Recent Progress in N-Heterocyclic Carbene Gold-Catalyzed Reactions of Alkynes Involving Oxidation/Amination/Cycloaddition
Abstract
:1. Introduction
2. NHC Gold-Catalyzed Alkyne Oxidation
2.1. Synthesis of Cyclopropyl Aldehydes Involving Oxygen Atom Transfer to Gold Carbene
2.2. Synthesis of β-Hydroxyenones through Pinacol Rearrangement
2.3. Synthesis of α, β-Unsaturated Carbonyls without Acid Additives
2.4. Synthesis of Cyclopentenone Derivatives via C–H Activation
2.5. Synthesis of Oxoarylated Compounds Involving Seven-Membered Cyclic Nitriliums
2.6. Synthesis of Silylketenes through Wolff Rearrangement
3. NHC Gold-Catalyzed Alkyne Amination
3.1. Synthesis of Pseudoindoxyl and Indolyl Frameworks Involving Markovnikov Addition
3.2. Synthesis of α, β-Unsaturated Amidines through Nitrene-Transfer Reagents
3.3. Synthesis of Quinolines via 1,3-Acetoxy Shift/Cyclization/1,2-Group Shift Sequence
3.4. Synthesis of Pyrroloindolone Derivatives Involving Saucy–Marbet Rearrangement
3.5. Synthesis of 2-Aminoindoles and 3-Amino-β-Carbolines
3.6. Synthesis of 2-Aminopyrroles through Aza-Nazarov Cyclization
4. NHC Gold-Catalyzed Alkyne Cycloaddition
4.1. Synthesis of 2-Aminonaphthalenes Involving [4+2] Cycloadditions
4.2. Synthesis of Benzoxepine Frameworks through [4+3] Cycloaddition
4.3. Synthesis of 7-Acylindoles via [3+2] Cycloaddition
4.4. Synthesis of Cyclobutenes Involving [2+2] Cycloadditions
5. Conclusions
Funding
Conflicts of Interest
References
- Arduengo, A.J.; Harlow, R.L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113, 363–365. [Google Scholar] [CrossRef]
- Crudden, C.M.; Allen, D.P. Stability and Reactivity of N-Heterocyclic Carbene Complexes. Coord. Chem. Rev. 2004, 248, 2247–2273. [Google Scholar] [CrossRef]
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Kantchev, E.A.B.; O’Brien, C.J.; Organ, M.G. Palladium Complexes of N-Heterocyclic Carbenes as Catalysts for Cross Coupling Reactions-A Synthetic Chemist’s Perspective. Angew. Chem. Int. Ed. 2007, 46, 2768–2813. [Google Scholar] [CrossRef]
- Doddi, A.; Peters, M.; Tamm, M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem. Rev. 2019, 119, 6994–7112. [Google Scholar] [CrossRef]
- Hameury, S.; Frémont, P.; Braunstein, P. Metal Complexes with Oxygen-Functionalized NHC Ligands: Synthesis and Applications. Chem. Soc. Rev. 2017, 46, 632–733. [Google Scholar] [CrossRef]
- Zhang, D.; Zi, G. N-Heterocyclic Carbene (NHC) Complexes of Group 4 Transition Metals. Chem. Soc. Rev. 2015, 44, 1898–1921. [Google Scholar] [CrossRef] [Green Version]
- Velazquez, H.D.; Verpoort, F. N-Heterocyclic Carbene Transition Metal Complexes for Catalysis in Aqueous Media. Chem. Soc. Rev. 2012, 41, 7032–7060. [Google Scholar] [CrossRef]
- Fortman, G.C.; Nolan, S.P. N-Heterocyclic Carbene (NHC) Ligands and Palladium in Homogeneous Cross-Coupling Catalysis: A Perfect Union. Chem. Soc. Rev. 2011, 40, 5151–5169. [Google Scholar] [CrossRef]
- Lin, J.C.Y.; Huang, R.T.W.; Lee, C.S.; Bhattacharyya, A.; Hwang, W.S.; Lin, I.J.B. Coinage Metal-N-Heterocyclic Carbene (NHC) Complexes. Chem. Rev. 2009, 109, 3561–3598. [Google Scholar] [CrossRef]
- Díez-González, S.; Marion, N.; Nolan, S.P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Chem. Rev. 2009, 109, 3612–3676. [Google Scholar] [CrossRef] [PubMed]
- Garrison, J.C.; Youngs, W.J. Ag(I) N-Heterocyclic Carbene (NHC) Complexes: Synthesis, Structure, and Application. Chem. Rev. 2005, 105, 3978–4008. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, W.A.; Köcher, C. N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 1997, 36, 2162–2187. [Google Scholar] [CrossRef]
- Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–92. [Google Scholar] [CrossRef] [PubMed]
- Hahn, F.E.; Jahnke, M.C. Heterocyclic carbenes: Synthesis and Coordination Chemistry. Angew. Chem. Int. Ed. 2008, 47, 3122–3172. [Google Scholar] [CrossRef]
- De Fremont, P.; Marion, N.; Nolan, S.P. Carbenes: Synthesis, Properties, and Organometallic Chemistry. Coord. Chem. Rev. 2009, 253, 862–892. [Google Scholar] [CrossRef]
- Herrmann, W.A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. [Google Scholar] [CrossRef]
- Mercs, L.; Albrecht, M. Beyond Catalysis: N-Heterocyclic Carbene Complexes as Components for Medicinal, Luminescent, and Functional Materials Applications. Chem. Soc. Rev. 2010, 39, 1903–1912. [Google Scholar] [CrossRef]
- Oisaki, K.; Li, Q.; Furukawa, H.; Czaja, A.U.; Yaghi, O.M. A Metal-Organic Framework with Covalently Bound Organometallic Complexes. J. Am. Chem. Soc. 2010, 132, 9262–9264. [Google Scholar] [CrossRef]
- Lee, K.M.; Lee, C.K.; Lin, I.J.B. A Facile Synthesis of Unusual Liquid-Crystalline Gold(I) Dicarbene Compounds. Angew. Chem. Int. Ed. 1997, 36, 1850–1852. [Google Scholar] [CrossRef]
- Boydston, A.J.; Williams, K.A.; Bielawski, C.W. A Modular Approach to Main-Chain Organometallic Polymers. J. Am. Chem. Soc. 2005, 127, 12496–12497. [Google Scholar] [CrossRef] [PubMed]
- Visbal, R.; Gimeno, M.C. N-Heterocyclic Carbene Metal Complexes: Photoluminescence and Applications. Chem. Soc. Rev. 2014, 43, 3551–3574. [Google Scholar] [CrossRef] [PubMed]
- Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-Heterocyclic Carbenes. Chem. Rev. 2007, 107, 5606–5655. [Google Scholar] [CrossRef] [PubMed]
- Marion, N.; Díez-Gonzalez, S.; Nolan, S.P. N-Heterocyclic Carbenes as Organocatalysts. Angew. Chem. Int. Ed. 2007, 46, 2988–3000. [Google Scholar] [CrossRef]
- Hindi, K.M.; Panzner, M.J.; Tessier, C.A.; Cannon, C.L.; Youngs, W.J. The Medicinal Applications of Imidazolium Carbenemetal Complexes. Chem. Rev. 2009, 109, 3859–3884. [Google Scholar] [CrossRef] [Green Version]
- Raubenheimer, H.G.; Cronje, S. Carbene Complexes of Gold: Preparation, Medical Application and Bonding. Chem. Soc. Rev. 2008, 37, 1998–2011. [Google Scholar] [CrossRef]
- Liu, W.; Gust, R. Metal N-Heterocyclic Carbene Complexes as Potential Antitumor Metallodrugs. Chem. Soc. Rev. 2013, 42, 755–773. [Google Scholar] [CrossRef]
- Liu, W.; Gust, R. Update on Metal N-Heterocyclic Carbene Complexes as Potential Anti-Tumor Metallodrugs. Coord. Chem. Rev. 2016, 329, 191–213. [Google Scholar] [CrossRef]
- Nelson, D.J.; Nolan, S.P. Quantifying and Understanding the Electronic Properties of N-Heterocyclic Carbenes. Chem. Soc. Rev. 2013, 42, 6723–6753. [Google Scholar] [CrossRef]
- Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef]
- Peris, E.; Crabtree, R.H. Recent Homogeneous Catalytic Applications of Chelate and Pincer N-Heterocyclic Carbenes. Coord. Chem. Rev. 2004, 248, 2239–2246. [Google Scholar] [CrossRef]
- Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and Activity of A New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1, 3-Dimesity-4, 5-Dihydroimidazol-2-Ylidene Ligands. Org. Lett. 1999, 1, 953–956. [Google Scholar] [CrossRef]
- Scholl, M.; Trnka, T.M.; Morgan, J.P.; Grubbs, R.H. Increased Ring Closing Metathesis Activity of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with Imidazolin-2-Ylidene Ligands. Tetrahedron Lett. 1999, 40, 2247–2250. [Google Scholar] [CrossRef]
- Sanford, M.S.; Love, J.A.; Grubbs, R.H. Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts. J. Am. Chem. Soc. 2001, 123, 6543–6554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samojlowicz, C.; Bieniek, M.; Grela, K. Ruthenium-Based Olefin Metathesis Catalysts Bearing N-Heterocyclic Carbene Ligands. Chem. Rev. 2009, 109, 3708–3742. [Google Scholar] [CrossRef] [PubMed]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, J.; Trudell, M.L.; Nolan, S.P. Palladium−Imidazol-2-Ylidene Complexes as Catalysts for Facile and Efficient Suzuki Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids. J. Org. Chem. 1999, 64, 3804–3805. [Google Scholar] [CrossRef]
- Eckhardt, M.; Fu, G.C. The First Applications of Carbene Ligands in Cross-Couplings of Alkyl Electrophiles: Sonogashira Reactions of Unactivated Alkyl Bromides and Iodides. J. Am. Chem. Soc. 2003, 125, 13642–13643. [Google Scholar] [CrossRef]
- Frisch, A.C.; Rataboul, F.; Zapf, A.; Beller, M. First Kumada Reaction of Alkyl Chlorides Using N-Heterocyclic Carbene/Palladium Catalyst Systems. J. Organomet. Chem. 2003, 687, 403–409. [Google Scholar] [CrossRef]
- Schuster, O.; Yang, L.; Raubenheimer, H.G.; Albrecht, M. Beyond Conventional N-Heterocyclic Carbenes: Abnormal, Remote, and other Classes of NHC Ligands with Reduced Heteroatom Stabilization. Chem. Rev. 2009, 109, 3445–3478. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.-B.; Tang, X.-T. Recent Advances in Catalytic Asymmetric Intermolecular Oxidation of Alkyne. Org. Biomol. Chem. 2019, 17, 7106–7113. [Google Scholar] [CrossRef] [PubMed]
- Asiri, A.M.; Hashmi, A.S.K. Gold-Catalysed Reactions of Diynes. Chem. Soc. Rev. 2016, 45, 4471–4503. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Au-Catalysed Oxidative Cyclisation. Chem. Soc. Rev. 2016, 45, 4448–4458. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, J. Gold-Catalyzed Transformations of α-Diazocarbonyl Compounds: Selectivity and Diversity. Chem. Soc. Rev. 2016, 45, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Huple, D.B.; Ghorpade, S.; Liu, R.-S. Recent Advances in Gold-Catalyzed N- and O-Functionalizations of Alkynes with Nitrones, Nitroso, Nitro and Nitroxy Species. Adv. Synth. Catal. 2016, 358, 1348–1367. [Google Scholar] [CrossRef]
- Qian, D.; Zhang, J. Gold-Catalyzed Cyclopropanation Reactions Using A Carbenoid Precursor Toolbox. Chem. Soc. Rev. 2015, 44, 677–698. [Google Scholar] [CrossRef]
- Dorel, R.; Echavarren, A.M. Gold (I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028–9072. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Muratore, M.E.; Echavarren, A.M. Gold Carbene or Carbenoid: Is There A Difference? Chem. Eur. J. 2015, 21, 7332–7339. [Google Scholar] [CrossRef] [Green Version]
- Yeom, H.-S.; Shin, S. Catalytic Access to α-Oxo Gold Carbenes by N–O Bond Oxidants. Acc. Chem. Res. 2014, 47, 966–977. [Google Scholar] [CrossRef]
- Fensterbank, L.; Malacria, M. Molecular Complexity from Polyunsaturated Substrates: The Gold Catalysis Approach. Acc. Chem. Res. 2014, 47, 953–965. [Google Scholar] [CrossRef]
- Obradors, C.; Echavarren, A.M. Gold-Catalyzed Rearrangements and Beyond. Acc. Chem. Res. 2014, 47, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation. Acc. Chem. Res. 2014, 47, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.S.K. Dual Gold Catalysis. Acc. Chem. Res. 2014, 47, 864–876. [Google Scholar] [CrossRef] [PubMed]
- Pflasterer, D.; Hashmi, A.S.K. Gold Catalysis in Total Synthesis—Recent Achievements. Chem. Soc. Rev. 2016, 45, 1331–1367. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.; Hashmi, A.S.K. Gold Catalysis in Total Synthesis—An Update. Chem. Soc. Rev. 2012, 41, 2448–2462. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.S.K.; Rudolph, M. Gold Catalysis in Total Synthesis. Chem. Soc. Rev. 2008, 37, 1766–1775. [Google Scholar] [CrossRef]
- Rode, N.; Marinelli, F.; Arcadi, A.; Adak, T.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Sequential Gold-Catalyzed Carbene Transfer/Ring Closure: Oxidative Cyclization of β-(2-Alkynylphenyl)-α,β-ynones to Indenofuranones. Adv. Synth. Catal. 2018, 360, 4790–4794. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L. A Desulfonylative Approach in Oxidative Gold Catalysis: Regiospecific Access to Donor-Substituted Acyl Gold Carbenes. Angew. Chem. Int. Ed. 2015, 54, 11775–11779. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, C.; Tinnermann, H.; Huynh, H.V. Gold(I) and Gold(III) Complexes of Expanded-Ring N-Heterocyclic Carbenes: Structure, Reactivity, and Catalytic Applications. Organometallics 2020, 39, 172–181. [Google Scholar] [CrossRef]
- Gonell, S.; Poyatos, M.; Peris, E. Triphenylene-Based Tris(N-Heterocyclic Carbene) Ligand: Unexpected Catalytic Benefits. Angew. Chem. Int. Ed. 2013, 52, 7009–7013. [Google Scholar] [CrossRef]
- Zeng, X.; Frey, G.D.; Kinjo, R.; Donnadieu, B.; Bertrand, G. Synthesis of a Simplified Version of Stable Bulky and Rigid Cyclic (Alkyl)(amino)carbenes, and Catalytic Activity of the Ensuing Gold(I) Complex in the Three-Component Preparation of 1,2-Dihydroquinoline Derivatives. J. Am. Chem. Soc. 2009, 131, 8690–8696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, C.; Shaikh, M.M.; Butcher, R.J.; Ghosh, P. Highly Convenient Regioselective Intermolecular Hydroamination of Alkynes Yielding Ketimines Catalyzed by Gold(I) Complexes of 1,2,4-triazole Based N-heterocyclic Carbenes. Inorg. Chem. 2010, 49, 4972–4983. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, P.D.; Izquierdo, C.; Iglesias-Sigüenza, J.; Díez, E.; Fernández, R.; Lassaletta, J.M. AuI-Catalyzed Haloalkynylation of Alkenes. Chem. Eur. J. 2020, 26, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.; Jašíková, L.; Škríba, A.; Roithová, J. Role of Gold(I) α-Oxo Carbenes in the Oxidation Reactions of Alkynes Catalyzed by Gold(I) Complexes. J. Am. Chem. Soc. 2014, 136, 11513–11523. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, X.; Lv, S.; Zhang, C.; Xu, S.; Shi, M.; Zhang, J. Synthesis and Structures of Gold and Copper Carbene Intermediates in Catalytic Amination of Alkynes. Nat. Commun. 2017, 8, 14625–14634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orbe, M.E.; Amenós, L.; Kirillova, M.S.; Wang, Y.; López-Carrillo, V.; Maseras, F.; Echavarren, A.M. Cyclobutene vs. 1,3-Diene Formation in the Gold-Catalyzed Reaction of Alkynes with Alkenes: The Complete Mechanistic Picture. J. Am. Chem. Soc. 2017, 139, 10302–10311. [Google Scholar] [CrossRef]
- Li, J.; Ji, K.; Zheng, R.; Nelsona, J.; Zhang, L. Expanding the Horizon of Intermolecular Trapping of in situ Generated α-Oxo Gold Carbenes: Efficient Oxidative Union of Allylic Sulfides and Terminal Alkynes via C–C Bond Formation. Chem. Commun. 2014, 50, 4130–4133. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Song, L.; Farshadfar, K.; Rudolph, M.; Rominger, F.; Oeser, T.; Ariafard, A.; Hashmi, A.S.K. Acyl Migration versus Epoxidation in Gold Catalysis: Facile, Switchable, and Atom-Economic Synthesis of Acylindoles and Quinoline Derivatives. Angew. Chem. Int. Ed. 2020, 59, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Witham, C.A.; Mauleón, P.; Shapiro, N.D.; Sherry, B.D.; Toste, F.D. Gold(I)-Catalyzed Oxidative Rearrangements. J. Am. Chem. Soc. 2007, 129, 5838–5839. [Google Scholar] [CrossRef]
- Li, G.; Zhang, L. Gold-Catalyzed Intramolecular Redox Reaction of Sulfinyl Alkynes: Efficient Generation of α-Oxo Gold Carbenoids and Application in Insertion into R-CO Bonds. Angew. Chem. Int. Ed. 2007, 46, 5156–5159. [Google Scholar] [CrossRef]
- Pellicciari, R.; Fringuelli, R.; Ceccherelli, P.; Sisani, E. β-Keto Esters from the Rhodium(II) Acetate Catalysed Conversion of α-Diazo-β-Hydroxy Esters. J. Chem. Soc. Chem. Commun. 1979, 959–960. [Google Scholar] [CrossRef]
- Holmquist, C.R.; Roskamp, E.J. A Selective Method for the Direct Conversion of Aldehydes into.Beta.-Keto Esters with Ethyl Diazoacetate Catalyzed by Tin(II) Chloride. J. Org. Chem. 1989, 54, 3258–3260. [Google Scholar] [CrossRef]
- Kanemasa, S.; Kanai, T.; Araki, T.; Wada, E. Lewis Acid-Catalyzed Reactions of Ethyl Diazoacetate with Aldehydes. Synthesis of α-Formyl Esters by A Sequence of Aldol Reaction and 1,2-Nucleophilic Rearrangement. Tetrahedron Lett. 1999, 40, 5055–5058. [Google Scholar] [CrossRef]
- Liao, M.; Wang, J. CuSO4-Catalyzed Diazo Decomposition in Water: A Practical Synthesis of β-Keto Esters. Tetrahedron Lett. 2006, 47, 8859–8861. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, J. 1,2-Migration in Rhodium(II) Carbene Transfer Reaction: Remarkable Steric Effect on Migratory Aptitude. J. Org. Chem. 2006, 71, 5789–5791. [Google Scholar] [CrossRef]
- Benito-Garagorri, D.; Wiedermann, J.; Pollak, M.; Mereiter, K.; Kirchner, K. Iron(II) Complexes Bearing Tridentate PNP Pincer-Type Ligands as Catalysts for the Selective Formation of 3-Hydroxyacrylates from Aromatic Aldehydes and Ethyldiazoacetate. Organometallics 2007, 26, 217–222. [Google Scholar] [CrossRef]
- Lu, B.; Li, C.; Zhang, L. Gold-Catalyzed Highly Regioselective Oxidation of C-C Triple Bonds without Acid Additives: Propargyl Moieties as Masked α, β-Unsaturated Carbonyls. J. Am. Chem. Soc. 2010, 132, 14070–14072. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, S.; Ghorpade, S.; Huple, D.B.; Liu, R.-S. Gold-Catalyzed Oxidative Cyclizations of cis-3-En-1-Ynes to Form Cyclopentenone Derivatives. Angew. Chem. Int. Ed. 2012, 51, 2939–2942. [Google Scholar] [CrossRef]
- Robins, M.J.; Guo, Z.; Samano, M.C.; Wnuk, S.F. Biomimetic Simulation of Free Radical-Initiated Cascade Reactions Postulated to Occur at the Active Site of Ribonucleotide Reductases1. J. Am. Chem. Soc. 1999, 121, 1425–1433. [Google Scholar] [CrossRef]
- Chandraratna, R.A.S.; Bayerque, A.L.; Okamura, W.H. The 12-s-cis Conformationally Locked 11-cis-Retinoids: A Delineation of the Thermal Requirements for [1,5]-Sigmatropic Shifts and Electrocyclizations in the Vitamin A Series and Novel Spectral Properties. J. Am. Chem. Soc. 1983, 105, 3588–3594. [Google Scholar] [CrossRef]
- Alabugin, I.V.; Maroharan, M.; Breiner, B.; Lewis, F.D. Control of Kinetics and Thermodynamics of [1,5]-Shifts by Aromaticity: A View through the Prism of Marcus Theory. J. Am. Chem. Soc. 2003, 125, 9329–9342. [Google Scholar] [CrossRef] [PubMed]
- Kless, A.; Nendel, M.; Willsey, S.; Houk, K.N. Origin of the Preference for the Orbital Symmetry Forbidden Stereochemistry of the 1,5-Sigmatropic Shift of Substituted Norcaradienes. J. Am. Chem. Soc. 1999, 121, 4524–4525. [Google Scholar] [CrossRef]
- Karad, S.N.; Liu, R.-S. Gold-Catalyzed 1,2-Oxoarylations of Nitriles with Pyridine-Derived Oxides. Angew. Chem. Int. Ed. 2014, 53, 5444–5448. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, J.; Cheng, X.; Xu, X.; Zhang, L. Wolff Rearrangement of Oxidatively Generated α-Oxo Gold Carbenes: An Effective Approach to Silylketenes. Angew. Chem. Int. Ed. 2019, 58, 5241–5245. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, A.; Gagosz, F. Gold-Catalyzed Transformation of 2-Alkynyl Arylazides: Efficient Access to the Valuable Pseudoindoxyl and Indolyl Frameworks. Angew. Chem. Int. Ed. 2011, 50, 7354–7358. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, L. Gold-Catalyzed Nitrene Transfer to Activated Alkynes: Formation of α, β-Unsaturated Amidines. Org. Lett. 2011, 13, 1738–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gronnier, C.; Boissonnat, G.; Gagosz, F. Au-Catalyzed Formation of Functionalized Quinolines from 2-Alkynyl Arylazide Derivatives. Org. Lett. 2013, 15, 4234–4237. [Google Scholar] [CrossRef]
- Shiroodi, R.K.; Gevorgyan, V. Metal-Catalyzed Double Migratory Cascade Reactions of Propargylic Esters and Phosphates. Chem. Soc. Rev. 2013, 42, 4991–5001. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, G.; Zhang, L. Gold-Catalyzed Reaction of Propargylic Carboxylates via An Initial 3, 3-Rearrangement. Synlett 2010, 692–706. [Google Scholar]
- Li, N.; Wang, T.-Y.; Gong, L.-Z.; Zhang, L. Gold-Catalyzed Multiple Cascade Reaction of 2-Alkynylphenylazides with Propargyl Alcohols. Chem. Eur. J. 2015, 21, 3585–3588. [Google Scholar] [CrossRef]
- Sherry, B.D.; Toste, F.D. Gold(I)-Catalyzed Propargyl Claisen Rearrangement. J. Am. Chem. Soc. 2004, 126, 15978–15979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, N.T.; Lutete, L.M.; Nishina, N.; Yamamoto, Y. Gold-Catalyzed Intramolecular Hydroamination of Allenes: A Case of Chirality Transfer. Tetrahedron Lett. 2006, 47, 4749–4751. [Google Scholar] [CrossRef]
- LaLonde, R.L.; Sherry, B.D.; Kang, E.J.; Toste, F.D. Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of Allenes. J. Am. Chem. Soc. 2007, 129, 2452–2453. [Google Scholar] [CrossRef] [PubMed]
- Kinder, R.E.; Zhang, Z.; Widenhoefer, R.A. Intermolecular Hydroamination of Allenes with N-Unsubstituted Carbamates Catalyzed by A Gold(I) N-Heterocyclic Carbene Complex. Org. Lett. 2008, 10, 3157–3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, K.L.; Tragni, M.; Widenhoefer, R.A. Gold(I)- Catalyzed Stereoconvergent, Intermolecular Enantioselective Hydroamination of Allenes. Angew. Chem. Int. Ed. 2012, 51, 5175–5178. [Google Scholar] [CrossRef] [PubMed]
- Higginbotham, M.C.M.; Bebbington, M.W.P. Gold(I)-Catalysed Synthesis of Cyclic Sulfamidates by Intramolecular Allene Hydroamination. Chem. Commun. 2012, 48, 7565–7567. [Google Scholar] [CrossRef]
- Pflästerer, D.; Dolbundalchok, P.; Rafique, S.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. On the Gold-Catalyzed Intramolecular 7-Exo-Trig Hydroamination of Allenes. Adv. Synth. Catal. 2013, 355, 1383–1393. [Google Scholar] [CrossRef]
- Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. Generation of α-Imino Gold Carbenes through Gold-Catalyzed Intermolecular Reaction of Azides with Ynamides. J. Am. Chem. Soc. 2015, 137, 9567–9570. [Google Scholar] [CrossRef]
- Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Gold-Catalyzed Intermolecular Ynamide Amination-Initiated Aza Nazarov Cyclization: Access to Functionalized 2-Aminopyrroles. Org. Lett. 2016, 18, 3254–3257. [Google Scholar] [CrossRef] [PubMed]
- Dateer, R.B.; Shaibu, B.S.; Liu, R.-S. Gold-Catalyzed Intermolecular [4+2] and [2+2+2] Cycloadditions of Ynamides with Alkenes. Angew. Chem. Int. Ed. 2012, 51, 113–117. [Google Scholar] [CrossRef]
- Jiménez-Núñez, E.; Echavarren, A.M. Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective. Chem. Rev. 2008, 108, 3326–3350. [Google Scholar] [CrossRef] [PubMed]
- Gorin, D.J.; Sherry, B.D.; Toste, F.D. Ligand Effects in Homogeneous Au Catalysis. Chem. Rev. 2008, 108, 3351–3378. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, A.S.K. Gold-Catalyzed Organic Reactions. Chem. Rev. 2007, 107, 3180–3211. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.T.; Yamamoto, Y. Coinage Metal-Assisted Synthesis of Heterocycles. Chem. Rev. 2008, 108, 3395–3442. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.S.K.; Blanco, M.C.; Kurpejovic, E.; Frey, W.; Bats, J.W. Gold Catalysis: First Applications of Cationic Binuclear Gold (I) Complexes and the First Intermolecular Reaction of An Alkyne with A Furan. Adv. Synth. Catal. 2006, 348, 709–713. [Google Scholar] [CrossRef]
- Fürstner, A.; Davies, P.W. Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π Acids. Angew. Chem. Int. Ed. 2007, 46, 3410–3449. [Google Scholar] [CrossRef] [PubMed]
- López-Carrillo, V.; Echavarren, A.M. Gold (I)-Catalyzed Intermolecular [2+2] Cycloaddition of Alkynes with Alkenes. J. Am. Chem. Soc. 2010, 132, 9292–9294. [Google Scholar] [CrossRef]
- Sohel, S.M.A.; Liu, R.-S. Carbocyclisation of Alkynes with External Nucleophiles Catalysed by Gold, Platinum and other Electrophilic Metals. Chem. Soc. Rev. 2009, 38, 2269–2281. [Google Scholar] [CrossRef]
- Karad, S.N.; Bhunia, S.; Liu, R.-S. Retention of Stereochemistry in Gold-Catalyzed Formal [4+3] Cycloaddition of Epoxides with Arenynamides. Angew. Chem. Int. Ed. 2012, 51, 8722–8726. [Google Scholar] [CrossRef]
- Lee, J.-T.; Thomas, P.J.; Alper, H. Synthesis of β-Lactones by the Regioselective, Cobalt and Lewis Acid Catalyzed Carbonylation of Simple and Functionalized Epoxides. J. Org. Chem. 2001, 66, 5424–5426. [Google Scholar] [CrossRef]
- Calet, S.; Urso, F.; Alper, H. Enantiospecific and Stereospecific Rhodium(I)-Catalyzed Carbonylation and Ring Expansion of Aziridines. Asymmetric Synthesis of Beta.-Lactams and the Kinetic Resolution of Aziridines. J. Am. Chem. Soc. 1989, 111, 931–934. [Google Scholar] [CrossRef]
- Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Gold-Catalyzed C-H Annulation of Anthranils with Alkynes: A Facile, Flexible, and Atom-Economical Synthesis of Unprotected 7-Acylindoles. Angew. Chem. Int. Ed. 2016, 55, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.-B.; Luo, Z.; Wang, Y.; Gao, J.-M.; Zhang, L. Au-Catalyzed Intermolecular [2+2] Cycloadditions between Chloroalkynes and Unactivated Alkenes. J. Am. Chem. Soc. 2018, 140, 5860–5865. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, A.; Ohashi, M.; Ogoshi, S. Nickel-Catalyzed Intermolecular [2+2] Cycloaddition of Conjugated Enynes with Alkenes. J. Am. Chem. Soc. 2012, 134, 15692–15695. [Google Scholar] [CrossRef] [PubMed]
- Snider, B.B.; Roush, D.M. Aluminum Chloride Catalyzed Reactions of Methyl Chloropropiolate with Unactivated Alkenes. J. Am. Chem. Soc. 1979, 101, 1906–1907. [Google Scholar] [CrossRef]
- Koldobskii, A.B.; Solodova, E.V.; Godovikov, I.A.; Kalinin, V.N. Synthesis and Unusual [2+2]-Cycloaddition Reactions of Ethyl 4-Chloro-2-Oxobut-3-Ynoate with Unactivated Alkenes. Tetrahedron 2008, 64, 9555–9560. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.-T.; Yang, F.; Zhang, T.-T.; Liu, Y.-F.; Liu, S.-Y.; Su, T.-F.; Lv, D.-C.; Shen, W.-B. Recent Progress in N-Heterocyclic Carbene Gold-Catalyzed Reactions of Alkynes Involving Oxidation/Amination/Cycloaddition. Catalysts 2020, 10, 350. https://doi.org/10.3390/catal10030350
Tang X-T, Yang F, Zhang T-T, Liu Y-F, Liu S-Y, Su T-F, Lv D-C, Shen W-B. Recent Progress in N-Heterocyclic Carbene Gold-Catalyzed Reactions of Alkynes Involving Oxidation/Amination/Cycloaddition. Catalysts. 2020; 10(3):350. https://doi.org/10.3390/catal10030350
Chicago/Turabian StyleTang, Xiang-Ting, Fan Yang, Ting-Ting Zhang, Yi-Fan Liu, Si-Yu Liu, Tong-Fu Su, Dong-Can Lv, and Wen-Bo Shen. 2020. "Recent Progress in N-Heterocyclic Carbene Gold-Catalyzed Reactions of Alkynes Involving Oxidation/Amination/Cycloaddition" Catalysts 10, no. 3: 350. https://doi.org/10.3390/catal10030350
APA StyleTang, X. -T., Yang, F., Zhang, T. -T., Liu, Y. -F., Liu, S. -Y., Su, T. -F., Lv, D. -C., & Shen, W. -B. (2020). Recent Progress in N-Heterocyclic Carbene Gold-Catalyzed Reactions of Alkynes Involving Oxidation/Amination/Cycloaddition. Catalysts, 10(3), 350. https://doi.org/10.3390/catal10030350