Influence of the Facets of Bi24O31Br10 Nanobelts and Nanosheets on Their Photocatalytic Properties
Abstract
:1. Introduction
2. Results and discussion
2.1. Characterization
2.2. Photocatalytic Properties regarding TTCH Degradation
2.3. Band structures of BOB-NSs and BOB-NBs
2.4. Investigation of the photocatalytic mechanism
3. Materials and Methods
3.1. Synthesis of BOB-NSs and BOB-NBs
3.2. Characterization
3.3. Photocatalytic Tests
3.4. Photoelectrochemical Measurements
3.5. Density Functional Theory (DFT) Calculations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lan, L.; Li, Y.Z.; Zeng, M.; Mao, M.Y.; Ren, L.; Yang, Y.; Liu, H.H.; Yun, L.; Zhao, X.J. Efficient UV-vis-infrared light-driven catalytic abatement of benzene on amorphous manganese oxide supported on anatase TiO2 nanosheet with dominant 001 facets promoted by a photothermocatalytic synergetic effect. Appl. Catal. B Environ. 2017, 203, 494–504. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.Z.; Sun, S.M.; Jiang, D.; Gao, E.P. Selective transport of electron and hole among 001 and 110 facets of BiOCl for pure water splitting. Appl. Catal. B Environ. 2015, 162, 470–474. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.H.; Li, X.W.; Yu, S.X.; Du, X.; Guo, Y.X.; Huang, H.W. In-depth insight into facet-dependent charge movement behaviors and photo-redox catalysis: A case of {0 0 1} and {0 1 0} facets BiOCl. J. Colloid Interface Sci. 2017, 508, 174–183. [Google Scholar] [CrossRef]
- Li, H.; Shang, J.; Shi, J.G.; Zhao, K.; Zhang, L.Z. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 2016, 8, 1986–1993. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, K.; Xiao, X.Y.; Zhang, L.Z. Synthesis and Facet-Dependent Photoreactivity of BiOCl Single Crystalline Nanosheets. J. Am. Chem. Soc. 2012, 134, 4473−4476. [Google Scholar] [CrossRef]
- Lin, R.; Wan, J.W.; Xiong, Y.; Wu, K.L.; Cheng, W.C.; Zhou, G.; Wang, D.S.; Peng, Q.; Chen, C.; Li, Y.D. A quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis. J. Am. Chem. Soc. 2018, 140, 9078–9082. [Google Scholar] [CrossRef]
- Shang, J.; Hao, W.C.; Lv, X.J.; Wang, T.M.; Wang, X.L.; Du, Y.; Dou, S.X.; Xie, T.F.; Wang, D.J.; Wang, J.O. Bismuth Oxybromide with Reasonable Ptocatalytic Reduction Activity under Visible Light. ACS Catal. 2014, 4, 954−961. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, C.L.; Hu, R.P.; Zuo, X.X.; Nan, J.M.; Li, L.S.; Wang, L.S. Oxygen-rich bismuth oxyhalides: Generalized one-pot synthesis, band structures and visible-light photocatalytic properties. J. Mater. Chem. 2012, 22, 22840–22843. [Google Scholar] [CrossRef]
- Song, J.; Zhang, L.; Yang, J.; Huang, X.H.; Hu, J.S. Hierarchical porous Bi24O31Br10 microarchitectures assembled by ultrathin nanosheets with strong adsorption and excellent photocatalytic performances. Mater. Des. 2017, 123, 128–136. [Google Scholar] [CrossRef]
- Liu, Z.S.; Niu, J.N.; Feng, P.Z.; Zhu, Y.B. Solvothermal synthesis of Bi24O31ClxBr10-x, solid solutions with enhanced visible light photocatalytic property. Ceram. Int. 2014, 41, 4608–4615. [Google Scholar] [CrossRef]
- Liu, Z.S.; Liu, Z.L.; Liu, J.L.; Zhang, J.W.; Zhou, T.F.; Ji, X. Enhanced photocatalytic performance of Er-doped Bi24O31Br10: Facile synthesis and photocatalytic mechanism. Mater. Res. Bull. 2016, 76, 256–263. [Google Scholar] [CrossRef]
- Deng, H.; Wang, J.W.; Peng, Q.; Wang, X.; Li, Y.L. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes. Chem. Eur. J. 2005, 22, 6519–6524. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Zhang, X.; Zhang, Y.J.; Chen, J.J.; Huang, G.X.; Jiang, J.; Wang, W.K.; Yu, H.Q. Direct generation of hydroxyl radicals over bismuth oxybromide nanobelts with tuned band structure for photocatalytic pollutant degradation under visible light irradiation. Appl. Catal. B Environ. 2018, 237, 464–472. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, X.; Qiu, H.B.; Huang, G.X.; Yu, H.Q. Bi24O31Br10 nanosheets with controllable thickness for visible-light-driven catalytic degradation of tetracycline hydrochloride. Appl. Catal. B Environ. 2017, 205, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Ma, X.D.; Li, D.; Xuan, Y.W.; Meng, S.C.; Chen, M. Assembly of WO3 nanosheets/Bi24O31Br10 nanosheets composites with superior photocatalytic activity for degradation of tetracycline hydrochloride. J. Mater. Sci. 2018, 53, 15804–15816. [Google Scholar] [CrossRef]
- Li, F.T.; Wang, Q.; Ran, J.R.; Hao, Y.J.; Wang, X.J.; Zhao, D.S.; Qiao, S.Z. Ionic liquid self-combustion synthesis of BiOBr/ Bi24O31Br10 heterojunctions with exceptional visible-light photocatalytic performances. Nanoscale 2015, 7, 1116–1126. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, P.P.; Chen, Q.G.; Zhou, H.Y.; Xu, A.W. Facile Fabrication of Bi12O17Br2/ Bi24O31Br10 Type II heterostructures with high visible photocatalytic activity. J. Phys. Chem. C 2015, 119, 13032–13040. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, C.X.; Lu, M.L.; Zhang, L.; Liu, F.; Zuo, X.X.; Nan, J.M. Deficient Bi24O31Br10 as a highly efficient photocatalyst for selective oxidation of benzyl alcohol into benzaldehyde under blue LED irradiation. Appl. Catal. B: Environ. 2017, 228, 142–151. [Google Scholar] [CrossRef]
- Xiao, B.; Zhao, W.H.; Xiang, Y.B.; Wu, X.Y.; Zhang, G.K. Vis-NIR responsive Bi24O31Br10 and corresponding composite with up-conversion phosphor towards efficient photocatalytic oxidation. Appl. Surf. Sci. 2019, 489, 210–219. [Google Scholar] [CrossRef]
- Dai, Y.T.; Li, C.; Shen, Y.B.; Zhu, S.J.; Hvid, M.S.; Wu, L.C.; Skibsted, J.; Li, Y.W.; Niemantsverdriet, J.W.H.; Besenbacher, F.; et al. Efficient Solar Driven Hydrogen Transfer by Bismuth Based Photocatalyst with Engineered Basic Sites. J. Am. Chem. Soc. 2019, 58, 6265–6270. [Google Scholar] [CrossRef]
- Li, J.; Cai, L.J.; Shang, J.; Yu, Y.; Zhang, L.Z. Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Adv. Mater. 2016, 28, 4059–4064. [Google Scholar] [CrossRef] [PubMed]
- Eggenweiler, U.; Keller, E.; Krammer, V. Redetermination of the crystal structures of the `Arppe compound’ Bi24O31Cl10 and the isomorphous Bi24O31Br10. Acta Cryst. 2000, 56, 431–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.D.; Song, S.Y.; Zhang, H.J. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 2013, 42, 5714–5743. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, X.; Song, X.N.; Wang, W.K.; Yu, H.Q. Novel Bi12O15Cl6 Photocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2016, 8, 5320–5326. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.Y.; Ye, H.C.; Chen, S.M.; Ju, H.X.; Liu, D.B.; Lin, Y.; Ye, W.; Wang, C.M.; Xu, Q.; et al. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation. J. Am. Chem. Soc. 2016, 138, 8928–8935. [Google Scholar] [CrossRef]
- Wang, H.; Yong, D.Y.; Chen, S.C.; Jiang, S.L.; Zhang, X.D.; Shao, W.; Zhang, Q.; Yan, W.S.; Pan, B.C.; Xie, Y. Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation. J. Am. Chem. Soc. 2018, 140, 1760–1766. [Google Scholar] [CrossRef]
- Li, Q.; Rellán-Piñeiro, M.; Almora-Barrios, N.; Garcia-Ratés, M.; Remediakis, I.N.; López, N. Shape Control in Concave Metal Nanoparticles by Etching. Nanoscale 2017, 9, 13089–13094. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmiiller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Xie, W.; Chen, Z.; Wang, X.; Akinoglu, E.M.; Zhou, G.; Shui, L. Influence of the Facets of Bi24O31Br10 Nanobelts and Nanosheets on Their Photocatalytic Properties. Catalysts 2020, 10, 257. https://doi.org/10.3390/catal10020257
Zeng Q, Xie W, Chen Z, Wang X, Akinoglu EM, Zhou G, Shui L. Influence of the Facets of Bi24O31Br10 Nanobelts and Nanosheets on Their Photocatalytic Properties. Catalysts. 2020; 10(2):257. https://doi.org/10.3390/catal10020257
Chicago/Turabian StyleZeng, Qindan, Wei Xie, Zhihong Chen, Xin Wang, Eser Metin Akinoglu, Guofu Zhou, and Lingling Shui. 2020. "Influence of the Facets of Bi24O31Br10 Nanobelts and Nanosheets on Their Photocatalytic Properties" Catalysts 10, no. 2: 257. https://doi.org/10.3390/catal10020257
APA StyleZeng, Q., Xie, W., Chen, Z., Wang, X., Akinoglu, E. M., Zhou, G., & Shui, L. (2020). Influence of the Facets of Bi24O31Br10 Nanobelts and Nanosheets on Their Photocatalytic Properties. Catalysts, 10(2), 257. https://doi.org/10.3390/catal10020257