A Detrimental Effect of Acetonitrile on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction, Examined on Pt Electrode in H2SO4 and NaOH Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cyclic Voltammetry Behaviour of Pt in the Presence of Acetonitrile in Sulphuric Acid and Sodium Hydroxide Solutions
2.2. Electrochemical Behaviour at Poly Pt Electrode in Pure 0.5 M H2SO4 and in the Presence of Acetonitrile
2.3. Electrochemical Behaviour at Pt Polyoriented Single-Crystal Sphere Electrode in Pure 0.1 M NaOH and in the Presence of Acetonitrile
3. Experimental
3.1. Solutions
3.2. Equipment, Electrochemical Cell, and Electrodes Employed
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conway, B.E.; Bai, L. Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. Interfac. Electrochem. 1986, 198, 149–175. [Google Scholar] [CrossRef]
- Herrero, E.; Buller, L.J.; Abruña, H.D. Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials. Chem. Rev. 2001, 101, 1897–1930. [Google Scholar] [CrossRef]
- Schlaup, C.; Horch, S. Study of underpotential deposited Cu layers on Pt(111) and their stability against CO and CO2 in perchloric acid. Phys. Chem. Chem. Phys. 2013, 15, 19659. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 11053–11077. [Google Scholar] [CrossRef]
- Santos, D.M.F.; Sequeira, C.A.C.; Figueiredo, J.L. Hydrogen production by alkaline water electrolysis. Quím. Nova 2013, 36, 1176–1193. [Google Scholar] [CrossRef]
- Dubouis, N.; Grimaud, A. The hydrogen evolution reaction: From material to interfacial descriptors. Chem. Sci. 2019, 10, 9165–9181. [Google Scholar] [CrossRef] [Green Version]
- Reshetenko, T.V.; St-Pierre, J. Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system. J. Power Sources 2015, 293, 929–940. [Google Scholar] [CrossRef] [Green Version]
- Briega-Martos, V.; Costa-Figueiredo, M.; Orts, J.M.; Rodes, A.; Koper, M.T.M.; Herrero, E.; Feliu, J.M. Acetonitrile adsorption on Pt single-crystal electrodes and its effect on oxygen reduction reaction in acidic and alkaline aqueous solutions. J. Phys. Chem. C 2019, 123, 2300–2313. [Google Scholar] [CrossRef] [Green Version]
- Ahlberg, E.; Friel, M. The cathodic polarization of iron in acidic acetonitrile-water solutions. Electrochim. Acta 1989, 34, 771–780. [Google Scholar] [CrossRef]
- Ledezma-Yanez, I.; Diaz-Morales, O.; Figueiredo, M.C.; Koper, M.T.M. Hydrogen oxidation and hydrogen evolution on a platinum electrode in acetonitrile. ChemElectroChem 2015, 2, 1612–1622. [Google Scholar] [CrossRef]
- Smiljanić, M.L.J.; Srejić, I.L.J.; Marinović, V.M.; Rakočević, Z.L.; Štrbac, S.B. Inhibiting effect of acetonitrile on oxygen reduction on polycrystalline Pt electrode in sodium chloride solution. Hem. Ind. 2012, 66, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Srejić, I.; Smiljanić, M.; Rakočević, Z.; Štrbac, S. Oxygen reduction on polycrystalline Pt and Au electrodes in perchloric acid solution in the presence of acetonitrile. Int. J. Electrochem. Sci. 2011, 6, 3344–3354. [Google Scholar]
- Angerstein-Kozlowska, H.; Macdougall, B.; Conway, B.E. Electrochemisorption and reactivity of nitriles at platinum electrodes and the anodic H desorption effect. J. Electroanal. Chem. 1972, 39, 287–313. [Google Scholar] [CrossRef]
- Morin, S.; Conway, B.E. Surface structure dependence on single-crystal Pt surfaces. J. Electroanal. Chem. 1994, 376, 135–150. [Google Scholar] [CrossRef]
- Morin, S.; Conway, B.E.; Edens, G.J.; Weaver, M.J. The reactive chemisorption of acetonitrile on Pt(111) and Pt(100) electrodes as examined by in situ infrared spectroscopy. J. Electroanal. Chem. 1997, 421, 213–220. [Google Scholar] [CrossRef]
- Waldrup, S.B.; Williams, C.T. Acetonitrile adsorption on polycrystalline platinum: An in situ investigation using sum frequency spectroscopy. J. Phys. Chem. C 2008, 112, 219–226. [Google Scholar] [CrossRef]
- Baldelli, S.; Mailhot, G.; Ross, P.; Shen, Y.-R.; Somorjai, G.A. Potential dependent orientation of acetonitrile on platinum (111) electrode surface studied by sum frequency generation. J. Phys. Chem. B 2001, 105, 654–662. [Google Scholar] [CrossRef]
- Rudnev, A.V.; Molodkina, E.B.; Danilov, A.I.; Polukarov, Y.M.; Berna, A.; Feliu, J.M. Adsorption behavior of acetonitrile on platinum and gold electrodes of various structures in solution of 0.5 M H2SO4. Electrochim. Acta 2009, 54, 3692–3699. [Google Scholar] [CrossRef]
- Pašti, I.A.; Marković, A.; Gavrilov, N.; Mentus, S.V. Adsorption of acetonitrile on platinum and its effects on oxygen reduction reaction in acidic aqueous solutions—combined theoretical and experimental study. Electrocatalysis 2016, 7, 235–248. [Google Scholar] [CrossRef]
- Nichols, R.J. Adsorption of Molecules at Metal Electrodes; Lipkowski, J., Ross, P.N., Eds.; VCH Publishers: New York, NY, USA, 1992; Chapter 7. [Google Scholar]
- Clavilier, J.; El Achi, K.; Petit, M.; Rodes, A.; Zamakhchari, M.A. Electrochemical monitoring of the thermal reordering of platinum single-crystal surfaces after metallographic polishing from the early stage to the equilibrium surfaces. J. Electroanal. Chem. 1990, 295, 333–356. [Google Scholar] [CrossRef]
- Clavilier, J.; Rodes, A.; El Achi, K.; Zamakhchari, M.A. Electrochemistry at platinum single crystal surfaces in acidic media: Hydrogen and oxygen adsorption. J. Chim. Phys. 1991, 88, 1291–1337. [Google Scholar] [CrossRef]
- Conway, B.E.; Tilak, B.V. Behavior and characterization of kinetically involved chemisorbed intermediates in electrocatalysis of gas evolution reactions. Adv. Catal. 1992, 38, 1–147. [Google Scholar]
- Pierozynski, B. Hydrogen evolution reaction at Pd-modified carbon fibre and nickel-coated carbon fibre materials. Int. J. Hydrog. Energy 2013, 38, 7733–7740. [Google Scholar] [CrossRef]
- Pierozynski, B.; Mikolajczyk, T. Hydrogen evolution reaction at Ru-modified carbon fibre in 0.5 M H2SO4. Int. J. Electrochem. Sci. 2012, 7, 9697–9706. [Google Scholar]
- Pierozynski, B.; Smoczynski, L. Kinetics of hydrogen evolution reaction at nickel-coated carbon fiber materials in 0.5 M H2SO4 and 0.1 M NaOH solutions. J. Electrochem. Soc. 2009, 156, B1045–B1050. [Google Scholar] [CrossRef]
- Morin, S.; Dumont, H.; Conway, B.E. Evaluation of the effect of two-dimensional geometry of Pt single-crystal faces on the kinetics of upd of H using impedance spectroscopy. J. Electroanal. Chem. 1996, 412, 39–52. [Google Scholar] [CrossRef]
- Conway, B.E.; Pierozynski, B.A.C. Impedance behaviour of processes involving adsorption and reactivity of guanidonium-type cations at Pt(100) surface. J. Electroanal. Chem. 2008, 622, 10–14. [Google Scholar] [CrossRef]
- Barber, J.H.; Conway, B.E. Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M dm−3 NaOH. J. Electroanal. Chem. 1999, 461, 80–89. [Google Scholar] [CrossRef]
- Barber, J.; Morin, S.; Conway, B.E. Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H. J. Electroanal. Chem. 1998, 446, 125–138. [Google Scholar] [CrossRef]
- Conway, B.E.; Barber, J.; Morin, S. Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes. Electrochim. Acta 1998, 44, 1109–1125. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, J.R. Impedance Spectroscopy, Emphasizing Solid Materials and Systems; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
0.5 M H2SO4 | ||||
UPD of H | ||||
E/mV | RH/Ω·cm2 | Cdl/µF·cm−2 | CpH/µF·cm−2 | |
100 | 0.48 ± 0.02 | 23.5 ± 2.6 | 215 ± 23 | |
150 | 0.97 ± 0.05 | 71.6 ± 2.1 | 193 ± 3 | |
200 | 1.37 ± 0.08 | 65.9 ± 0.7 | 119 ± 11 | |
HER | ||||
Rct/Ω·cm2 | ROPD H/Ω·cm2 | COPD H/µF·cm−2 | ||
−25 | 0.07 ± 0.01 | 146 ± 16 | 71.2 ± 9.5 | 180,773 ± 17,252 |
−50 | 0.02 ± 0.00 | 132 ± 15 | 5.7 ± 0.3 | 989,515 ± 58,036 |
Double-layer charging zone | ||||
450 | 40.8 ± 2.7 | |||
500 | 34.5 ± 3.4 | |||
0.5 M H2SO4 + 1.85 × 10−5 M AcN | ||||
UPD of H | ||||
RH/Ω·cm2 | Cdl/µF·cm−2 | CpH/µF cm−2 | ||
100 | 0.77 ± 0.06 | 34.0 ± 0.3 | 160 ± 14 | |
150 | 1.18 ± 0.07 | 73.9 ± 0.7 | 185 ± 22 | |
200 | 2.93 ± 0.16 | 52.2 ± 0.5 | 109 ± 10 | |
HER | ||||
Rct/Ω·cm2 | ROPD H/Ω·cm2 | COPD H/µF·cm−2 | ||
−25 | 0.18 ± 0.04 | 227 ± 25 | 58.1 ± 2.6 | 133,535 ± 8357 |
−50 | 0.05 ± 0.00 | 320 ± 16 | 9.5 ± 0.1 | 504,606 ± 33,834 |
AcN oxidation/reduction | ||||
RF/Ω·cm2 | Cp/µF·cm−2 | |||
500 | 2.51 ± 0.32 | 25.7 ± 1.3 | 72.0 ± 7.0 | |
0.5 M H2SO4 + 1.85 × 10−3 M AcN | ||||
UPD of H | ||||
E/mV | RH/Ω·cm2 | Cdl/µF·cm−2 | CpH/µF·cm−2 | |
100 | 2.29 ± 0.17 | 37.9 ± 3.7 | 190 ± 18 | |
150 | 5.05 ± 0.29 | 20.3 ± 1.2 | 177 ± 3 | |
200 | 18.99 ± 0.91 | 57.9 ± 0.6 | 75.0 ± 5.0 | |
HER | ||||
Rct/Ω·cm2 | ROPD H/Ω·cm2 | COPD H/µF·cm−2 | ||
−25 | 0.53 ± 0.05 | 45.5 ± 5.0 | 60.5 ± 2.7 | 77,309 ± 8504 |
−50 | 0.28 ± 0.01 | 50.7 ± 5.6 | 13.9 ± 0.3 | 382,069 ± 42,082 |
AcN oxidation/reduction | ||||
RF/Ω·cm2 | Cp/µF·cm−2 | |||
500 | 3.97 ± 0.51 | 38.5 ± 2.0 | 110 ± 10 |
0.1 M NaOH | ||||
UPD of H | ||||
E/mV | RH/Ω·cm2 | Cdl/µF·cm−2 | CpH/µF cm−2 | |
100 | 49.20 ± 2.20 | 30.8 ± 3.4 | 253 ± 18 | |
150 | 58.92 ± 3.41 | 26.1 ± 0.8 | 198 ± 4 | |
200 | 81.31 ± 4.70 | 27.7 ± 0.3 | 191 ± 18 | |
HER | ||||
Rct/Ω·cm2 | ROPD H/Ω·cm2 | COPD H/µF·cm−2 | ||
−25 | 118.5 ± 10.5 | 13.0 ± 1.4 | 50.6 ± 17.2 | 525 ± 58 |
−50 | 53.73 ± 6.40 | 15.0 ± 1.2 | 54.0 ± 2.9 | 552 ± 36 |
−75 | 37.40 ± 4.82 | 15.2 ± 0.8 | 61.5 ± 5.4 | 424 ± 42 |
−100 | 21.43 ± 2.40 | 17.8 ± 0.8 | 58.6 ± 4.6 | 445 ± 24 |
−125 | 17.70 ± 1.90 | 18.2 ± 0.7 | 63.4 ± 2.9 | 369 ± 41 |
Double-layer charging zone | ||||
450 | 58.4 ± 1.7 | |||
500 | 34.0 ± 2.8 | |||
0.1 M NaOH + 1.85 × 10−5 M AcN | ||||
UPD of H | ||||
RH/Ω·cm2 | Cdl/µF·cm−2 | CpH/µF·cm−2 | ||
100 | 95.40 ± 4.30 | 21.4 ± 2.4 | 263 ± 29 | |
150 | 105.7 ± 6.1 | 26.1 ± 0.8 | 181 ± 4 | |
200 | 129.3 ± 7.5 | 49.6 ± 0.5 | 206 ± 20 | |
HER | ||||
Rct/Ω·cm2 | ROPD H/Ω·cm2 | COPD H/µF·cm−2 | ||
−25 | 181.4 ± 16.1 | 15.5 ± 1.7 | 55.4 ± 18.8 | 584 ± 64 |
−50 | 57.91 ± 6.92 | 14.1 ± 1.3 | 52.0 ± 2.8 | 430 ± 39 |
−75 | 43.72 ± 3.90 | 11.8 ± 1.6 | 55.6 ± 4.8 | 434 ± 33 |
−100 | 29.31 ± 3.22 | 16.1 ± 1.8 | 64.0 ± 5.0 | 429 ± 64 |
−125 | 23.51 ± 2.62 | 14.3 ± 1.6 | 57.7 ± 5.1 | 358 ± 45 |
AcN oxidation/reduction | ||||
RF/Ω·cm2 | Cp/µF·cm−2 | |||
400 | 3.19 ± 0.19 | 50.6 ± 5.1 | 48.2 ± 5.2 | |
450 | 2.85 ± 0.14 | 26.2 ± 2.1 | 136 ± 9 | |
500 | 2.63 ± 0.34 | 35.1 ± 1.8 | 72.5 ± 6.5 | |
0.1 M NaOH + 1.85 × 10−3 M AcN | ||||
UPD of H | ||||
E/mV | RH/Ω·cm2 | Cdl/µF·cm−2 | CpH/µF·cm−2 | |
100 | 101.0 ± 2.9 | 10.3 ± 1.1 | 287 ± 32 | |
150 | 460.0 ± 17.1 | 19.4 ± 1.3 | 172 ± 3 | |
200 | 672.1 ± 36.6 | 19.3 ± 0.2 | 125 ± 12 | |
HER | ||||
Rct/Ω·cm2 | ROPD H/Ω·cm2 | COPD H/µF·cm−2 | ||
−25 | 151.5 ± 13.5 | 17.7 ± 2.0 | 50.1 ± 6.7 | 841 ± 93 |
−50 | 129.2 ± 15.4 | 17.6 ± 1.9 | 36.4 ± 2.0 | 585 ± 53 |
−75 | 130.6 ± 11.6 | 15.4 ± 1.4 | 16.1 ± 1.4 | 553 ± 42 |
−100 | 123.7 ± 13.7 | 17.6 ± 1.6 | 25.9 ± 2.0 | 600 ± 9 |
−125 | 94.30 ± 10.40 | 17.6 ± 1.1 | 31.2 ± 2.8 | 273 ± 34 |
AcN oxidation/reduction | ||||
RF/Ω·cm2 | Cp/µF·cm−2 | |||
400 | 5.56 ± 0.63 | 40.4 ± 3.2 | 38.4 ± 2.2 | |
450 | 4.18 ± 0.44 | 38.8 ± 2.6 | 102 ± 9 | |
500 | 3.39 ± 0.71 | 35.4 ± 1.1 | 75.5 ± 6.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikolajczyk, T.; Luba, M.; Pierozynski, B.; Smoczynski, L. A Detrimental Effect of Acetonitrile on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction, Examined on Pt Electrode in H2SO4 and NaOH Solutions. Catalysts 2020, 10, 625. https://doi.org/10.3390/catal10060625
Mikolajczyk T, Luba M, Pierozynski B, Smoczynski L. A Detrimental Effect of Acetonitrile on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction, Examined on Pt Electrode in H2SO4 and NaOH Solutions. Catalysts. 2020; 10(6):625. https://doi.org/10.3390/catal10060625
Chicago/Turabian StyleMikolajczyk, Tomasz, Mateusz Luba, Boguslaw Pierozynski, and Lech Smoczynski. 2020. "A Detrimental Effect of Acetonitrile on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction, Examined on Pt Electrode in H2SO4 and NaOH Solutions" Catalysts 10, no. 6: 625. https://doi.org/10.3390/catal10060625
APA StyleMikolajczyk, T., Luba, M., Pierozynski, B., & Smoczynski, L. (2020). A Detrimental Effect of Acetonitrile on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction, Examined on Pt Electrode in H2SO4 and NaOH Solutions. Catalysts, 10(6), 625. https://doi.org/10.3390/catal10060625