Recent Advances in Enzyme-Nanostructure Biocatalysts with Enhanced Activity
Abstract
:1. Introduction
2. Mechanisms behind Enhanced Activities of Nanobiocatalysts
2.1. Morphology Effect of Nanoscale Support
2.2. Metal Ions Activation
2.3. Electron Transfer Effect
2.4. Temperature Effects
2.5. Conformational Changes of Immobilized Enzymes
2.6. Multi-Enzyme System
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nelson, J.M.; Griffin, E.G. Adsorption of invertase. J. Am. Chem. Soc. 1916, 38, 1109–1115. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ge, J.; Liu, Z. Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. 2015, 5, 4503–4513. [Google Scholar] [CrossRef]
- Vranish, J.N.; Ancona, M.G.; Walper, S.A.; Medintz, I.L. Pursuing the promise of enzymatic enhancement with nanoparticle assemblies. Langmuir 2017, 34, 2901–2925. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Lu, D.; Liu, Z.; Liu, Z. Recent advances in nanostructured biocatalysts. Biochem. Eng. J. 2009, 44, 53–59. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Z.; Liu, X.Y. Using inorganic nanomaterials to endow biocatalytic systems with unique features. Trends Biotechnol. 2016, 34, 303–315. [Google Scholar] [CrossRef]
- Kim, J.; Grate, J.W.; Wang, P. Nanobiocatalysis and its potential applications. Trends Biotechnol. 2008, 26, 639–646. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.G.; Manoel, E.A.; Lafuente, R.F.; Oliverira, D.D. Nanomaterials for biocatalyst immobilization-state of the art and future trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Patra, H.K. Nanoassisted functional modulation of enzymes: Concept and applications. In Advanced Surface Engineering Materials; Wiley: New York, NY, USA, 2016; pp. 349–383. [Google Scholar]
- Misson, M.; Zhang, H.; Jin, B. Nanobiocatalyst advancements and bioprocessing applications. J. R. Soc. Interface 2015, 12, 20140891. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.C.S.; Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Rodrigues, R.C.; Fernandez-Lafuente, R.F. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 2015, 7, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Pelt, S.V. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Fernández, M.; Sanromán, M.Á.; Moldes, D. Recent developments and applications of immobilized laccase. Biotechnol. Adv. 2013, 31, 1808–1825. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, P.; He, Y.; Zhang, Y.; Luo, Y.; Zhang, C.; Fan, H. Enzyme-nanowire mesocrystal hybrid materials with an extremely high biocatalytic activity. Nano Lett. 2018, 18, 5919–5926. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.B.; Wang, Y.C.; He, R.; Zhuang, A.; Wang, X.; Zeng, J.; Hou, J.G. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J. Am. Chem. Soc. 2013, 135, 1272–1275. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, C.; Chen, L.; He, Y.; Ma, W.; Lin, Z. Recent advances in biomolecule immobilization based on self-assembly: Organic-inorganic hybrid nanoflowers and metal-organic frameworks as novel substrates. J. Mater. Chem. B 2018, 6, 1581–1594. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Lu, D.; Ge, J.; Liu, Z.; Zare, R.N. Functional protein-organic/inorganic hybrid nanomaterials. WIREs Nanomed. Nanobiotechnol. 2013, 5, 320–328. [Google Scholar] [CrossRef]
- Lee, S.W.; Cheon, S.A.; Kim, M.I.; Park, T.J. Organic-inorganic hybrid nanoflowers: Types, characteristics, and future prospects. J. Nanobiotechnol. 2015, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhou, M.C.; Liu, R.L. Recent developments in carriers and non-aqueous solvents for enzyme immobilization. Catalysts 2019, 9, 647. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Hou, M.; Ge, J. Metal-organic frameworks and inorganic nanoflowers: A type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catal. Sci. Technol. 2015, 5, 5077–5085. [Google Scholar] [CrossRef]
- Guo, S.; Li, H.; Liu, J.; Yang, Y.; Kong, W.; Qiao, S.; Huang, H.; Liu, Y.; Kang, Z. Visible-light-induced effects of Au nanoparticle on laccase catalytic activity. ACS Appl. Mater. Interfaces 2015, 7, 20937–20944. [Google Scholar] [CrossRef] [PubMed]
- Blankschien, M.D.; Pretzer, L.A.; Huschka, R.; Halas, N.J.; Gonzlez, R.; Wong, M.S. Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes. ACS Nano 2013, 7, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Dasgupta, A.K.; Chakrabarti, K. Thermostability, pH stability and dye degrading activity of a bacterial laccase are enhanced in the presence of Cu2O nanoparticles. Bioresour. Technol. 2013, 127, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Knecht, L.D.; Ali, N.; Wei, Y.; Hilt, J.Z.; Daunert, S. Nanoparticle-mediated remote control of enzymatic activity. ACS Nano 2012, 6, 9079–9086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, R.; Zhang, W.; Zhang, Y.; Zhang, Y.; Chen, Y.; He, Y.; Fan, H. Remote and real time control of an FVIO-enzyme hybrid nanocatalyst using magnetic stimulation. Nanoscale 2019, 11, 18081–18089. [Google Scholar] [CrossRef]
- Corgié, S.C.; Kahawong, P.; Duan, X.; Bowser, D.; Edward, J.B.; Walker, L.P.; Giannelis, E.P. Self-assembled complexes of horseradish peroxidase with magnetic nanoparticles showing enhanced peroxidase activity. Adv. Funct. Mater. 2012, 22, 1940–1951. [Google Scholar] [CrossRef]
- Hou, C.; Wang, Y.; Ding, Q.; Jiang, L.; Li, M.; Zhu, W.; Pan, D.; Zhu, H.; Liu, M. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale 2015, 7, 18770–18779. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.T.; Liu, C.Z.; Hu, J.H.; Guo, C. Improved performance of immobilized laccase on amine-functioned magnetic Fe3O4 nanoparticles modified with polyethylenimine. Chem. Eng. J. 2016, 295, 201–206. [Google Scholar] [CrossRef]
- Luckarift, H.R.; Spain, J.C.; Naik, R.R.; Stone, M.O. Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 2004, 22, 211. [Google Scholar] [CrossRef]
- Wu, X.; Ou, G.; Yang, C.; Ge, J.; Wu, H. Enhanced enzymatic reactions by solar-to-thermal conversion nanoparticles. Chem. Commun. 2017, 53, 5048–5051. [Google Scholar] [CrossRef] [PubMed]
- Mi, L.; Yu, J.; He, F.; Jiang, L.; Wu, Y.; Yang, L.; Han, X.; Li, Y.; Liu, A.; Wei, W.; et al. Boosting gas involved reactions at nanochannel reactor with joint gas-solid-liquid interfaces and controlled wettability. J. Am. Chem. Soc. 2017, 139, 10441–10446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Xu, Y.; Peng, Z.; Li, A.; Liu, J. Simultaneous enhancement of bioactivity and stability of laccase by Cu2+/PAA/PPEGA matrix for efficient biosensing and recyclable decontamination of pyrocatechol. Anal. Chem. 2017, 89, 2065–2072. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, Y.; Lu, D.; Zare, R.N.; Ge, J.; Liu, Z. Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media. Chem. Commun. 2013, 49, 6090–6092. [Google Scholar] [CrossRef]
- Song, J.; Kahveci, D.; Chen, M.; Guo, Z.; Xie, E.; Xu, X. Enhanced catalytic activity of lipase encapsulated in PCL nanofibers. Langmuir 2012, 28, 6157–6162. [Google Scholar] [CrossRef]
- Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett. 2014, 14, 5761–5765. [Google Scholar] [CrossRef]
- Du, Y.; Gao, J.; Liu, H.; Zhou, L.; M, L.; He, Y.; Huang, Z.; Jiang, Y. Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Res. 2018, 11, 4380–4389. [Google Scholar] [CrossRef]
- Li, P.; Moon, S.Y.; Guelta, M.A.; Harvey, S.P.; Hupp, J.T.; Farha, O.K. Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability. J. Am. Chem. Soc. 2016, 138, 8052–8055. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; He, Y.; Abdulrazaq, M.A.; Yan, Y. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity. J. Biotechnol. 2018, 281, 87–98. [Google Scholar] [CrossRef]
- Li, H.; Guo, S.; Li, C.; Huang, H.; Liu, Y.; Kang, Z. Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light. ACS Appl. Mater. Interfaces 2015, 7, 10004–10012. [Google Scholar] [CrossRef]
- Wu, F.; Su, L.; Yu, P.; Mao, L. Role of organic solvents in immobilizing fungus laccase on single-walled carbon nanotubes for improved current response in direct bioelectrocatalysis. J. Am. Chem. Soc. 2017, 139, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Subrizi, F.; Crucianelli, M.; Grossi, V.; Passacantando, M.; Pesci, L.; Saladino, R. Carbon nanotubes as activating tyrosinase supports for the selective synthesis of catechols. ACS Catal. 2014, 4, 810–822. [Google Scholar] [CrossRef]
- Song, Y.; Xu, C.; Wei, W.; Ren, J.; Qu, X. Light regulation of peroxidase activity by spiropyran functionalized carbon nanotubes used for label-free colorimetric detection of lysozyme. Chem. Commun. 2011, 47, 9083–9085. [Google Scholar] [CrossRef] [PubMed]
- Altinkaynak, C.; Tavlasoglu, S.; Ÿzdemir, N.; Ocsoy, I. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb. Technol. 2016, 93, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Park, W.M.; Champion, J.A. Colloidal assembly of hierarchically structured porous supraparticles from flower-shaped protein-inorganic hybrid nanoparticles. ACS Nano 2016, 10, 8271–8280. [Google Scholar] [CrossRef] [PubMed]
- Pratsinis, A.; Kelesidis, G.A.; Zuercher, S.; Krumeich, F.; Bolisetty, S.; Mezzenga, R.; Leroux, J.C.; Sotiriou, G.A. Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano 2017, 11, 12210–12218. [Google Scholar] [CrossRef]
- Ge, J.; Lei, J.; Zare, R.N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. [Google Scholar] [CrossRef]
- Batule, B.S.; Park, K.S.; Kim, M.I.; Park, H.G. Ultrafast sonochemical synthesis of protein-inorganic nanoflowers. Int. J. Nanomed. 2015, 10, 137–142. [Google Scholar]
- Rong, J.; Zhang, T.; Qiu, F.; Zhu, Y. Preparation of efficient, stable, and reusable laccase-Cu3(PO4)2 hybrid microspheres based on copper foil for decoloration of congo red. ACS Sustain. Chem. Eng. 2017, 5, 4468–4477. [Google Scholar] [CrossRef]
- Lang, X.; Zhu, L.; Gao, Y.; Wheeldon, I. Enhancing enzyme activity and immobilization in nanostructured inorganic-enzyme complexes. Langmuir 2017, 33, 9073–9080. [Google Scholar] [CrossRef]
- Yin, Y.; Xiao, Y.; Lin, G.; Xiao, Q.; Lin, Z.; Cai, Z. An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J. Mater. Chem. B 2015, 3, 2295–2300. [Google Scholar] [CrossRef]
- Han, L.; Liu, A. Novel cell-inorganic hybrid catalytic interfaces with enhanced enzymatic activity and stability for sensitive biosensing of paraoxon. ACS Appl. Mater. Interfaces 2017, 9, 6894–6901. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Li, H.; Zhang, Y. Synthesis of hybrid nanoflower-based carbonic anhydrase for enhanced biocatalytic activity and stability. ACS Omega 2018, 3, 18234–18241. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ding, Y.; Li, S.; Jiang, Y.; Liu, Z.; Ge, J. Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale 2016, 8, 17440–17445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, P.; Zhang, H.; Wang, H.; Li, X.; Tian, L.; Ali, N.; Ali, Z. Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 2016, 291, 287–297. [Google Scholar] [CrossRef]
- Ye, R.; Zhu, C.; Song, Y.; Song, J.; Fu, S.; Lu, Q.; Yang, X.; Zhu, M.J.; Du, D.; Li, H.; et al. One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: Detection of E. coli O157: H7 from milk. Nanoscale 2016, 8, 18980–18986. [Google Scholar] [CrossRef]
- Wang, M.; Huang, S.W.; Xu, D.; Bao, W.J.; Xia, X.H. Ultrahigh enzyme activity assembled in layered double hydroxides via Mg2+-allosteric effector. Anal. Chem. 2015, 87, 5831–5836. [Google Scholar] [CrossRef]
- Vranish, J.N.; Ancona, M.G.; Oh, E.; Susumu, K.; Medintz, I.L. Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle. Nanoscale 2017, 9, 5172–5187. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Yan, X. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Torres-Salas, P.; Monte-Martinez, A.; Cutiño-Avila, B.; Rodriguez-Colinas, B.; Alcalde, M.; Ballesteros, A.O.; Plou, F.J. Immobilized biocatalysts: Novel approaches and tools for binding enzymes to supports. Adv. Mater. 2011, 23, 5275–5282. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Xiao, Y.; Yin, Y.; Hu, W.; Liu, W.; Yang, H. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Appl. Mater. Interfaces 2014, 6, 10775–10782. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Gong, L.; Zhang, Y.; Wang, R.; Ge, J.; Liu, Z.; Zare, R.N. Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem. Asian J. 2013, 8, 2358–2360. [Google Scholar] [CrossRef] [PubMed]
- Forde, J.; Tully, E.; Vakurov, A.; Gibson, T.D.; Millner, P.; Ó’Fágáin, C. Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila. Enzyme Microb. Technol. 2010, 46, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Su, Y.; Ouyang, P.; Ge, J.; Liu, Z. Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes. Chem. Commun. 2014, 50, 12465–12468. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, Y.; Liu, R.; Zhong, C.; Jia, S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 2016, 6, 27928. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Sun, Y.; Wang, J.; Huang, H.; Geng, X.; Tong, Y.; Wang, Z. Preparation of a flower-like immobilized D-Psicose 3-epimerase with enhanced catalytic performance. Catalysts 2018, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.S.; Vazquez, L.B.; Simakov, A.; Duhalt, R.V. Enhanced laccase activity of biocatalytic hybrid copper hydroxide nanocages. Enzyme Microb. Technol. 2019, 128, 59–66. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Huang, J.; Lu, D.; Ge, J.; Liu, Z. Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate. Green Chem. 2013, 15, 1155–1158. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.; Hou, M.; Li, T.; Ge, J.; Liu, Z. Chemo-enzymatic synthesis of valrubicin using Pluronic conjugated lipase with temperature responsiveness in organic media. RSC Adv. 2013, 3, 22963–22966. [Google Scholar] [CrossRef]
- Jin, Q.; Jia, G.; Zhang, Y.; Yang, Q.; Li, C. Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica. Langmuir 2011, 27, 12016–12024. [Google Scholar] [CrossRef]
- Lin, J.L.; Wheeldon, I. Kinetic enhancements in DNA-enzyme nanostructures mimic the sabatier principle. ACS Catal. 2013, 3, 560–564. [Google Scholar] [CrossRef]
- Somturk, B.; Yilmaz, I.; Altinkaynak, C.; Karatepe, A.; Özdemir, N.; Ocsoy, I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb. Technol. 2016, 86, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Otari, S.V.; Kang, Y.C.; Lee, J.K. Protein-inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in L-xylulose production. RSC Adv. 2017, 7, 3488–3494. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wu, Z.; Chen, G.; Wang, Z. An improved method to encapsulate laccase from Trametes versicolor with enhanced stability and catalytic activity. Catalysts 2018, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Zhang, C.; Qian, X.; Yu, D. Self-assembled 2,4-dichlorophenol hydroxylase-inorganic hybrid nanoflowers with enhanced activity and stability. RSC Adv. 2018, 8, 20976–20981. [Google Scholar] [CrossRef] [Green Version]
- 77Vranish, J.N.; Ancona, M.G.; Oh, E.; Susumu, K.; Aragonés, G.L.; Breger, J.C.; Walper, S.A.; Medintz, I.L. Enhancing coupled enzymatic activity by colocalization on nanoparticle surfaces: Kinetic evidence for directed channeling of intermediates. ACS Nano 2018, 12, 7911–7926. [Google Scholar] [CrossRef]
- Ibrahim, A.S.S.; Al-Salamah, A.A.; El-Toni, A.M.; Almaary, K.S.; El-Tayeb, M.A.; Elbadawi, Y.B.; Antranikian, G. Enhancement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. Int. J. Mol. Sci. 2016, 17, 184. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Taylor, R.N.K.; Kullmann, S.; Bao, H. Mesoporous organosilicas with large cage-like pores for high efficiency immobilization of enzymes. Adv. Mater. 2011, 23, 2627–2632. [Google Scholar] [CrossRef]
- Wang, M.; Abad, D.; Kickhoefer, V.A.; Rome, L.H.; Mahendra, S. Vault nanoparticles packaged with enzymes as an efficient pollutant biodegradation technology. ACS Nano 2015, 9, 10931–10940. [Google Scholar] [CrossRef]
- Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M.M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J.C.; Ward, T.R. Artificial metalloenzymes: Reaction scope and optimization strategies. Chem. Rev. 2018, 118, 142–231. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.A.; Wilker, M.B.; Boehm, M.; Dukovic, G.; King, P.W. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 2012, 134, 5627–5636. [Google Scholar] [CrossRef] [PubMed]
- Kohse, S.; Neubauer, A.; Razidis, A.; Lochbrunner, S.; Krag, U. Photoswitching of enzyme activity by laser-induced pH-jump. J. Am. Chem. Soc. 2013, 135, 9407–9411. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Q.; Wang, X.; Chang, H.; Zhang, S.; Tang, Y.; Xu, J.; Qi, R.; Cheng, Y. Dynamic modulation of enzyme activity by near-infrared light. Angew. Chem. Int. Ed. 2017, 56, 6767–6772. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, J.; Sun, Y.; Wu, Y.; Zhang, Y.; Cai, Z.; Chen, Y.; You, C.; Han, P.; Jiang, Z. Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide. ACS Catal. 2019, 9, 3913–3925. [Google Scholar] [CrossRef]
- Alarcón-Correa, M.; Günther, J.P.; Troll, J.; Kadiri, V.M.; Bill, J.; Fischer, P.; Rothenstein, D. Self-assembled phage-based colloids for high localized enzymatic activity. ACS Nano 2019, 13, 5810–5815. [Google Scholar] [CrossRef] [PubMed]
- Riedinger, A.; Cuardia, P.; Curcio, A.; Garcia, M.A.; Cingolani, R.; Manna, L.; Rellegrino, T. Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett. 2013, 13, 2399–2406. [Google Scholar] [CrossRef]
- Secundo, F. Conformational changes of enzymes upon immobilisation. Chem. Soc. Rev. 2013, 42, 6250–6261. [Google Scholar] [CrossRef]
- Darby, J.F.; Atobe, M.; Firth, J.D.; Bond, P.; Davies, G.J.; O’Brien, P.; Hubbard, R.E. Increase of enzyme activity through specific covalent modification with fragments. Chem. Sci. 2017, 8, 7772–7779. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Liu, J. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Pereira, P.C. Biocatalysis engineering: The big picture. Chem. Soc. Rev. 2017, 46, 2678–2691. [Google Scholar] [CrossRef]
- Rueda, N.; Santos, J.C.S.; Ortiz, C.; Torres, R.; Barbosa, O.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Chemical modification in the design of immobilized enzyme biocatalysts: Drawbacks and opportunities. Chem. Rec. 2016, 16, 1436–1455. [Google Scholar] [CrossRef] [PubMed]
- Görbe, T.; Gustafson, K.P.J.; Verho, O.; Kervefors, G.; Zheng, H.; Zou, X.; Johnston, E.V.; Bäckvall, J.E. Design of a Pd(0)-CalB CLEA biohybrid catalyst and its application in a one-pot cascade reaction. ACS Catal. 2017, 7, 1601–1605. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Huang, J.; Liu, J.; Zhang, H.; Jiang, J.; Yu, R. A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale 2017, 9, 5658–5663. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Jiang, S.; Yuan, Q.; Li, G.; Wang, F.; Zhang, Z.; Liu, J. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: Improved stability and an enzyme cascade for glucose detection. Nanoscale 2016, 8, 6071–6078. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ge, J.; Liu, W.; Lan, M.; Zhang, H.; Wang, P.; Wang, Y.; Niu, Z. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: Synthesis and application as a colorimetric sensor. Nanoscale 2014, 6, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fei, J.; Li, G.; Yuan, T.; Xu, X.; Li, J. Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew. Chem. Int. Edit. 2019, 58, 5572–5576. [Google Scholar] [CrossRef]
- Zhao, Z.; Fu, J.; Dhakal, S.; Johnson-Buk, A.; Liu, M.; Zhang, T.; Woodbury, N.W.; Liu, Y.; Walter, N.G.; Yan, H. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 2016, 7, 10619. [Google Scholar] [CrossRef] [Green Version]
- Sulman, E.M.; Matveeva, V.G.; Bronstein, L.M. Design of biocatalysts for efficient catalytic processes. Curr. Opin. Chem. Eng. 2019, 26, 1–8. [Google Scholar] [CrossRef]
- Hwang, E.T.; Lee, S. Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catal. 2019, 9, 4402–4425. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, Z.; Liu, Y.; Shao, C.; Bian, F.; Zhao, Y. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 2018, 4, eaat2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Vázquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. Nat. Catal. 2018, 1, 689–695. [Google Scholar] [CrossRef]
Enzymes | Supports | Increased Activities (Folds) | Ref. |
---|---|---|---|
Laccase | Cu3(PO4)2 nanoflower | 6.50 | [48] |
Horseradish peroxidise | Cu3(PO4)2 nanoflower | 5.06 | [62] |
Laccase | Cu3(PO4)2 nanoflower | 1.50 | [49] |
Lipase | Polycaprolactone nanofiber | 14.00 | [36] |
Laccase | Au nanoparticle | 1.91 | [23] |
Laccase | Carbon dots | 1.92 | [41] |
Laccase | Cu2+/PAA/PPEGA | 4.47 | [34] |
Laccase | Single-walled carbon nanotube | 6.00 | [42] |
Laccase | Cu3(PO4)2 hybrid microsphere | 3.60 | [50] |
Laccase | Membrane/nanoflower | 2.00 | [63] |
Laccase | Mesoporous silica nanoparticle | 1.20 | [64] |
Laccase | Cu2O nanoparticle | 4.00 | [25] |
α-amylase | CaHPO4 nanoflower | 37.5 | [17] |
β-galactosidase | Mg-Al layered double hydroxide | 30.00 | [58] |
α-chymotrypsin | Ca3(PO4)2 nanoflower | 2.66 | [52] |
Horseradish peroxidase, Glucose oxidase | Cu3(PO4)2·3H2O nanocrystal | 1.40 3.10 | [65] |
Cytochrome c | ZIF-8 metal-organic framework | 10.00 | [37] |
Lipase, Cytochrome c | Pluronic polymer | 67.00, 670.0 | [35] |
L-2-HADST dehalogenase | Fe3O4 nanoparticles/hydrogel | 2.00 | [26] |
Lipase | Cu3(PO4)2 nanoflower | 4.60 | [66] |
Organophosphorus hydrolase | Co3(PO4)2·8H2O nanocrystal | 3.00 | [53] |
Amylase, Cellulase, Lipase | Ti8O15 nanoparticle | 13.00, 5.00, 12.00 | [32] |
Glucose oxidase | CdSe/ZnS quantum dot | 2.00 | [59] |
Carbonic anhydrase | Cu3(PO4)2 nanoflower, Ca8H2(PO4)6 nanoflower | 2.86, 1.49 | [54] |
D-psicose 3-epimerase | Co3(PO4)2 nanoflower | 7.20 | [67] |
Lipase | Carbon nanotube, Cu3(PO4)2 nanoflower | 68.00, 51.00 | [40] |
Laccase | Cu2O nanowire mesocystal | 10.00 | [16] |
Laccase | Cu(OH)2 nanocage | 18.00 | [68] |
β-galactosidase | Fe3O4 nanoring | 1.80 | [27] |
Lipase | Polyacrylamide nanogel | 2.00 | [69] |
Lipase | Pluronic polymer | 11.00 | [70] |
Lipase | siliceous mesocellular foam | 25.00 | [71] |
Horseradish peroxidase | DNA scaffold | >3.00 | [72] |
Horseradish peroxidase | Magnetic nanoparticle | 10.00 | [28] |
Cytochrome c | Copper hydroxysulfate | 143.00 | [55] |
Laccase | Fe3O4-NH2-PEI Fe3O4-NH2 | 101.33 74.45 | [30] |
Glucose oxidase | Anodic alumina nanochannel | 80.00 | [33] |
Lipase | Zn3(PO4)2 hybrid nanoflower | 1.47 | [56] |
Invertase | CaHPO4 hybrid nanoflower | 2.03 | [57] |
Urease | Cu3(PO4)2·3H2O nanoflower | 40.00 | [73] |
L-arabinitol 4-dehydrogenase, NADH oxidase | Cu3(PO4)2·3H2O nanoflower | 2.46, 1.44 | [74] |
Laccase | Copper alginate | 3.00 | [75] |
Hydroxylase | Cu3(PO4)2·3H2O nanoflower | 1.62 | [76] |
Pyruvate kinase/lactate dehydrogenase | Semiconductor quantum dot | >50.00 | [77] |
Alkaline protease | Hollow silica nanosphere | 2.40 | [78] |
Enzymes | Effects | Increased Activities (Folds) | Ref. |
---|---|---|---|
Laccase, carbonic anhydrase | Cu2+ | 6.50 2.60 | [48] |
Laccase | Cu2+ | 4.47 | [34] |
Laccase | Cu2+ | 3.60 | [50] |
Laccase | Cu2+ | 4.00 | [25] |
α-amylase | Ca2+ (Allosteric Effect) | 37.5 | [17] |
β-galactosidase | Mg2+ (Allosteric Effect) | 30.00 | [58] |
Cytochrome c | Zn2+ | 10.00 | [37] |
Organophosphorus hydrolase | Co2+ (Allosteric Effect) | 3.00 | [53] |
Carbonic anhydrase | Cu2+, Ca2+ | 2.86, 1.49 | [54] |
Urease | Cu2+ | 40.00 | [73] |
D-psicose 3-epimerase | Co2+ | 7.20 | [67] |
Laccase | Cu+ and Cu2+ | 10.00 | [16] |
Laccase | Cu2+ | 18.00 | [68] |
Lipase, Cytochrome c | Temperature responsiveness in organic solvents | 67.00, 670.0 | [35] |
L-2-HADST dehalogenase | Magnetothermal effect | 2.00 | [26] |
Laccase | Increased temperature by local surface plasma resonance effect | 1.91 | [23] |
Amylase, Cellulase, Lipase | Solar-to-thermal conversion | 13.00, 5.00, 12.00 | [32] |
β-galactosidase | Magnetothermal effect | 1.80 | [27] |
Lipase | Temperature responsiveness in organic media | 11.00 | [70] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; Li, G.; Zhang, Y.; Zhang, T.; Liu, X.; Gao, F.; Peng, M.; He, Y.; Fan, H. Recent Advances in Enzyme-Nanostructure Biocatalysts with Enhanced Activity. Catalysts 2020, 10, 338. https://doi.org/10.3390/catal10030338
An J, Li G, Zhang Y, Zhang T, Liu X, Gao F, Peng M, He Y, Fan H. Recent Advances in Enzyme-Nanostructure Biocatalysts with Enhanced Activity. Catalysts. 2020; 10(3):338. https://doi.org/10.3390/catal10030338
Chicago/Turabian StyleAn, Jing, Galong Li, Yifan Zhang, Tingbin Zhang, Xiaoli Liu, Fei Gao, Mingli Peng, Yuan He, and Haiming Fan. 2020. "Recent Advances in Enzyme-Nanostructure Biocatalysts with Enhanced Activity" Catalysts 10, no. 3: 338. https://doi.org/10.3390/catal10030338
APA StyleAn, J., Li, G., Zhang, Y., Zhang, T., Liu, X., Gao, F., Peng, M., He, Y., & Fan, H. (2020). Recent Advances in Enzyme-Nanostructure Biocatalysts with Enhanced Activity. Catalysts, 10(3), 338. https://doi.org/10.3390/catal10030338