarchical ZSM-5 by cetyltrimethylammonium bromide assisted self-assembly of zeolite seeds and its catalytic performances. React. Kinet. Mech. Cat. 2014, 113, 575–584. [Google Scholar] [CrossRef]
- Wannapakdee, W.; Meng, L.; van Hoof, A.J.F.; Bolshakov, A.; Wattanakit, C.; Hensen, E.J.M. The important role of rubidium hydroxide in the synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure-directing agent. Eur. J. Inorg. Chem. 2019, 2019, 2493–2497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ming, W.; Hu, S.; Qin, B.; Ma, J.; Li, R. A feasible one-step synthesis of hierarchical zeolite Beta with uniform nanocrystals via CTAB. Materials 2018, 11, 651. [Google Scholar] [CrossRef] [Green Version]
- Möller, K.; Yilmaz, B.; Müller, U.; Bein, T. Hierarchical zeolite Beta via nanoparticle assembly with a cationic polymer. Chem. Mater. 2011, 23, 4301–4310. [Google Scholar] [CrossRef]
- Yin, C.; Tian, D.; Xu, M.; Wei, Y.; Bao, X.; Chen, Y.; Wang, F. One-step synthesis of hierarchical mesoporous zeolite Beta microspheres from assembly of nanocrystals. J. Colloid Interface Sci. 2013, 397, 108–113. [Google Scholar] [CrossRef]
- Xiong, G.; Feng, M.; Liu, J.; Meng, Q.; Liu, L.; Guo, H. The synthesis of hierarchical high-silica beta zeolites in NaF media. RSC Adv. 2019, 9, 3653–3660. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Degirmenci, V.; Magusin, P.C.M.M.; Szyja, B.M.; Hensen, E.J.M. Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. Chem. Commun. 2012, 48, 9492–9494. [Google Scholar] [CrossRef]
- Wu, L.; Degirmenci, V.; Magusin, P.C.M.M.; Lousberg, N.J.H.G.M.; Hensen, E.J.M. Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. J. Catal. 2013, 298, 27–40. [Google Scholar] [CrossRef]
- Yu, Q.; Cui, C.; Zhang, Q.; Chen, J.; Li, Y.; Sun, J.; Li, C.; Cui, Q.; Yang, C.; Shan, H. Hierarchical ZSM-11 with intergrowth structures: Synthesis, characterization and catalytic properties. J. Energy Chem. 2013, 22, 761–768. [Google Scholar] [CrossRef]
- Zhang, L.; Shan, W.; Ke, M.; Song, Z. Synthesis of hierarchical nano-MEL zeolites with controlled sizes using template-free BEA seeds for oligomerization of butene to liquid fuel with high conversion efficiency. Catal. Commun. 2019, 124, 36–40. [Google Scholar] [CrossRef]
- Bing, L.; Tian, A.; Wang, F.; Yi, K.; Sun, X.; Wang, G. Template-free synthesis of hierarchical SSZ-13 microspheres with high MTO catalytic activity. Chem. Eur. J. 2018, 24, 7428–7433. [Google Scholar] [CrossRef] [PubMed]
- Azarhoosh, M.J.; Halladj, R.; Askari, S.; Aghaeinejad-Meybodi, A. Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods. Ultrason. Sonochem. 2019, 58, 104646. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Sun, Q.; Wang, N.; Bai, R.; Yu, J. Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance. Chem. Commun. 2018, 54, 3697–3700. [Google Scholar] [CrossRef]
- Chang, N.; Bai, L.; Zhang, Y.; Zeng, G. Fast synthesis of hierarchical CHA/AEI intergrowth zeolite with ammonium salts as mineralizing agent and its application for MTO process. Chem. Pap. 2019, 73, 221–237. [Google Scholar] [CrossRef]
- Rami, M.D.; Taghizadeh, M.; Akhoundzadeh, H. Synthesis and characterization of nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: Special insight on the influence of TX-100 as a cheap and green surfactant. Microporous Mesoporous Mater. 2019, 285, 259–270. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J.-C.; Jo, C.; Kim, T.-W.; Kim, C.-U.; Jeong, S.-Y.; Chae, H.-J. Structural and physicochemical effects of MFI zeolite nanosheets for the selective synthesis of propylene from methanol. Microporous Mesoporous Mater. 2016, 222, 1–8. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Meng, F.; Gao, F.; Sun, C.; Fan, C.; Wang, X.; Wang, S. Controllable fabrication of single-crystalline, ultrafine and high-silica hierarchical ZSM-5 aggregates via solid-like state conversion. RSC Adv. 2017, 7, 25605–25620. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Yu, Q.; Gao, Y.; Zhang, Q.; Li, C.; Cui, Q. Enhanced propene/ethene selectivity for methanol conversion over pure silica zeolite: Role of hydrogen-bonded silanol groups. Catal. Commun. 2015, 61, 67–71. [Google Scholar] [CrossRef]
- Huang, H.; Meng, X.; Chen, C.; Zhang, M.; Meng, Z.; Li, C.; Cui, Q. Effect of phosphorus addition on the performance of hierarchical ZSM-11 catalysts in methanol to propene reaction. Catal. Lett. 2016, 146, 2357–2363. [Google Scholar] [CrossRef]
- Shetsiri, S.; Thivasasith, A.; Saenluang, K.; Wannapakdee, W.; Salakhum, S.; Wetchasat, P.; Nokbin, S.; Limtrakul, J.; Wattanakit, C. Sustainable production of ethylene from bioethanol over hierarchical ZSM-5 nanosheets. Sustain. Energy Fuels 2019, 3, 115–126. [Google Scholar] [CrossRef]
- Li, X.; Rezaei, F.; Ludlow, D.K.; Rownaghi, A.A. Synthesis of SAPO-34@ZSM-5 and SAPO-34@silicalite-1 core–shell zeolite composites for ethanol dehydration. Ind. Eng. Chem. Res. 2018, 57, 1446–1453. [Google Scholar] [CrossRef]
- Li, W.; Ma, T.; Zhang, Y.; Gong, Y.; Wu, Z.; Dou, T. Facile control of inter-crystalline porosity in the synthesis of size-controlled mesoporous MFI zeolites via in situ conversion of silica gel into zeolite nanocrystals for catalytic cracking. CrystEngComm 2015, 17, 5680–5689. [Google Scholar] [CrossRef]
- Lee, J.; Hong, U.G.; Hwang, S.; Youn, M.H.; Song, I.K. Production of light olefins through catalytic cracking of C5 raffinate over carbon-templated ZSM-5. Fuel Process. Technol. 2013, 108, 25–30. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Y.; Jiang, G.; Liu, J.; Han, S.; Zhao, Z.; Wang, R.; Li, C.; Xu, C.; Duan, A.; et al. Simultaneous realization of high catalytic activity and stability for catalytic cracking of n-heptane on highly exposed crystal planes of nanosheet ZSM-5 zeolite. Chem. Commun. 2016, 52, 10068–10071. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, B.; Liang, H.; Hou, X.; Wang, L.; Zhang, X.; Liu, G. Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins. Appl. Catal. A 2019, 572, 24–33. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, D.-G.; Chen, F.; Zhan, X. The role of external acidity of hierarchical ZSM-5 zeolites in n-heptane catalytic cracking. ChemCatChem 2018, 10, 2655–2663. [Google Scholar] [CrossRef]
- Ji, Y.; Shi, B.; Yang, H.; Yan, W. Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane. Appl Catal. A 2017, 533, 90–98. [Google Scholar] [CrossRef]
- Khoshbin, R.; Oruji, S.; Karimzadeh, R. Catalytic cracking of light naphtha over hierarchical ZSM-5 using rice husk ash as silica source in presence of ultrasound energy: Effect of carbon nanotube content. Adv. Powder Technol. 2018, 29, 2176–2187. [Google Scholar] [CrossRef]
- Vu, H.X.; Schneider, M.; Bentrup, U.; Dang, T.T.; Phan, B.M.Q.; Nguyen, D.A.; Armbruster, U.; Martin, A. Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass. Ind. Eng. Chem. Res. 2015, 54, 1773–1782. [Google Scholar] [CrossRef]
- Kim, W.-G.; So, J.; Choi, S.-W.; Liu, Y.; Dixit, R.S.; Sievers, C.; Sholl, D.S.; Nair, S.; Jones, C.W. Hierarchical Ga-MFI catalysts for propane dehydrogenation. Chem. Mater. 2017, 29, 7213–7222. [Google Scholar] [CrossRef]
- Wannapakdee, W.; Yutthalekha, T.; Dugkhuntod, P.; Rodponthukwaji, K.; Thivasasith, A.; Nokbin, S.; Witoon, T.; Pengpanich, S.; Wattanakit, C. Dehydrogenation of propane to propylene using promoter-free hierarchical Pt/Silicalite-1 nanosheets. Catalysts 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Numpilai, T.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34. Energy Convers. Manag. 2019, 180, 511–523. [Google Scholar] [CrossRef]
- Gao, J.; Jia, C.; Liu, B. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts. Catal. Sci. Technol. 2017, 7, 5602–5607. [Google Scholar] [CrossRef]
- Gao, P.; Dang, S.; Li, S.; Bu, X.; Liu, Z.; Qiu, M.; Yang, C.; Wang, H.; Zhong, L.; Han, Y.; et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis. ACS Catal. 2017, 8, 571–578. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Qu, Y.; Liu, H.; Tang, C.; Miao, S.; Feng, Z.; An, H.; Li, C. Highly selective conversion of carbon dioxide to lower olefins. ACS Catal. 2017, 7, 8544–8548. [Google Scholar] [CrossRef]
- Dang, S.; Li, S.; Yang, C.; Chen, X.; Li, X.; Zhong, L.; Gao, P.; Sun, Y. Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrOx/SAPO-34 bifunctional catalysts. ChemSusChem 2019, 12, 3582–3591. [Google Scholar] [CrossRef]
- Batamack, P.T.D.; Mathew, T.; Prakash, G.K.S. One-pot conversion of methane to light olefins or higher hydrocarbons through H-SAPO-34-catalyzed in situ halogenation. J. Am. Chem. Soc. 2017, 139, 18078–18083. [Google Scholar] [CrossRef]
- Wen, D.; Liu, Q.; Fei, Z.; Yang, Y.; Zhang, Z.; Chen, X.; Tang, J.; Cui, M.; Qiao, X. Organosilane-assisted synthesis of hierarchical porous ZSM-5 zeolite as a durable catalyst for light-olefins production from chloromethane. Ind. Eng. Chem. Res. 2018, 57, 446–455. [Google Scholar] [CrossRef]
- Liu, Q.; Wen, D.; Yang, Y.; Fei, Z.; Zhang, Z.; Chen, X.; Tang, J.; Cui, M.; Qiao, X. Enhanced catalytic performance for light-olefins production from chloromethane over hierarchical porous ZSM-5 zeolite synthesized by a growth-inhibition strategy. Appl. Surf. Sci. 2018, 435, 945–952. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugkhuntod, P.; Wattanakit, C. A Comprehensive Review of the Applications of Hierarchical Zeolite Nanosheets and Nanoparticle Assemblies in Light Olefin Production. Catalysts 2020, 10, 245. https://doi.org/10.3390/catal10020245
Dugkhuntod P, Wattanakit C. A Comprehensive Review of the Applications of Hierarchical Zeolite Nanosheets and Nanoparticle Assemblies in Light Olefin Production. Catalysts. 2020; 10(2):245. https://doi.org/10.3390/catal10020245
Chicago/Turabian StyleDugkhuntod, Pannida, and Chularat Wattanakit. 2020. "A Comprehensive Review of the Applications of Hierarchical Zeolite Nanosheets and Nanoparticle Assemblies in Light Olefin Production" Catalysts 10, no. 2: 245. https://doi.org/10.3390/catal10020245
APA StyleDugkhuntod, P., & Wattanakit, C. (2020). A Comprehensive Review of the Applications of Hierarchical Zeolite Nanosheets and Nanoparticle Assemblies in Light Olefin Production. Catalysts, 10(2), 245. https://doi.org/10.3390/catal10020245