Polymer Membrane with Glycosylated Surface by a Chemo-Enzymatic Strategy for Protein Affinity Adsorption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chem-Enzymatic Reaction on the Membrane Surface
2.2. Chemical and Physical Characterization of the Glycosylated Membrane
2.3. The Glycosylated Membrane for Lectin Affinity Adsorption
2.4. Microfiltration of Lectin by the Glycosylated Membranes
3. Material and Methods
3.1. Materials
3.2. Chemo-Enzymatic Strategy for Preparing the Glycosylated Polymer Membrane
3.3. Characterization of the Membrane Surface
3.4. Static Adsorption of Proteins
3.5. Affinity Microfiltration of Proteins and the Durability Testing of the Glycosylated Membranes
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frokjaer, S.; Otzen, D.E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discovery 2005, 4, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Klein, E. Affinity membranes: A 10-year review. J. Membr. Sci. 2000, 179, 1–27. [Google Scholar] [CrossRef]
- Graeber, E.; Korkhov, V.M. Affinity purification of membrane proteins. Methods Mol. Biol. 2020, 2127, 129–137. [Google Scholar] [PubMed]
- Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 2010, 40, 4128–4158. [Google Scholar] [CrossRef]
- Lalli, E.; Silva, J.S.; Boi, C.; Sarti, G.C. Affinity Membranes and Monoliths for Protein Purification. Membranes 2020, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Saldova, R.; Wormald, M.R.; Dwek, R.A.; Rudd, P.M. Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis. Markers 2008, 25, 219–232. [Google Scholar] [CrossRef]
- Rudd, P.M.; Elliott, T.; Cresswell, P.; Wilson, I.A.; Dwek, R.A. Glycosylation and the immune system. Science 2001, 291, 2370–2376. [Google Scholar] [CrossRef]
- De Bousser, E.; Meuris, L.; Callewaert, N.; Festjens, N. Human T cell glycosylation and implications on immune therapy for cancer. Hum. Vacc. Immunother. 2020, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Collar, A.L.; Clarke, E.C.; Anaya, E.; Merrill, D.; Yarborough, S.; Anthony, S.M.; Kuhn, J.H.; Merle, C.; Theisen, M.; Bradfute, S.B. Comparison of N- and O-linked glycosylation patterns of ebolavirus glycoproteins. Virology 2017, 502, 39–47. [Google Scholar] [CrossRef]
- Disney, M.D.; Zheng, J.; Swager, T.M.; Seeberger, P.H. Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J. Am. Chem. Soc. 2004, 126, 13343–13346. [Google Scholar] [CrossRef]
- Pasparakis, G.; Cockayne, A.; Alexander, C. Control of bacterial aggregation by thermoresponsive glycopolymers. J. Am. Chem. Soc. 2007, 129, 11014–11015. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Zhu, X.Y.; Chen, C.; Li, J.; Chen, D.J.; Huang, X.J. Anionic glycosylated polysulfone membranes for the affinity adsorption of low-density lipoprotein via click reactions. Acta Biomater. 2017, 49, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Cattoli, F.; Boi, C.; Sorci, M.; Sarti, G.C. Adsorption of pure recombinant MBP-fusion proteins on amylose affinity membranes. J. Membr. Sci. 2006, 273, 2–11. [Google Scholar] [CrossRef]
- Morelli, S.; Salerno, S.; Rende, M.; Lopez, L.C.; Favia, P.; Procino, A.; Memoli, B.; Andreucci, V.E.; d’Agostino, R.; Drioli, E.; et al. Human hepatocyte functions in a galactosylated membrane bioreactor. J. Membr. Sci. 2007, 302, 27–35. [Google Scholar] [CrossRef]
- Lin, W.J.; Liu, H.Z.; Shi, A.M.; Liu, L.; Wang, Q.; Adhikari, B. Effect of glycosylation with xylose on the mechanical properties and water solubility of peanut protein films. J. Food. Sci. Technol. 2015, 52, 6242–6253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Pang, H.L.; Chan, P.H.; Huang, Z.S.; Gu, L.Q.; Wong, K.Y. Trityl-derivatized carbohydrates immobilized on a polystyrene microplate. Carbohydr. Res. 2008, 343, 2932–2938. [Google Scholar] [CrossRef] [PubMed]
- Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A.M.; Chai, W. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 2002, 20, 1011–1017. [Google Scholar] [CrossRef]
- Ko, K.S.; Jaipuri, F.A.; Pohl, N.L. Fluorous-based carbohydrate microarrays. J. Am. Chem. Soc. 2005, 127, 13162–13163. [Google Scholar] [CrossRef]
- Foerster, A.; Holowacz, I.; Kumar, G.B.S.; Anandakumar, S.; Wall, J.G.; Wawrzynska, M.; Paprocka, M.; Kantor, A.; Kraskiewicz, H.; Olsztynska-Janus, S.; et al. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications. J. Biomed. Mater. Res. A 2016, 104, 821–832. [Google Scholar] [CrossRef]
- Park, S.; Shin, I. Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem. Int. Ed. 2002, 41, 3180–3182. [Google Scholar] [CrossRef]
- Yang, Q.; Ulbricht, M. Cylindrical membrane pores with well-defined grafted linear and comblike glycopolymer layers for lectin binding. Macromolecules 2011, 44, 1303–1310. [Google Scholar] [CrossRef]
- Huang, H.Y.; Liu, M.Y.; Xu, D.Z.; Mao, L.C.; Huang, Q.; Deng, F.J.; Tian, J.W.; Wen, Y.Q.; Zhang, X.Y.; Wei, Y. Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. Mat. Sci. Eng. C-Mater 2020, 106, 110157. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Strathmann, M.; Rumpf, A.; Schaule, G.; Ulbricht, M. Grafted glycopolymer-basereceptor mimics on polymer support for selective adhesion of bacteria. ACS Appl. Mater. Interfaces 2010, 2, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- Egusa, S.; Yokota, S.; Tanaka, K.; Kei, E.; Yuri, O.; Yukiko, O.; Takuya, K.; Masahiro, G.; Hiroyuki, W. Surface modification of a solid-state cellulose matrix with lactose by a surfactant-enveloped enzyme in a nonaqueous medium. J. Mater. Chem. 2009, 19, 1836–1842. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Gu, L.; Xu, F.L.; Xin, F.X.; Ma, J.F.; Jiang, M.; Fang, Y. Chemo-enzymatic synthesis of branched glycopolymer brushes as the artificial glycocalyx for lectin specific binding. Langmuir 2019, 35, 4445−4452. [Google Scholar]
- Fang, Y.; Xu, W.; Wu, J.; Xu, Z.K. Enzymatic transglycosylation of PEG brushes by β-galactosidase. Chem. Commun. 2012, 48, 11208–11210. [Google Scholar] [CrossRef]
- Kim, S.H.; Goto, M.; Akaike, T. Specific binding of glucose-derivatized polymers to the asialoglycoproteinreceptor of mouse primary hepatocytes. J. Biol. Chem. 2001, 276, 35312–35319. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Susanto, H.; Ulbricht, M. Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Prog. Polym. Sci. 2009, 34, 62–98. [Google Scholar] [CrossRef]
- Dhayal, M.; Ratner, D.M. XPS and SPR analysis of glycoarray surface density. Langmuir 2009, 25, 2181–2187. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, I.; Hollerman, C.; Smith, E. Protein-carbohydrate interaction II. Inhibition studies on the interaction of concanavalin A with polysaccharides. Biochemistry 1965, 4, 876–883. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; He, T.; Gao, H.; Fan, L.; Liu, J.; Li, B.; Zhang, H.; Bai, H. Polymer Membrane with Glycosylated Surface by a Chemo-Enzymatic Strategy for Protein Affinity Adsorption. Catalysts 2020, 10, 415. https://doi.org/10.3390/catal10040415
Fang Y, He T, Gao H, Fan L, Liu J, Li B, Zhang H, Bai H. Polymer Membrane with Glycosylated Surface by a Chemo-Enzymatic Strategy for Protein Affinity Adsorption. Catalysts. 2020; 10(4):415. https://doi.org/10.3390/catal10040415
Chicago/Turabian StyleFang, Yan, Ting He, Hao Gao, Lingling Fan, Jingyuan Liu, Binrui Li, Haowei Zhang, and Huiyu Bai. 2020. "Polymer Membrane with Glycosylated Surface by a Chemo-Enzymatic Strategy for Protein Affinity Adsorption" Catalysts 10, no. 4: 415. https://doi.org/10.3390/catal10040415
APA StyleFang, Y., He, T., Gao, H., Fan, L., Liu, J., Li, B., Zhang, H., & Bai, H. (2020). Polymer Membrane with Glycosylated Surface by a Chemo-Enzymatic Strategy for Protein Affinity Adsorption. Catalysts, 10(4), 415. https://doi.org/10.3390/catal10040415