NOM (HA and FA) Reduction in Water Using Nano Titanium Dioxide Photocatalysts (P25 and P90) and Membranes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption of FA and HA on Nano Titanium Dioxides
2.2. Photocatalytic Decomposition of FA and HA
2.3. The integrated Process of Photocatalysis + UF
3. Materials and Methods
3.1. Water Solutions
3.2. Photocatalysis
3.3. Ultrafiltration
3.4. SEM Analysis Methodology
3.5. Analytical Methods
4. Conclusions
Funding
Conflicts of Interest
References
- Bodzek, M.; Rajca, M. Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds. Ecol. Chem. Eng. S 2012, 19, 489–512. [Google Scholar]
- Nikolaou, A.D.; Lekkas, T.D. The role of natural organic matter during formation of chlorination by-products: A review. Acta Hydrochim. Hydrobiol. 2001, 29, 63–77. [Google Scholar] [CrossRef]
- Rajca, M.; Wlodyka-Bergier, A.; Bodzek, M.; Bergier, T. MIEX(R)DOC process to remove disinfection by-product precursors. Desalin. Water Treat. 2017, 64, 372–377. [Google Scholar] [CrossRef]
- Wlodyka-Bergier, A.; Rajca, M.; Bergier, T. Removal of halogenated by-products precursors in photocatalysis process enhanced with membrane filtration. Desalin. Water Treat. 2014, 52, 19–21. [Google Scholar] [CrossRef]
- Matilainen, A.; Sillanpää, M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 2010, 80, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Leyva, E.; Moctezuma, E.; Kim, M.; Noriega, B.S.; Zarazúa, E. A Review on Chemical Advanced Oxidation Processes for Pharmaceuticals with Paracetamol as a Model Compound. Reaction Conditions, Intermediates and Total Mechanism. Curr. Org. Chem. 2018, 22, 2–17. [Google Scholar] [CrossRef]
- Athanasekou, C.P.; Romanosa, G.E.; Katsarosa, F.K.; Kordatosb, K.; Likodimosa, V.; Falarasa, P. Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J. Membr. Sci. 2012, 392, 192–203. [Google Scholar] [CrossRef]
- Huang, H.; Schwab, K.; Jacangelo, J.G. Pretreatment for low pressure membranes in water treatment: A review. Environ. Sci. Technol. 2009, 43, 3011–3019. [Google Scholar] [CrossRef] [PubMed]
- Uyguner-Demirel, C.S.; Birben, N.C.; Bekbolet, M. Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: A review. Catal. Today 2017, 284, 202–214. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.L.; Habibi, M.; Akia, M.; Hansain, I.M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1–36. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Zularisam, A.W.; Ismail, A.F.; Salim, R. Behaviours of natural organic matter in membrane filtration for surface water treatment—A review. Desalination 2006, 194, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Selvam, K.; Swaminathan, K.; Chae, K.S. Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus. World J. Microbiol. Biotechnol. 2003, 19, 591–593. [Google Scholar] [CrossRef]
- Erhayem, M.; Sohn, M. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter. Sci. Total Environ. 2014, 468, 468–469. [Google Scholar] [CrossRef] [PubMed]
- Ewonik Industries, AG. Product Information, Aeroxide®; Ewonik Industries AG: Essen, Germany, 2015. [Google Scholar]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Ji, M.; Zhao, Y.; Wang, L. Kinetics of aqueous photocatalytic oxidation of fulvic acids in a photocatalysis—Ultrafiltration reactor (PUR). Sep. Purif. Technol. 2006, 50, 107–113. [Google Scholar] [CrossRef]
- Montazerozohori, M.; Nasr-Esfahani, M.; Joohari, S. Photocatalytic degradation of an organic dye in some aqueous buffer solutions using nano titanium dioxide: A kinetics study. Environ. Protect. Eng. 2012, 38, 46–55. [Google Scholar]
- Doudrick, K.; Monzón, O.; Mangonon, A.; Hristovski, K.; Westerhoff, P. Nitrate Reduction in Water Using Commercial Titanium Dioxide Photocatalysts (P25, P90, and Hombikat UV100). J. Environ. Eng. 2012, 138, 852–861. [Google Scholar] [CrossRef]
- Rajca, M. The effectiveness of removal of nom from natural water using photocatalytic membrane reactors in PMR-UF and PMR-MF modes. Chem. Eng. J. 2016, 305, 169–175. [Google Scholar] [CrossRef]
- Balazs, N.; Mogyorósi, K.; Srankó, D.F.; Pallagi, A.; Alapi, T.; Oszkó, A.; Dombi, A.; Sipos, P. The effect of particle shape on the activity of nanocrystalline TiO2 photocatalysts in phenol decomposition. Appl. Catal. B 2008, 84, 356–362. [Google Scholar] [CrossRef]
Photocatalysis | Reaction Rate Constant, k min−1 | Determination Coefficient R2 | Half-Life, t1/2 min | |||
---|---|---|---|---|---|---|
DOC | UV254 | DOC | UV254 | DOC | UV254 | |
FA UV lamp15W P25 | 39 × 10−3 | 77 × 10−3 | 0.91 | 0.84 | 17.7 | 9.0 |
FA UV lamp15W P90 | 41 × 10−3 | 71 × 10−3 | 0.86 | 0.85 | 17.1 | 9.8 |
HA UV lamp15W P25 | 72 × 10−3 | 112 × 10−3 | 0.86 | 0.87 | 9.6 | 6.2 |
HA UV lamp15W P90 | 85 × 10−3 | 101 × 10−3 | 0.86 | 0.85 | 8.1 | 6.9 |
FA UV lamp150W P25 | 50 × 10−3 | 84 × 10−3 | 0.98 | 0.85 | 13.8 | 8.3 |
FA UV lamp150W P90 | 62 × 10−3 | 78 × 10−3 | 0.97 | 0.60 | 11.2 | 8.9 |
HA UV lamp150W P25 | 71 × 10−3 | 123 × 10−3 | 0.77 | 0.70 | 9.7 | 5.6 |
HA UV lamp150W P90 | 75 × 10−3 | 113 × 10−3 | 0.78 | 0.78 | 9.2 | 6.1 |
Process | Color, mgPt/L | Absorbance UV254 nm | DOC, mg/L | SUVA, m3/gC·m | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
Photocatalysis FA (P25) + UF | 38 | 4 | 0 | 0.292 | 0.026 | 0.024 | 9.26 | 3.32 | 3.36 | 3.15 | 0.78 | 0.71 |
Photocatalysis FA(P90) + UF | 42 | 5 | 0 | 0.310 | 0.030 | 0.023 | 9.44 | 3.87 | 3.37 | 3.28 | 0.77 | 0.68 |
UF only | 40 | - | 14 | 0.301 | - | 0.131 | 9.35 | - | 5.43 | 3.22 | - | 2.41 |
Indicator, Unit | FA Model Solution | HA Model Solution |
---|---|---|
pH | 7.16 | 7.89 |
Color *, mgPt/L | 38 | 134 |
Absorbance UV254 | 0.30 | 0.72 |
DOC, mg/L | 9.05 | 8.85 |
TOC, mg/L | 9.87 | 9.86 |
IC, mg/L | 0.82 | 1.01 |
SUVA **, m3/gC·m | 3.31 | 8.14 |
Properties | Aeroxide TiO2 P25 | Aeroxide TiO2 P90 | Data Source |
---|---|---|---|
Specific surface area | 50 ± 15 m2/g | 90 ± 20 m2/g | [15] |
pH at 4% | 3.2–4.5 | 3.2–4.5 | |
Tamped density | 100–180 g/L | approx. 120 g/L | |
Crystal structure * | 88% anatase, 12% rutile | 86% anatase, 14% rutile | [19] |
Crystal size * | 16 nm anatase, 18 nm rutile | 12 nm anatase, 18 nm rutile | |
Isoelectric point (pHIEP) | 6.4 | 6.6 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajca, M. NOM (HA and FA) Reduction in Water Using Nano Titanium Dioxide Photocatalysts (P25 and P90) and Membranes. Catalysts 2020, 10, 249. https://doi.org/10.3390/catal10020249
Rajca M. NOM (HA and FA) Reduction in Water Using Nano Titanium Dioxide Photocatalysts (P25 and P90) and Membranes. Catalysts. 2020; 10(2):249. https://doi.org/10.3390/catal10020249
Chicago/Turabian StyleRajca, Mariola. 2020. "NOM (HA and FA) Reduction in Water Using Nano Titanium Dioxide Photocatalysts (P25 and P90) and Membranes" Catalysts 10, no. 2: 249. https://doi.org/10.3390/catal10020249
APA StyleRajca, M. (2020). NOM (HA and FA) Reduction in Water Using Nano Titanium Dioxide Photocatalysts (P25 and P90) and Membranes. Catalysts, 10(2), 249. https://doi.org/10.3390/catal10020249