Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology Characterization of Nanocatalysts
2.2. Catalytic Properties of Samples in DCL
3. Experimental Methods
3.1. Starting Materials
3.2. Preparation of CoFe2O4@coal, CoFe2O4, Fe2O3, and Co(OH)2 Nanoparticles by Solid-State Reaction
3.3. Characterization
3.4. The Catalytic Process of DCL
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Trautmann, M.; Lang, S.; Traa, Y. Direct liquefaction of lower-rank coals and biocoals with magnetically separable catalysts as a sustainable route to fuels. Fuel 2015, 151, 102–109. [Google Scholar] [CrossRef]
- Wang, L.; Chen, P. Mechanism study of iron-based catalysts in co-liquefaction of coal with waste plastics. Fuel 2002, 81, 811–815. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Shi, S.D.; Li, Y.W. Coal liquefaction technologies-development in china and challenges in chemical reaction engineering. Chem. Eng. Sci. 2010, 65, 12–17. [Google Scholar] [CrossRef]
- Hao, H.G.; Chang, T.; Cui, L.X.; Sun, R.Q.; Gao, R. Theoretical study on the mechanism of hydrogen donation and transfer for hydrogen-donor solvents during direct coal liquefaction. Catalysts 2018, 8, 648. [Google Scholar] [CrossRef] [Green Version]
- Trautmann, M.; Traa, Y. Efficient direct brown coal liquefaction with sulfided Co/SiO2 catalysts. Energy Fuels 2013, 27, 5589–5592. [Google Scholar] [CrossRef]
- Song, C.; Sainia, A.K.; Yoneyamaa, Y. A new process for catalytic liquefaction of coal using dispersed MoS2 catalyst generated in situ with added H2O. Fuel 2000, 79, 249–261. [Google Scholar] [CrossRef]
- Demirel, B.; Givens, E.N. Liquefaction of Wyodak coal with molybdenum-based catalysts from phosphomolybdic acid. Fuel Process. Technol. 2000, 64, 177–187. [Google Scholar] [CrossRef]
- Demirel, B.; Givens, E.N. Liquefaction of Wyodak coal with phosphomolybdic acid. Energy Fuels 1998, 12, 607–611. [Google Scholar] [CrossRef]
- Chakma, A. Simultaneous liquefaction of a subbituminous coal and upgrading of bitumen with molten ZnCl2-based catalysts. Fuel Process. Technol. 1993, 33, 101–115. [Google Scholar] [CrossRef]
- Ogino, Y.; Ozawa, S.; Ishikawa, K. Effects of molten tin catalyst on coal conversion in a hydrogen donor solvent. Fuel Process. Technol. 1986, 14, 269–277. [Google Scholar] [CrossRef]
- Li, X.; Hu, S.X.; Jin, L.J.; Hu, H.Q. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction. Energy Fuels 2008, 22, 1126–1129. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Li, W. Influences of chemical structure and physical properties of coal macerals on coal liquefaction by quantum chemistry calculation. Fuel Process. Technol. 2013, 109, 19–26. [Google Scholar] [CrossRef]
- Barraza, J.; Coley-Silva, E.; Piñeres, J. Effect of temperature, solvent/coal ratio and beneficiation on conversion and product distribution from direct coal liquefaction. Fuel 2016, 172, 153–159. [Google Scholar] [CrossRef]
- Şimşek, E.H.; Güleç, F.; Kavuştu, H. Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models. Fuel 2017, 207, 814–820. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Fouquet, T.; Zeng, X.; Kanda, H.; Goto, M. Room-temperature extraction of direct coal liquefaction residue by liquefied dimethyl ether. Fuel 2020, 262, 116528. [Google Scholar] [CrossRef]
- Şimşek, E.H.; Güleç, F.; Akçadağ, F.S. Understanding the liquefaction mechanism of Beypazarı lignite in tetralin with ultraviolet irradiation using discrete time models. Fuel Process. Technol. 2020, 198, 106227. [Google Scholar] [CrossRef]
- Ali, A.; Zhao, C. Direct liquefaction techniques on lignite coal: A review. Chin. J. Catal. 2020, 41, 375–389. [Google Scholar] [CrossRef]
- Li, Y.Z.; Cao, Y.L.; Jia, D.Z. Direct coal liquefaction with Fe3O4 nanocatalysts prepared by a simple solid-state method. Energies 2017, 10, 886. [Google Scholar] [CrossRef] [Green Version]
- Haghighat, F.; de Klerk, A. Direct Coal Liquefaction: Low Temperature Dissolution Process. Energy Fuels 2014, 28, 1012–1019. [Google Scholar] [CrossRef]
- Hu, H.Q.; Bai, J.F.; Zhu, H.J.; Wang, Y.; Guo, S.C. Catalytic liquefaction of coal with highly dispersed Fe2S3 impregnated in-situ. Energy Fuels 2001, 15, 830–834. [Google Scholar] [CrossRef]
- Li, Y.Z.; Ma, F.Y.; Su, X.T.; Sun, C.; Liu, J.C.; Sun, Z.Q.; Hou, Y.L. Synthesis and catalysis of oleic acid-coated Fe3O4 nanocrystals for direct coal liquefaction. Catal. Commun. 2012, 26, 231–234. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Ma, F.Y.; Liu, X.J.; Wu, H.H.; Niu, C.G.; Su, X.T.; Liu, J.M. Large-scale synthesis and catalysis of oleic acid-coated Fe2O3 for co-liquefaction of coal and petroleum vacuum residues. Fuel Process. Technol. 2015, 139, 173–177. [Google Scholar] [CrossRef]
- Ma, Y.B.; Gao, Z.X.; Eli, W. Hydroformylation of dicyclopentadiene over Rh catalysts supported on Fe2O3, Co3O4 and Fe2O3-Co3O4 Mixed Oxide. Prog. React. Kinet. Mech. 2017, 42, 8–13. [Google Scholar] [CrossRef]
- Wang, L.H.; Liu, H. Mesoporous Co-CeO2 catalyst prepared by colloidal solution combustion method for reverse water-gas shift reaction. Catal. Today 2018, 316, 155–161. [Google Scholar] [CrossRef]
- Ahn, C.-I.; Jeong, D.-W.; Cho, J.M.; Na, H.-S.; Jang, W.-J.; Roh, H.-S.; Choi, J.-H.; Um, S.H.; Bae, J.W. Water gas shift reaction on the Mn-modified ordered mesoporous Co3O4. Microporous Mesoporous Mater. 2016, 221, 204–211. [Google Scholar] [CrossRef]
- Hulstona, C.K.J.; Redlich, P.J.; Jacksona, W.R.; Larkinsb, F.P.; Marshall, M. Hydrogenation of a brown coal pretreated with water-soluble nicle-molybdenum and cobalt-molybdenum catalysts. Fuel 1997, 76, 1465–1469. [Google Scholar] [CrossRef]
- Song, C.S.; Parfitt, D.S.; Schobert, H.H. Bimetallic dispersed catalysts from molecular precursors containing Mo-Co-S for coal liquefaction. Energy Fuels 1994, 8, 313–319. [Google Scholar] [CrossRef]
- Priyanto, U.; Sakanishi, K.; Mochida, I. Optimized solvent amount in the liquefaction of adaro coal with binary sulfide catalyst supported on carbon nanoparticles. Energy Fuels 2000, 14, 801–805. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zong, Z.M.; Liu, J.; Wang, Y.H.; Yu, L.C.; Lv, J.H.; Wang, T.M.; Wei, X.Y.; Wei, Z.H.; Li, Y. Catalytic hydroconversion of geting bituminous coal over FeNi-S/γ-Al2O3. Fuel Process. Technol. 2015, 133, 195–201. [Google Scholar] [CrossRef]
- Wang, C.H.; Kim, J.; Tang, J.; Na, J.; Kang, Y.M.; Kim, M.; Lim, H.; Bando, Y.; Li, J.; Yamauchi, Y. Large-scale synthesis of mof-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angew. Chem. Int. Ed. Engl. 2020, 59, 2066–2070. [Google Scholar] [CrossRef]
- Li, Y.Z.; Ma, F.Y.; Su, X.T.; Shi, L.J.; Pan, B.B.; Sun, Z.Q.; Hou, Y.L. Ultra-large-scale synthesis of Fe3O4 nanoparticles and their application for direct coal liquefaction. Ind. Eng. Chem. Res. 2014, 53, 6718–6722. [Google Scholar] [CrossRef]
- Shi, Z.W.; Jin, L.J.; Zhou, Y.; Li, Y.; Hu, H.Q. Effect of hydrothermal treatment on structure and liquefaction behavior of Baiyinhua coal. Fuel Process. Technol. 2017, 167, 648–654. [Google Scholar] [CrossRef]
- Qin, L.; Xu, Z.H.; Zheng, Y.L.; Li, C.; Mao, J.W.; Zhang, G.L. Confined transformation of organometal-encapsulated MOFs into spinel CoFe2O4/C nanocubes for low-temperature catalytic oxidation. Adv. Funct. Mater. 2020. [Google Scholar] [CrossRef]
- Yang, W.W.; Li, L.; Fang, Y.R.; Shan, Y.L.; Xu, J.; Shen, H.; Yu, Y.B.; Guo, Y.B.; He, H. Interfacial structure-governed SO2 resistance of Cu/TiO2 catalysts in the catalytic oxidation of CO. Catal. Sci. Technol. 2020, 10, 1661–1674. [Google Scholar] [CrossRef]
- Xu, H.; Cao, Y.L.; Xie, J.; Hu, J.D.; Li, Y.Z.; Jia, D.Z. A construction of Ag-modified raspberry-like AgCl/Ag2WO4 with excellent visible-light photocatalytic property and stability. Mater. Res. Bull. 2018, 102, 342–352. [Google Scholar] [CrossRef]
- Hu, H.Q.; Bai, J.F.; Guo, S.C.; Chen, G.H. Coal liquefaction with in situ impregnated Fe2(MoS4)3 bimetallic catalyst. Fuel 2002, 81, 1521–1524. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Xie, J.; Liu, Q.Y.; Wang, H.X.; Gao, S.S.; Shi, L.; Liu, Z.Y. Characterization of direct coal liquefaction catalysts by their sulfidation behavior and tetralin dehydrogenation activity. J. Energy Inst. 2019, 92, 1213–1222. [Google Scholar] [CrossRef]
Sample | Conversion/% | Oil Yiel/% | Liquefaction Degree/% | Gas Yield/% | APA/% | Residue Yield/% |
---|---|---|---|---|---|---|
/ | 86.28 | 39.47 | 73.37 | 12.57 | 33.57 | 13.71 |
Fe2O3 | 90.76 | 37.78 | 77.41 | 14.28 | 38.35 | 9.65 |
Co(OH)2 | 95.59 | 40.71 | 77.54 | 18.49 | 38.89 | 4.84 |
CoFe2O4 | 99.03 | 41.81 | 76.20 | 24.74 | 32.17 | 0.38 |
CoFe2O4@coal | 99.44 | 56.01 | 82.18 | 19.30 | 24.21 | 0.11 |
Sample | Conversion | Oil Yield | Liquefaction Degree | Gas Yield | Reference |
---|---|---|---|---|---|
CoFe2O4@coal | 99.44% | 56.01% | 82.18% | 19.30% | This work |
Fe3O4 | 89.60% | 65.10% | 77.3% | - | [31] |
Fe2(MoS4)3 | 78.20% | 70.50%(oil+gas) | - | - | [36] |
g-FeOOH | 32.00% | - | - | - | [37] |
FeNi-S/γ-Al2O3 | 89.40% | - | - | - | [29] |
Oleic acid-coated Fe2O3 | 83.67% | - | - | - | [22] |
Fe2S3 | 62.60% | 54.20% | - | - | [20] |
Co/SiO2 | 99.00% | 55.00% | - | 44.00% | [5] |
FeS2 | 79.00% | 47.00% | - | 32.00% | [5] |
Fe/SiO2 | 87.00% | 44.00% | - | 43.00% | [5] |
Oleic acid-coated Fe3O4 | 97.20% | 86.50% | 92.00% | - | [21] |
Fe3O4 nanoparticles | 76.40% | 53.80% | - | 13.90% | [18] |
Coal. | Proximate Analysis (wt %) 1 | Ultimate Analysis (wt %, daf 2) | H/C | O/C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | FCd | C | H | O3 | N | S | |||
Dahuangshan | 1.22 | 17.57 | 48.34 | 42.58 | 63.17 | 3.63 | 14.30 | 1.11 | 0.20 | 0.69 | 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Li, Y.; Wu, H.; Ma, F.; Cao, Y. Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction. Catalysts 2020, 10, 503. https://doi.org/10.3390/catal10050503
Liu B, Li Y, Wu H, Ma F, Cao Y. Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction. Catalysts. 2020; 10(5):503. https://doi.org/10.3390/catal10050503
Chicago/Turabian StyleLiu, Baolin, Yizhao Li, Hao Wu, Fengyun Ma, and Yali Cao. 2020. "Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction" Catalysts 10, no. 5: 503. https://doi.org/10.3390/catal10050503
APA StyleLiu, B., Li, Y., Wu, H., Ma, F., & Cao, Y. (2020). Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction. Catalysts, 10(5), 503. https://doi.org/10.3390/catal10050503