Dry Reforming of Methane (DRM) by Highly Active and Stable Ni Nanoparticles on Renewable Porous Carbons
Abstract
:1. Introduction
2. Results and Discussions
2.1. The Properties of Prepared Catalysts
2.2. Reforming Reaction of CO2 and CH4 Alone
2.3. Dry Reforming Reaction of CH4 by CO2
3. Experimental Section
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalyst Performance Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H.K.S.; Nizami, A.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Kaarimi, K. A comprehensive review on recent biological innovation to improve production, Part 2: Mainstream and downstream strategies. Renew. Energy 2020, 146, 1392–1407. [Google Scholar] [CrossRef]
- Wood, D.A.; Nwaoha, C.; Towler, B.F. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 2012, 9, 196–208. [Google Scholar] [CrossRef]
- Chung, W.C.; Chang, M.B. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effect. Renew. Sustain. Energy Rev. 2016, 62, 13–31. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 22, 7813–7837. [Google Scholar] [CrossRef]
- Arora, S.; Prasad, R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts. Chem. Soc. Rev. 2016, 6, 108668–108688. [Google Scholar] [CrossRef]
- Mirodatos, C.; Veen, A.C.; Pokrovskaya, S.A.; Chumakova, N.A.; Sazonova, N.N.; Sadykov, V.A. Modeling of tramsient studies on the reaction kinetics over catalysts with lattice oxygen mobility: Dry reforming of CH4 over a Pt/PrCeZrO catalyst. Chem. Eng. J. 2018, 343, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Han, J.; Zhao, B.; Qin, L.; Wang, Y.; Yu, F. Non-thermal plama enhanced dry refroming of CH4 with CO2 over activated carbon supported Ni catalysts. Mol. Catal. 2019, 475, 110486. [Google Scholar] [CrossRef]
- Wei, T.; Jia, L.; Luo, J.; Chi, B.; Pu, J.; Li, J. CO2 dry reforming of CH4 with Sr and Ni co-doped LaCrO3 perovskite catalysts. Appl. Surf. Sci. 2020, 506, 144699. [Google Scholar] [CrossRef]
- Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z.; Saw, E.T. Progress in synthesis of highly active and stable nickel-based catalyst for carbon dioxide reforming of methane. ChemSusChem 2015, 8, 3556–3575. [Google Scholar] [CrossRef]
- Gai, G.; Zhang, F.; Lang, Q.; Liu, T.; Peng, N.; Liu, Z. Facile one-pot synthesis of iron nanaparticles immobiliezed into the porous hydrochar for catalytic decomposition of phenol. Appl. Catal. B Environ. 2017, 204, 566–576. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Wu, J. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 2010, 89, 510–514. [Google Scholar] [CrossRef]
- Gai, C.; Yang, T.; Liu, H.; Liu, Z.; Jiao, W. Green synthesis of hydrochar supported bimetallic nanocatalysts for sustainable H2 production by sorption-enhanced steam reforming of acetic acid. ACS Appl. Nano Mater. 2019, 2, 7279–7728. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Hoekman, S.K.; Liu, T.; Gai, C.; Peng, N. Homogeneously dispersed zerovalent uron nanoparticles supported on hydrochar-derived porous carbon. Simple, in situ synthesis and use for de-chlorination of PCBS. ACS Sustain. Chem. Eng. 2016, 4, 3261–3267. [Google Scholar] [CrossRef]
- Hoch, L.B.; Mack, E.J.; Hydutsky, B.W.; Hershman, J.M.; Skluzacek, J.M.; Mallouk, T.E. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Envrion. Sci. Technol. 2008, 42, 2600–2605. [Google Scholar] [CrossRef]
- Maldonado-Hodar, F.J.; Moreno-Castilla, C.; Rivera-Utrilla, J.; Hanzawa, Y.; Yamada, Y. Catalytic graphitization of carbon aerogels by transition metals. Langmuir 2000, 16, 4367–4373. [Google Scholar] [CrossRef]
- Kambolis, A.; Matralis, H.; Trovarelli, A.; Papadopoulou, C. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl. Catal. A Gen. 2010, 377, 16–26. [Google Scholar] [CrossRef]
- Xu, B.Q.; Wei, J.M.; Wang, H.Y.; Sun, K.Q.; Zhu, Q.M. Nano-MgO: Novel preparation and application as support of Ni catalyst for CO2 reforming of methane. Catal. Today 2001, 68, 217–225. [Google Scholar] [CrossRef]
- Mofrad, B.D.; Rezaei, M.; Hayati-Ashtiani, M. Preparation and characterization of Ni catalysts supported on pillared nanoporous bentonite powders for dry reforming reaction. Int. J. Hydrog. Energy 2019, 44, 27429–27444. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Zhang, L.; Wang, Y.; Li, X.; Zhang, S.; Liu, Q.; Wei, T.; Gao, G.; Hu, X. Steam refroming of guaiacol over Ni/SiO2 catalyst modified with basic oxides: Impacts of alkalinity on properties of coke. Energy Convers. Manag. 2020, 205, 112301. [Google Scholar] [CrossRef]
- Lensveld, D.J.; Mesu, J.G.; van Dillen, A.J.; De Jong, K.P. Synthesis and characterisation of MCM-41 supported nickel oxide catalysts. Microporous Mesoporous Mater. 2001, 44, 401–407. [Google Scholar] [CrossRef]
- Azadi, P.; Farnood, R.; Meier, E. Preparation of multiwalled carbon nanotube-supported nickel catalysts using incipient wetness method. J. Phys. Chem. A 2010, 114, 3962–3968. [Google Scholar] [CrossRef] [PubMed]
- Verykios, X.E. Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. J. Hydrog. Energy 2013, 28, 1045–1063. [Google Scholar]
- Odedairo, T.; Chen, J.; Zhu, Z. Synthesis of supported nickel nanoparticles via a nonthermal plasma approach and its application in CO2 reforming of methane. J. Phys. Chem. C 2013, 117, 21288–21302. [Google Scholar] [CrossRef]
- Xie, T.; Shi, L.; Zhang, J.; Zhang, D. Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane. Chem. Commun. 2014, 50, 7250–7253. [Google Scholar] [CrossRef]
- Gao, X.Y.; Ashok, J.; Widjaja, S.; Hidajat, K.; Kawi, S. Ni/SiO2 catalyst prepared via Ni-aliphatic amine complexation for dry reforming of methane: Effect of carbon chain number and amine concentration. Appl. Catal. A 2015, 503, 34–42. [Google Scholar] [CrossRef]
- Shen, Y.; Areeprasert, C.; Prabowo, B.; Takahashi, F.; Uoshikawa, K. Metal nickel nanoparticles in situ generated in rice husk char for catalytic reformation of tar and syngas from biomass pyrolytic gasification. RSC Adv. 2014, 4, 40651–40664. [Google Scholar] [CrossRef]
- Pompeo, F.; Nichio, N.N.; González, M.G.; Montes, M. Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming. Catal. Today 2005, 107–108, 856–862. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Marin, G.B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039. [Google Scholar] [CrossRef]
- Gonzalez-Delacruz, V.M.; Pereñiguez, R.; Ternero, F.; Holgado, J.P.; Caballero, A. Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts. ACS Catal. 2011, 1, 82–88. [Google Scholar] [CrossRef]
- Shinde, V.M.; Madras, G. Catalytic performance of highly dispersed Ni/TiO2 for dry and steam reforming of methane. RSC Adv. 2014, 4, 4817–4826. [Google Scholar] [CrossRef]
- Nandini, A.; Pant, K.K.; Dhingra, S.C. Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst. Appl. Catal. A. Gen. 2006, 308, 119–127. [Google Scholar] [CrossRef]
- Ni, J.; Chen, L.; Lin, J.; Kawi, S. Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy 2012, 1, 674–686. [Google Scholar] [CrossRef]
- Du, X.; Zhang, D.; Shi, L.; Gao, R.; Zhang, J. Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J. Phys. Chem. C 2012, 116, 10009–10016. [Google Scholar] [CrossRef]
- Zhang, W.D.; Liu, B.S.; Zhan, Y.P.; Tian, Y.L. Syngas production via CO2 reforming of methane over Sm2O3−La2O3-supported Ni catalyst. Ind. Eng. Chem. Res. 2009, 48, 7498–7504. [Google Scholar] [CrossRef]
- Tao, K.; Zhou, S.; Zhang, Q.; Kong, C.; Ma, Q.; Tsubaki, N.; Chen, L. Sol-gel auto-combustion synthesis of Ni–CexZr1−xO2 catalysts for carbon dioxide reforming of methane. RSC Adv. 2013, 3, 22285–22294. [Google Scholar] [CrossRef]
- Hu, Y.H. Solid-solution catalysts for CO2 reforming of methane. Catal. Today 2009, 148, 206–211. [Google Scholar] [CrossRef]
- Dominguez, A.; Fernandez, Y.; Fidalgo, B.; Pis, J.J.; Menendez, J.A. Biogas to syngas by microwave-assisted dry reforming in the presence of char. Energy Fuel 2007, 21, 2066–2071. [Google Scholar] [CrossRef]
- Liu, Z.; Balasubramanian, R. Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation. Appl. Energy 2014, 114, 857–864. [Google Scholar] [CrossRef]
Sample | Ni Content (%) | Ni Particle Size (nm) | Carbon Content (%) | |||
---|---|---|---|---|---|---|
TEM a | XRD | Spent a | Fresh | Spent | ||
Ni@C-700 | 19.2 | 4.3 | 4.6 | 4.6 | 80.4 | 80.6 |
Ni@C-800 | 20.3 | 7.6 | 7.9 | 7.8 | 79.2 | 79.3 |
Ni@C-900 | 25.4 | 92 | 102 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Z.; Zhang, B.; Liu, Z.; Yang, T. Dry Reforming of Methane (DRM) by Highly Active and Stable Ni Nanoparticles on Renewable Porous Carbons. Catalysts 2020, 10, 501. https://doi.org/10.3390/catal10050501
Li Y, Wang Z, Zhang B, Liu Z, Yang T. Dry Reforming of Methane (DRM) by Highly Active and Stable Ni Nanoparticles on Renewable Porous Carbons. Catalysts. 2020; 10(5):501. https://doi.org/10.3390/catal10050501
Chicago/Turabian StyleLi, Yinming, Zhaojia Wang, Bo Zhang, Zhengang Liu, and Tianxue Yang. 2020. "Dry Reforming of Methane (DRM) by Highly Active and Stable Ni Nanoparticles on Renewable Porous Carbons" Catalysts 10, no. 5: 501. https://doi.org/10.3390/catal10050501
APA StyleLi, Y., Wang, Z., Zhang, B., Liu, Z., & Yang, T. (2020). Dry Reforming of Methane (DRM) by Highly Active and Stable Ni Nanoparticles on Renewable Porous Carbons. Catalysts, 10(5), 501. https://doi.org/10.3390/catal10050501