Density Functional Theory Based Micro- and Macro-Kinetic Studies of Ni-Catalyzed Methanol Steam Reforming
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantum Chemical Results of Elementary Reactions
2.2. Comparison of Microkinetics with Experiment
2.3. The Reaction Flux
2.4. Derivation of Analytical Macrokinetic Rate Expression
3. Methods
3.1. DFT Calculations of Elementary Reactions
3.2. Micro-Kinetic Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chalk, S.G.; Miller, J.F. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J. Power Sources 2006, 159, 73–80. [Google Scholar] [CrossRef]
- Ross, D.K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum 2006, 80, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Herdem, M.S.; Sinaki, M.Y.; Farhad, S.; Hamdullahpur, F. An overview of the methanol reforming process: Comparison of fuels, catalysts, reformers, and systems. Int. J. Energy Res. 2019, 43, 5076–5105. [Google Scholar] [CrossRef]
- Trimm, D.L.; Önsan, Z.I. Onboard Fuel Conversion for Hydrogen-Fuel-Cell-Driven Vehicles. Catal. Rev. 2001, 43, 31–84. [Google Scholar] [CrossRef]
- Patel, S.; Pant, K.K. Kinetic modeling of oxidative steam reforming of methanol over Cu/ZnO/CeO2/Al2O3 catalyst. Appl. Catal. A 2009, 356, 189–200. [Google Scholar] [CrossRef]
- Silva, H.; Mateos-Pedrero, C.; Ribeirinha, P.; Boaventura, M.; Mendes, A. Low-temperature methanol steam reforming kinetics over a novel CuZrDyAl catalyst. React. Kinet. Mech. Catal. 2015, 115, 321–339. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yao, S.; Johnston-Peck, A.; Xu, W.; Rodriguez, J.A.; Senanayake, S.D. Methanol steam reforming over Ni-CeO2 model and powder catalysts: Pathways to high stability and selectivity for H2/CO2 production. Catal. Today 2018, 311, 74–80. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, X.; Lu, C.; Ma, L.; Zhang, Q. Water-improved heterogeneous transfer hydrogenation using methanol as hydrogen donor over Pd-based catalyst. Appl. Catal. A 2010, 375, 289–294. [Google Scholar] [CrossRef]
- Kaftan, A.; Kusche, M.; Laurin, M.; Wasserscheid, P.; Libuda, J. KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study. App. Catal. B Environ. 2017, 201, 169–181. [Google Scholar] [CrossRef]
- Papavasiliou, J.; Paxinou, A.; Słowik, G.; Neophytides, S.; Avgouropoulos, G. Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications. Catalysts 2018, 8, 544. [Google Scholar] [CrossRef] [Green Version]
- Lytkina, A.A.; Zhilyaeva, N.A.; Ermilova, M.M.; Orekhova, N.V.; Yaroslavtsev, A.B. Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming. Int. J. Hydrogen Energy 2015, 40, 9677–9684. [Google Scholar] [CrossRef]
- Khzouz, M.; Gkanas, E.I.; Du, S.; Wood, J. Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming. Fuel 2018, 232, 672–683. [Google Scholar] [CrossRef]
- Tahay, P.; Khani, Y.; Jabari, M.; Bahadoran, F.; Safari, N. Highly porous monolith/TiO 2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H 2 generation. Appl. Catal. A 2018, 554, 44–53. [Google Scholar] [CrossRef]
- Abrokwah, R.Y.; Deshmane, V.G.; Kuila, D. Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. J. Mol. Catal. A Chem. 2016, 425, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Bepari, S.; Kuila, D. Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts-A review. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef]
- He, S.; He, S.; Zhang, L.; Li, X.; Wang, J.; He, D.; Lu, J.; Luo, Y. Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts: Effect of Au addition. Catal. Today 2015, 258, 162–168. [Google Scholar] [CrossRef]
- Lu, J.; Li, X.; He, S.; Han, C.; Wan, G.; Lei, Y.; Chen, R.; Liu, P.; Chen, K.; Zhang, L.; et al. Hydrogen production via methanol steam reforming over Ni-based catalysts: Influences of Lanthanum (La) addition and supports. Int. J. Hydrogen Energy 2017, 42, 3647–3657. [Google Scholar] [CrossRef]
- Twigg, M.V.; Spencer, M.S. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Top. Catal. 2003, 22, 191–203. [Google Scholar] [CrossRef]
- Lin, S.; Xie, D.; Guo, H. Methyl Formate Pathway in Methanol Steam Reforming on Copper: Density Functional Calculations. ACS Catalysis 2011, 1, 1263–1271. [Google Scholar] [CrossRef]
- Wang, S.-S.; Su, H.-Y.; Gu, X.-K.; Li, W.-X. Differentiating Intrinsic Reactivity of Copper, Copper–Zinc Alloy, and Copper/Zinc Oxide Interface for Methanol Steam Reforming by First-Principles Theory. J. Phys. Chem. C 2017, 121, 21553–21559. [Google Scholar] [CrossRef]
- Zuo, Z.-J.; Wang, L.; Han, P.-D.; Huang, W. Insights into the reaction mechanisms of methanol decomposition, methanol oxidation and steam reforming of methanol on Cu(111): A density functional theory study. Int. J. Hydrogen Energy 2014, 39, 1664–1679. [Google Scholar] [CrossRef]
- Du, P.; Wu, P.; Cai, C. Mechanism of Methanol Decomposition on the Pt3Ni(111) Surface: DFT Study. J. Phys. Chem. C 2017, 121, 9348–9360. [Google Scholar] [CrossRef]
- Blaylock, D.W.; Ogura, T.; Green, W.H.; Beran, G.J.O. Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions. J. Phys. Chem. C 2009, 113, 4898–4908. [Google Scholar] [CrossRef]
- Blaylock, D.W.; Zhu, Y.-A.; Green, W.H. Computational investigation of the thermochemistry and kinetics of steam methane reforming over a multi-faceted nickel catalyst. Top. Catal. 2011, 828–844. [Google Scholar] [CrossRef]
- Aparicio, L.M. Transient isotopic studies and microkinetic modeling of methane reforming over nickel catalysts. J. Catal. 1997, 165, 262–274. [Google Scholar] [CrossRef]
- Peppley, B.A.; Amphlett, J.C.; Kearns, L.M.; Mann, R.F. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: The reaction network. Appl. Catal. A 1999, 179, 21–29. [Google Scholar] [CrossRef]
- Peppley, B.A.; Amphlett, J.C.; Kearns, L.M.; Mann, R.F. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl. Catal. A 1999, 179, 31–49. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, J.; Klimes, J.; Michaelides, A. The role of van der Waals forces in water adsorption on metals. J. Chem. Phys. 2013, 138, 024708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henkelman, G.; Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, G.; Uberuaga, B.P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, G.; Jonsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022. [Google Scholar] [CrossRef]
- Diego, S. ANSYS Chemkin Advanced Analyses Manual 17.0.; ANSYS, Inc.: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Chupas, P.J.; Ciraolo, M.F.; Hanson, J.C.; Grey, C.P. In situ X-ray diffraction and solid-state NMR study of the fluorination of gamma-Al(2)O(3) with HCF(2)Cl. J. Am. Chem. Soc. 2001, 123, 1694–1702. [Google Scholar] [CrossRef]
- Houston, P.L. Chemical Kinetics and Reaction Dynamics; The McGraw-Hill Companies: New York, NY, USA, 2001. [Google Scholar]
Adsorbate | Adsorption Site | Adsorbate | Adsorption Site | ||
---|---|---|---|---|---|
OH* | fcc | −370.2 | CH2OH* | bridge | −184.6 |
O* | fcc | −554.8 | CHOH* | bridge | −297.1 |
H* | fcc | −282.7 | COH* | hcp | −427.9 |
H2O* | - a | −39.4 | CH3O* | fcc | −283.7 |
CO* | hcp | −184.6 | CH2O* | top | −81.7 |
CHO* | top/bridge | −238.5 | HCOO** | top b | −1100.0 |
CO2* | -a | −12.5 | COOH* | bridge | −252.9 |
CH3OH* | top | −26.9 |
Reaction | Afa | bf | Ar | br | |||
---|---|---|---|---|---|---|---|
1 | 5.59 × 10−2 | –0.50 | 8.13 × 1012 | –2.06 | 0.0 | 37.9 | |
2 | 9.64 × 1015 | −4.37 | 3.05 × 103 | 0.53 | 91.5 | 65.2 | |
3 | 1.13 × 1022 | –5.71 | 1.35 × 1011 | –1.40 | 90.7 | 128.8 | |
4 | 1.80 × 104 | –0.02 | 1.34 × 105 | 0.09 | 15.4 | 36.4 | |
5 | 1.82 × 1013 | –2.91 | 8.93 × 103 | 0.09 | 57.0 | 58.9 | |
6 | 1.29 × 105 | –0.43 | 9.67 × 10-3 | 1.82 | 4.55 | 81.1 | |
7 | 1.24 × 104 | 0.08 | 7.11 × 102 | 0.55 | 16.9 | 31.4 | |
8 | 2.10 × 1023 | –6.24 | 6.77 × 1011 | –2.1 | 68.4 | 89.6 | |
9 | 1.69 × 1010 | –1.94 | 6.18 × 1012 | –3.03 | 11.5 | 29.7 | |
10 | 6.67 × 1023 | –5.88 | 4.11 × 1010 | –1.22 | 77.6 | 127.3 | |
11 | 5.04 × 10−4 | –0.11 | 2.82 × 106 | –1.14 | 15.0 | 65.7 | |
12 | 3.52 × 1018 | –4.76 | 3.09 × 107 | –0.96 | 94.7 | 188.4 | |
13 | 8.81 × 1016 | –4.23 | 1.10 × 106 | –0.13 | 86.8 | 61.0 | |
14 | 2.53 × 109 | –1.74 | 8.40 × 103 | 0.35 | 24.3 | 65.9 | |
15 | 1.35 × 107 | –0.68 | 2.43 × 101 | 1.16 | 37.3 | 146.5 | |
16 | 2.65 × 103 | 0.28 | 6.33 × 108 | –1.60 | 63.6 | 119.8 | |
17 | 5.53 × 104 | 0.09 | 5.47 × 101 | 0.76 | 134.8 | 38.2 | |
18 | 1.60 × 1021 | –5.73 | 5.16 × 108 | –1.04 | 85.3 | 128.2 | |
19 | 6.40 × 1019 | –5.06 | 5.90 × 109 | –1.43 | 104.9 | 109.5 b | |
20 | 1.39 × 1012 | –2.55 | 4.20 × 108 | –1.17 | 17.3 | 55.1 | |
21 | 8.03 × 101 | 0.80 | 8.10 × 103 | 0.25 | 101.2 | 23.2 | |
22 | 1.70 × 1021 | –5.50 | 4.14 × 103 | 0.10 | 85.2 | 89.7 | |
23 | 5.38 × 1019 | –4.61 | 1.86 × 104 | –0.52 | 107.9 | 64.4 | |
24 | 7.63 × 10−6 | 1.39 | 1.05 × 103 | 1.61 | 5.7 | 86.3 | |
25 | 7.48 × 10−2 | –0.50 | 1.50 × 1013 | –2.46 | 0.0 | 39.3 | |
26 | 6.67 × 10−2 | –0.50 | 2.61 × 1012 | –1.69 | 0.0 | 184.3 | |
27 | 2.64 × 10−1 | –0.23 | 1.94 × 104 | 0.33 | 25.3 | 20.0 |
Species | Coverage | Species | Coverage |
---|---|---|---|
CO * | 9.19 × 10–1 | COOH * | 2.01 × 10–8 |
O * | 1.97 × 10–2 | COH * | 1.73 × 10–9 |
* | 3.22 × 10–2 | HCOO ** | 1.47 × 10–9 |
OH * | 7.10 × 10–3 | CHO * | 9.45 × 10–10 |
H * | 2.16 × 10–2 | CH3OH * | 4.39 × 10–10 |
H2O * | 3.75 × 10–6 | CHOH * | 5.81 × 10–11 |
CH3O * | 2.44 × 10–6 | CH2O * | 5.41 × 10–11 |
CO2 * | 5.77 × 10–8 | CH2OH * | 4.82 × 10–14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, C.; Lin, Z. Density Functional Theory Based Micro- and Macro-Kinetic Studies of Ni-Catalyzed Methanol Steam Reforming. Catalysts 2020, 10, 349. https://doi.org/10.3390/catal10030349
Ke C, Lin Z. Density Functional Theory Based Micro- and Macro-Kinetic Studies of Ni-Catalyzed Methanol Steam Reforming. Catalysts. 2020; 10(3):349. https://doi.org/10.3390/catal10030349
Chicago/Turabian StyleKe, Changming, and Zijing Lin. 2020. "Density Functional Theory Based Micro- and Macro-Kinetic Studies of Ni-Catalyzed Methanol Steam Reforming" Catalysts 10, no. 3: 349. https://doi.org/10.3390/catal10030349
APA StyleKe, C., & Lin, Z. (2020). Density Functional Theory Based Micro- and Macro-Kinetic Studies of Ni-Catalyzed Methanol Steam Reforming. Catalysts, 10(3), 349. https://doi.org/10.3390/catal10030349