MOF Encapsulation of Ru Olefin Metathesis Catalysts to Block Catalyst Decomposition
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Computational Details
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sytniczuk, A.; Forcher, G.; Grotjahn, D.B.; Grela, K. Sequential alkene isomerization and ring-closing metathesis in production of Macrocyclic Musks from biomass. Chem. Eur. J. 2018, 24, 10403–10408. [Google Scholar] [CrossRef] [PubMed]
- Rouen, M.; Queval, P.; Borré, E.; Falivene, L.; Poater, A.; Berthod, M.; Hugues, F.; Cavallo, L.; Baslé, O.; Olivier-Bourbigou, H.; et al. Selective metathesis of α-olefins from bio-sourced Fischer–Tropsch feeds. ACS Catal. 2016, 6, 7970–7976. [Google Scholar] [CrossRef]
- Sytniczuk, A.; Dąbrowski, M.; Banach, L.; Urban, M.; Czarnocka-Śniadała, S.; Milewski, M.; Kajetanowicz, A.; Grela, K. At long last: Olefin metathesis macrocyclization at high concentration. J. Am. Chem. Soc. 2018, 140, 8895–8901. [Google Scholar] [CrossRef] [PubMed]
- Grubbs, R.H. Handbook of Olefin Metathesis; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Samojłowicz, C.; Bieniek, M.; Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-Heterocyclic Carbene Ligands. Chem. Rev. 2009, 109, 3708–3742. [Google Scholar] [CrossRef] [PubMed]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef]
- Ogba, O.M.; Warner, N.C.; O’Leary, D.J.; Grubbs, R.H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 2019, 47, 4510–4544. [Google Scholar] [CrossRef] [Green Version]
- Poater, A.; Cavallo, L. A Comprehensive study of olefin metathesis catalyzed by Ru-based catalysts. Beilstein J. Org. Chem. 2015, 11, 1767–1780. [Google Scholar] [CrossRef] [Green Version]
- Grela, K.; Kajetanowicz, A. Progress in metathesis chemistry. Beilstein J. Org. Chem. 2019, 15, 2765–2766. [Google Scholar] [CrossRef]
- Bailey, G.A.; Foscato, M.; Higman, C.S.; Day, C.; Jensen, V.R.; Fogg, D.E. Bimolecular coupling as a vector for decomposition of fast-initiating olefin metathesis catalysts. J. Am. Chem. Soc. 2018, 140, 6931–6944. [Google Scholar] [CrossRef]
- Van Rensburg, W.J.; Steynberg, P.J.; Meyer, W.H.; Kirk, M.M.; Forman, G.S. DFT Prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 2004, 126, 14332–14333. [Google Scholar] [CrossRef]
- Poater, A.; Bahri-Laleh, N.; Cavallo, L. Rationalizing current strategies to protect n-heterocyclic Carbene-based ruthenium catalysts active in olefin metathesis from C–H (De)Activation. Chem. Commun. 2011, 47, 6674–6676. [Google Scholar] [CrossRef] [PubMed]
- Manzini, S.; Poater, A.; Nelson, D.J.; Cavallo, L.; Slawin, A.M.Z.; Nolan, S.P. Insights into the decomposition of olefin metathesis pre-catalysts. Angew. Chem. Int. Ed. 2014, 53, 8995–8999. [Google Scholar] [CrossRef] [PubMed]
- Pump, E.; Poater, A.; Bahri-Laleh, N.; Credendino, R.; Serra, L.; Scarano, V.; Cavallo, L. Regio, Stereo and chemoselectivity of 2nd generation grubbs ruthenium-catalyzed olefin metathesis. Catal. Today 2020, in press. [Google Scholar] [CrossRef]
- Ahmed, T.S.; Montgomery, T.P.; Grubbs, R.H. Using stereoretention for the synthesis of E-Macrocycles with ruthenium-based olefin metathesis catalysts. Chem. Sci. 2018, 9, 3580–3583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nechmad, N.B.; Phatake, R.; Ivry, E.; Poater, A.; Lemcoff, N. Unprecedented selectivity of ruthenium iodide Benzylidenes in olefin metathesis reactions. Angew. Chem. Int. Ed. 2020, 59, 3539–3543. [Google Scholar] [CrossRef] [PubMed]
- Jana, A.; Grela, K. Forged and fashioned for faithfulness—Ruthenium olefin metathesis catalysts bearing ammonium tags. Chem. Commun. 2018, 54, 122–139. [Google Scholar] [CrossRef]
- Mauduit, M.; Schmid, T.E.; Dumas, A.; Colombel-Rouen, S.; Crévisy, C.; Baslé, O. From environmentally friendly reusable ionic-tagged ruthenium-based complexes to industrially relevant homogeneous catalysts: Toward a sustainable olefin metathesis. Synlett 2017, 28, 773–798. [Google Scholar] [CrossRef]
- Patrzałek, M.; Piątkowski, J.; Kajetanowicz, A.; Grela, K. Anion metathesis in facile preparation of olefin metathesis catalysts bearing a quaternary ammonium chloride tag. Synlett 2019, 30, 1981–1987. [Google Scholar] [CrossRef] [Green Version]
- Kluciar, M.; Grela, K.; Mauduit, M. Ruthenium-based complexes containing a benzimidazolium tag covalently connected to n-heterocyclic Carbene ligands: Environmentally friendly catalysts for olefin metathesis transformations. Dalton Trans. 2013, 42, 7354–7358. [Google Scholar] [CrossRef]
- Szczepaniak, G.; Kosiński, K.; Grela, K. Towards “cleaner” olefin metathesis: Tailoring the NHC ligand of second generation ruthenium catalysts to afford auxiliary traits. Green Chem. 2014, 16, 4474–4492. [Google Scholar] [CrossRef]
- Skowerski, K.; Białecki, J.; Czarnocki, S.J.; Żukowska, K.; Grela, K. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports. Beilstein J. Org. Chem. 2016, 12, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skowerski, K.; Szczepaniak, G.; Wierzbicka, C.; Gułajski, L.; Bieniek, M.; Grela, K. Highly active catalysts for olefin metathesis in water. Catal. Sci. Technol. 2012, 2, 2424–2427. [Google Scholar] [CrossRef]
- Chołuj, A.; Zieliński, A.; Grela, K.; Chmielewski, M.J. Metathesis@MOF: Simple and robust immobilization of olefin metathesis catalysts inside (Al)MIL-101-NH2. ACS Catal. 2016, 6, 6343–6349. [Google Scholar] [CrossRef]
- Espallargas, G.M.; Coronado, E. Magnetic functionalities in MOFs: From the framework to the pore. Chem. Soc. Rev. 2018, 47, 533–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chołuj, A.; Karczykowski, R.; Chmielewski, M.J. Simple and robust immobilization of a ruthenium olefin metathesis catalyst inside MOFs by acid–base reaction. Organometallics 2019, 38, 3392–3396. [Google Scholar] [CrossRef]
- Chołuj, A.; Krzesiński, P.; Ruszczyńska, A.; Bulska, E.; Kajetanowicz, A.; Grela, K. Noncovalent immobilization of cationic ruthenium complex in a metal–Organic framework by ion exchange leading to a heterogeneous olefin metathesis catalyst for use in green solvents. Organometallics 2019, 38, 3397–3405. [Google Scholar] [CrossRef]
- Chołuj, A.; Nogaś, W.; Patrzałek, M.; Krzesiński, P.; Chmielewski, M.J.; Kajetanowicz, A.; Grela, K. Preparation of ruthenium olefin metathesis catalysts immobilized on MOF, SBA-15, and 13X for probing heterogeneous boomerang effect. Catalysts 2020, 10, 438. [Google Scholar] [CrossRef]
- Slugovc, C.; Perner, B.; Stelzer, F.; Mereiter, K. “Second generation” ruthenium carbene complexes with a cis-Dichloro arrangement. Organometallics 2004, 23, 3622–3626. [Google Scholar] [CrossRef]
- Ung, T.; Hejl, A.; Grubbs, R.H.; Schrodi, Y. Latent ruthenium olefin metathesis catalysts that contain an N-Heterocyclic carbene ligand. Organometallics 2004, 23, 5399–5401. [Google Scholar] [CrossRef] [Green Version]
- Vehlow, K.; Gessler, S.; Blechert, S. Deactivation of ruthenium olefin metathesis catalysts through intramolecular Carbene–Arene bond formation. Angew. Chem. Int. Ed. 2007, 46, 8082–8085. [Google Scholar] [CrossRef]
- Romero, P.E.; Piers, W.; McDonald, R. Rapidly initiating ruthenium olefin-metathesis catalysts. Angew. Chem. Int. Ed. 2004, 43, 6161–6165. [Google Scholar] [CrossRef] [PubMed]
- Romero, P.E.; Piers, W. Direct observation of a 14-Electron ruthenacyclobutane relevant to olefin metathesis. J. Am. Chem. Soc. 2005, 127, 5032–5033. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, A.G.; Grubbs, R.H. Ruthenium metallacycles derived from 14-Electron complexes. New insights into olefin metathesis intermediates. J. Am. Chem. Soc. 2006, 128, 16048–16049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Eide, E.F.; Romero, P.E.; Piers, W. Generation and spectroscopic characterization of ruthenacyclobutane and ruthenium olefin carbene intermediates relevant to ring closing metathesis catalysis. J. Am. Chem. Soc. 2008, 130, 4485–4491. [Google Scholar] [CrossRef]
- Vorfalt, T.; Leuthäußer, S.; Plenio, H. An [(NHC)(NHCEWG)RuCl2(CHPh)] complex for the efficient formation of sterically hindered olefins by ring-closing metathesis. Angew. Chem. Int. Ed. 2009, 48, 5191–5194. [Google Scholar] [CrossRef]
- Huang, J.; Stevens, E.D.; Nolan, S.P.; Petersen, J.L. Olefin metathesis-active ruthenium complexes bearing a nucleophilic Carbene Ligand. J. Am. Chem. Soc. 1999, 121, 2674–2678. [Google Scholar] [CrossRef]
- Weskamp, T.; Kohl, F.J.; Hieringer, W.; Gleich, D.; Herrmann, W.A. Highly active ruthenium catalysts for olefin metathesis: The synergy of N-Heterocyclic Carbenes and Coordinatively labile ligands. Angew. Chem. Int. Ed. 1999, 38, 2416–2419. [Google Scholar] [CrossRef]
- Grubbs, R.H.; Burk, P.L.; Carr, D.D. Mechanism of the olefin metathesis reaction. J. Am. Chem. Soc. 1975, 97, 3265–3267. [Google Scholar] [CrossRef]
- Sanford, M.S.; Love, J.A.; Grubbs, R.H. Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 2001, 123, 6543–6554. [Google Scholar] [CrossRef] [Green Version]
- Conrad, J.C.; Parnas, H.H.; Snelgrove, J.L.; Fogg, D.E. Highly efficient Ru−Pseudohalide catalysts for olefin metathesis. J. Am. Chem. Soc. 2005, 127, 11882–11883. [Google Scholar] [CrossRef]
- Manzini, S.; Urbina-Blanco, C.A.; Nelson, D.; Poater, A.; Lebl, T.; Meiries, S.; Slawin, A.M.Z.; Falivene, L.; Cavallo, L.; Nolan, S.P. Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene. J. Organomet. Chem. 2015, 780, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Małecki, P.; Gajda, K.; Gajda, R.; Woźniak, K.; Trzaskowski, B.; Kajetanowicz, A.; Grela, K. Specialized ruthenium olefin metathesis catalysts bearing bulky unsymmetrical NHC ligands: Computations, synthesis, and application. ACS Catal. 2018, 9, 587–598. [Google Scholar] [CrossRef]
- Vyboishchikov, S.; Bühl, M.; Thiel, W. Mechanism of olefin metathesis with catalysis by ruthenium carbene complexes: Density functional studies on model systems. Chem. Eur. J. 2002, 8, 3962–3975. [Google Scholar] [CrossRef]
- Occhipinti, G.; Bjørsvik, H.-R.; Jensen, V.R. Quantitative structure−activity relationships of ruthenium catalysts for olefin metathesis. J. Am. Chem. Soc. 2006, 128, 6952–6964. [Google Scholar] [CrossRef]
- Ben-Asuly, A.; Aharoni, A.; Diesendruck, C.E.; Vidavsky, Y.; Goldberg, I.; Straub, B.F.; Lemcoff, N. Photoactivation of ruthenium olefin metathesis initiators. Organometallics 2009, 28, 4652–4655. [Google Scholar] [CrossRef]
- Benitez, D.; Tkatchouk, E.; Goddard, W.A., III. Relevance of cis- and trans-dichloride Ru intermediates in grubbs-ii olefin metathesis catalysis (H2IMesCl2Ru=CHR). Chem. Commun. 2008, 6194–6196. [Google Scholar] [CrossRef] [Green Version]
- Correa, A.; Cavallo, L. The elusive mechanism of olefin metathesis promoted by (NHC)Ru-Based Catalysts: A trade between steric, electronic, and solvent effects. J. Am. Chem. Soc. 2006, 128, 13352–13353. [Google Scholar] [CrossRef]
- Barbasiewicz, M.; Szadkowska, A.; Bujok, R.; Grela, K. Structure and activity peculiarities of ruthenium quinoline and quinoxaline complexes: Novel metathesis catalysts. Organometallics 2006, 25, 3599–3604. [Google Scholar] [CrossRef]
- Benítez, D.; Goddard, W.A. The isomerization equilibrium between Cis and trans chloride ruthenium olefin metathesis catalysts from quantum mechanics calculations. J. Am. Chem. Soc. 2005, 127, 12218–12219. [Google Scholar] [CrossRef] [Green Version]
- Cavallo, L. Mechanism of ruthenium-catalyzed olefin metathesis reactions from a theoretical perspective. J. Am. Chem. Soc. 2002, 124, 8965–8973. [Google Scholar] [CrossRef]
- Adlhart, C.; Chen, P. Ligand rotation distinguishes first- and second-generation ruthenium metathesis catalysts. Angew. Chem. Int. Ed. 2002, 41, 4484–4487. [Google Scholar] [CrossRef]
- Adlhart, C.; Chen, P. Mechanism and activity of ruthenium olefin metathesis catalysts: The role of ligands and substrates from a theoretical perspective. J. Am. Chem. Soc. 2004, 126, 3496–3510. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.C.; Benítez, D.; O’Leary, D.J.; Tkatchouk, E.; Day, M.W.; Goddard, W.A.; Grubbs, R.H. Conformations of N-Heterocyclic carbene ligands in ruthenium complexes relevant to olefin metathesis. J. Am. Chem. Soc. 2009, 131, 1931–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voccia, M.; Nolan, S.P.; Cavallo, L.; Poater, A. The activity of indenylidene derivatives in olefin metathesis catalysts. Beilstein J. Org. Chem. 2018, 14, 2956–2963. [Google Scholar] [CrossRef]
- Yang, H.-C.; Huang, Y.-C.; Lan, Y.; Luh, T.-Y.; Zhao, Y.; Truhlar, D.G. Carbene rotamer switching explains the reverse trans effect in forming the grubbs second-generation olefin metathesis catalyst. Organometallics 2011, 30, 4196–4200. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Attractive noncovalent interactions in the mechanism of grubbs second-generation Ru catalysts for olefin metathesis. Org. Lett. 2007, 9, 1967–1970. [Google Scholar] [CrossRef]
- Poater, A.; Ragone, F.; Correa, A.; Cavallo, L. Comparison of different ruthenium–alkylidene bonds in the activation step with N-Heterocyclic carbene Ru-Catalysts for olefins metathesis. Dalton Trans. 2011, 40, 11066–11069. [Google Scholar] [CrossRef]
- Mathew, J.; Koga, N.; Suresh, C.H. C−H Bond activation through σ-Bond metathesis and agostic interactions: Deactivation pathway of a grubbs second-generation catalyst. Organometallics 2008, 27, 4666–4670. [Google Scholar] [CrossRef]
- Fogg, D.E. Introduction to the virtual issue on olefin metathesis—Fundamentals and frontiers. Organometallics 2017, 36, 1881–1883. [Google Scholar] [CrossRef]
- Manzini, S.; Nelson, D.J.; Lebl, T.; Poater, A.; Cavallo, L.; Slawin, A.M.Z.; Nolan, S.P. From ruthenium olefin metathesis catalyst to (eta(5)-3-phenylindenyl)hydrido complex via alcoholysis. Chem. Commun. 2014, 50, 2205–2207. [Google Scholar] [CrossRef]
- Hong, S.H.; Chlenov, A.; Day, M.W.; Grubbs, R.H. Double C—H Activation of an N-Heterocyclic carbene ligand in a ruthenium olefin metathesis catalyst. Angew. Chem. Int. Ed. 2007, 46, 5148–5151. [Google Scholar] [CrossRef]
- Manzini, S.; Urbina-Blanco, C.A.; Poater, A.; Slawin, A.M.Z.; Cavallo, L.; Nolan, S.P. From olefin metathesis catalyst to alcohol racemization catalyst in one step. Angew. Chem. Int. Ed. 2011, 51, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Poater, A.; Cavallo, L. Mechanistic insights into the double C–H (de)activation route of a Ru-based olefin metathesis catalyst☆. J. Mol. Catal. A Chem. 2010, 324, 75–79. [Google Scholar] [CrossRef]
- Jawiczuk, M.; Młodzikowska-Pieńsko, K.; Osella, S.; Trzaskowski, B. Molecular modeling of mechanisms of decomposition of ruthenium metathesis catalysts by acrylonitrile. Organometallics 2020, 39, 239–246. [Google Scholar] [CrossRef]
- Webster, C.E. Computational insights into degenerate ethylene exchange with a grubbs-type catalyst. J. Am. Chem. Soc. 2007, 129, 7490–7491. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.C.; Keitz, B.K.; Kuhn, K.M.; Thomas, R.M.; Grubbs, R.H. Nonproductive events in ring-closing metathesis using ruthenium catalysts. J. Am. Chem. Soc. 2010, 132, 8534–8535. [Google Scholar] [CrossRef] [Green Version]
- Poater, A.; Vummaleti, S.V.C.; Pump, E.; Cavallo, L. Comparing Ru and Fe-catalyzed olefin metathesis. Dalton Trans. 2014, 43, 11216–11220. [Google Scholar] [CrossRef]
- Bantreil, X.; Poater, A.; Urbina-Blanco, C.A.; Bidal, Y.D.; Falivene, L.; Randall, R.A.M.; Cavallo, L.; Slawin, A.M.Z.; Cazin, C.S.J. Synthesis and reactivity of ruthenium phosphite indenylidene complexes. Organometallics 2012, 31, 7415–7426. [Google Scholar] [CrossRef]
- Hong, S.H.; Wenzel, A.G.; Salguero, T.T.; Day, M.W.; Grubbs, R.H. Decomposition of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 2007, 129, 7961–7968. [Google Scholar] [CrossRef] [Green Version]
- Urbina-Blanco, C.A.; Poater, A.; Lebl, T.; Manzini, S.; Slawin, A.M.Z.; Cavallo, L.; Nolan, S.P. The activation mechanism of Ru–Indenylidene complexes in olefin metathesis. J. Am. Chem. Soc. 2013, 135, 7073–7079. [Google Scholar] [CrossRef]
- Martin, R.L.; Hay, P.J.; Pratt, L. Hydrolysis of ferric ion in water and conformational equilibrium. J. Phys. Chem. A 1998, 102, 3565–3573. [Google Scholar] [CrossRef] [Green Version]
- Poater, A.; Pump, E.; Vummaleti, S.V.C.; Cavallo, L. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis. J. Chem. Theory Comput. 2014, 10, 4442–4448. [Google Scholar] [CrossRef] [PubMed]
- Nuñez-Zarur, F.; Solans-Monfort, X.; Pleixats, R.; Rodríguez-Santiago, L.; Sodupe, M. DFT study on the recovery of hoveyda-grubbs-type catalyst precursors in enyne and diene ring-closing metathesis. Chem. Eur. J. 2013, 19, 14553–14565. [Google Scholar] [CrossRef]
- Tracz, A.; Gawin, A.; Bieniek, M.; Olszewski, T.K.; Skowerski, K. Ammonium NHC-Tagged olefin metathesis catalysts—Influence of counter-ions on catalytic activity. New J. Chem. 2018, 42, 8609–8614. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev. 2003, 103, 1793–1873. [Google Scholar] [CrossRef]
- Koopmans, T. Über die Zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Poater, A.; Solans-Monfort, X.; Clot, E.; Copéret, C.; Eisenstein, O. DFT Calculations of d0 M(NR)(CHtBu)(X)(Y) (M = Mo, W.; R = CPh3, 2,6-iPr–C6H3; X and Y = CH2tBu, OtBu, OSi(OtBu)3) olefin metathesis catalysts: Structural, spectroscopic and electronic properties. Dalton Trans. 2006, 2006, 3077–3087. [Google Scholar] [CrossRef]
- Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 2019, 11, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Poater, A.; Cavallo, L. Comparing families of olefin polymerization precatalysts using the percentage of buried volume. Dalton Trans. 2009, 8875–8883. [Google Scholar] [CrossRef]
- Mariz, R.; Poater, A.; Gatti, M.; Drinkel, E.; Bürgi, J.J.; Luan, X.; Blumentritt, S.; Linden, A.; Cavallo, L.; Dorta, R. C2-symmetric chiral disulfoxide ligands in rhodium-catalyzed 1,4-addition: From ligand synthesis to the enantioselection pathway. Chem. Eur. J. 2010, 16, 14335–14347. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M(NHC) (NHC=N-Heterocyclic Carbene) bond. Coord. Chem. Rev. 2009, 253, 687–703. [Google Scholar] [CrossRef]
- Falivene, L.; Credendino, R.; Poater, A.; Petta, A.; Serra, L.; Oliva, R.; Scarano, V.; Cavallo, L. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps. Organometallics 2016, 35, 2286–2293. [Google Scholar] [CrossRef] [Green Version]
- Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L. SambVca: A web application for the calculation of the buried volume of N-heterocyclic carbene ligands. Eur. J. Inorg. Chem. 2009, 2009, 1759–1766. [Google Scholar] [CrossRef]
- Turias, F.; Poater, J.; Chauvin, R.; Poater, A. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers? Struct. Chem. 2016, 27, 240–259. [Google Scholar] [CrossRef]
- Poater, A.; Falivene, L.; Urbina-Blanco, C.A.; Manzini, S.; Nolan, S.P.; Cavallo, L. How does the addition of steric hindrance to a typical n-heterocyclic carbene ligand affect catalytic activity in olefin metathesis? Dalton Trans. 2013, 42, 7433–7439. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-Garcia, J.; Cohen, A.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Garcia, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
- Poater, J.; Gimferrer, M.; Poater, A. Covalent and ionic capacity of MOFs to sorb small gas molecules. Inorg. Chem. 2018, 57, 6981–6990. [Google Scholar] [CrossRef]
- Masdemont, J.; Luque-Urrutia, J.A.; Gimferrer, M.; Milstein, D.; Poater, A. Mechanism of coupling of alcohols and amines to generate aldimines and H2 by a pincer manganese catalyst. ACS Catal. 2019, 9, 1662–1669. [Google Scholar] [CrossRef]
- Jans, A.C.H.; Gómez-Suárez, A.; Nolan, S.P.; Reek, J.N.H. A switchable gold catalyst by encapsulation in a self-assembled cage. Chem. Eur. J. 2016, 22, 14836–14839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef]
- Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 1994, 100, 7535–7542. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Tomasi, J.; Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A aonsistent and accurate Ab Initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutter, J.; Iannuzzi, M.; Schiffmann, F.; Vandevondele, J. cp2k: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2007, 100, 136406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandevondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Catalyst | Precat | TS_open | Act | TS_Ci1 | Ci1 | TS_MCy | MCy | TS_Ci2 | Ci2 | TS_I14e | I14e |
---|---|---|---|---|---|---|---|---|---|---|---|
HOV | 0.0 | 19.9 | 10.3 | 13.7 | 14.9 | 17.4 | 16.7 | 21.9 | 22.2 | 20.6 | 14.4 |
AquaMetTM+ | 0.0 | 15.8 | 9.0 | 12.5 | 15.0 | 16.6 | 16.1 | 19.9 | 19.0 | 19.4 | 13.4 |
AquaMetTM | 0.0 | 15.4 | 10.9 | 13.7 | 14.2 | 17.8 | 16.4 | 20.4 | 21.7 | 19.9 | 14.0 |
Catalyst | Bond | Precat | Act | Ci1 | MCy | Ci2 | I14e |
---|---|---|---|---|---|---|---|
HOV | Ru=Cylidene(1) | 1.848 | 1.846 | 1.873 | 2.035 | 2.241 | - |
Ru=Cylidene(2) | - | - | 2.276 | 1.980 | 1.814 | 1.809 | |
Ru–CNHC | 1.965 | 1.927 | 2.033 | 2.016 | 2.076 | 1.933 | |
Ru–O | 2.304 | - | - | - | - | - | |
AquaMetTM+ | Ru=Cylidene(1) | 1.850 | 1.851 | 1.877 | 2.042 | 2.283 | - |
Ru=Cylidene(2) | - | - | 2.291 | 1.981 | 1.824 | 1.809 | |
Ru–CNHC | 1.953 | 1.916 | 2.014 | 2.007 | 1.981 | 1.917 | |
Ru–O | 2.296 | - | - | - | - | - | |
AquaMetTM | Ru=Cylidene(1) | 1.848 | 1.845 | 1.871 | 2.033 | 2.240 | - |
Ru=Cylidene(2) | - | - | 2.275 | 1.979 | 1.814 | 1.809 | |
Ru–CNHC | 1.966 | 1.935 | 2.034 | 2.015 | 2.079 | 1.939 | |
Ru–O | 2.311 | - | - | - | - | - |
Catalyst | Precat | Act | I14e | |||||||
---|---|---|---|---|---|---|---|---|---|---|
μ | η | ε | μ | η | ε | μ | η | ε | ||
HOV | Gas | −0.125 | 0.059 | 0.134 | −0.129 | 0.069 | 0.120 | −0.133 | 0.079 | 0.111 |
Solvent | −0.139 | 0.117 | 0.082 | −0.141 | 0.124 | 0.080 | −0.142 | 0.142 | 0.071 | |
AquaMetTM+ | Gas | −0.184 | 0.064 | 0.265 | −0.187 | 0.072 | 0.243 | −0.197 | 0.084 | 0.232 |
Solvent | −0.157 | 0.119 | 0.103 | −0.158 | 0.124 | 0.101 | −0.161 | 0.145 | 0.090 | |
AquaMetTM | Gas | −0.115 | 0.057 | 0.116 | −0.115 | 0.066 | 0.099 | −0.118 | 0.076 | 0.091 |
Solvent | −0.135 | 0.116 | 0.078 | −0.134 | 0.123 | 0.073 | −0.136 | 0.141 | 0.065 |
Catalyst | Atom | Precat | Act | Ci1 | MCy | Ci2 | I14e |
---|---|---|---|---|---|---|---|
HOV | Ru | −0.253 | −0.157 | −0.337 | −0.269 | −0.283 | −0.178 |
Ru=Cylidene(1) | −0.001 | −0.024 | 0.051 | −0.164 | −0.443 | - | |
Ru=Cylidene(2) | - | - | −0.426 | −0.333 | −0.147 | −0.205 | |
CNHC | 0.487 | 0.505 | 0.458 | 0.481 | 0.462 | - | |
O | −0.475 | −0.531 | −0.529 | −0.541 | −0.544 | - | |
Cl1 | −0.268 | −0.253 | −0.296 | −0.308 | −0.303 | - | |
Cl2 | −0.269 | −0.264 | −0.288 | −0.306 | −0.298 | - | |
AquaMetTM+ | Ru | −0.253 | −0.156 | −0.342 | −0.274 | −0.342 | −0.174 |
Ru=Cylidene(1) | 0.002 | −0.020 | 0.050 | −0.161 | −0.465 | - | |
Ru=Cylidene(2) | - | - | −0.424 | −0.328 | −0.133 | −0.197 | |
CNHC | 0.485 | 0.502 | 0.464 | 0.482 | 0.473 | - | |
O | −0.476 | −0.533 | −0.531 | −0.545 | −0.537 | - | |
Cl1 | −0.253 | −0.240 | −0.291 | −0.308 | −0.294 | - | |
Cl2 | −0.264 | −0.263 | −0.286 | −0.295 | −0.327 | - | |
AquaMetTM | Ru | −0.250 | −0.157 | −0.336 | −0.263 | −0.282 | −0.179 |
Ru=Cylidene(1) | −0.009 | −0.034 | 0.046 | −0.171 | −0.445 | - | |
Ru=Cylidene(2) | - | - | −0.427 | −0.333 | −0.148 | −0.210 | |
CNHC | 0.489 | 0.508 | 0.463 | 0.486 | 0.464 | - | |
O | −0.475 | −0.531 | −0.530 | −0.546 | −0.546 | - | |
Cl1 | −0.261 | −0.245 | −0.294 | −0.305 | −0.294 | - | |
Cl2 | −0.273 | −0.269 | −0.291 | −0.312 | −0.309 | - |
Model Catalyst | Precat | Act | Ci1 | MCy | Ci2 | I14e |
---|---|---|---|---|---|---|
AquaMetTM+ (a) | 0.0 | 13.2 | 6.3 | 0.2 | 12.9 | 18.0 |
AquaMetTM (a) | 0.0 | 11.8 | 5.2 | −2.4 | 13.1 | 13.2 |
MOF-AquaMetTM (a) | 0.0 | 2.1 | −3.1 | 3.1 | 3.9 | 8.2 |
AquaMetTM+ (b) | 0.0 | 13.6 | 6.0 | 1.0 | 7.0 | 14.4 |
AquaMetTM (b) | 0.0 | 14.7 | 5.8 | −0.1 | 9.9 | 10.8 |
HOV(b) | 0.0 | 12.9 | 5.6 | 0.5 | 10.4 | 13.0 |
HOV(b,c) | 0.0 | 10.5 | 15.0 (18.7) | 11.6 (15.4) | 20.0 (23.8) | 9.8 (9.0) |
Model Catalyst | Radius | 3.5 | 5.0 | 8.0 | 10.0 | 12.0 | 15.0 |
---|---|---|---|---|---|---|
HOV | 33.1 | 35.4 | 16.6 | 8.7 | 5.0 | 0.0 |
AquaMetTM | 33.3 | 35.6 | 18.7 | 11.0 | 7.1 | 3.7 |
MOF | 0.0 | 0.0 | 0.9 | 5.0 | 10.2 | 16.9 |
MOF-AquaMetTM | 32.9 | 39.6 | 24.8 | 18.4 | 18.6 | 21.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pareras, G.; Tiana, D.; Poater, A. MOF Encapsulation of Ru Olefin Metathesis Catalysts to Block Catalyst Decomposition. Catalysts 2020, 10, 687. https://doi.org/10.3390/catal10060687
Pareras G, Tiana D, Poater A. MOF Encapsulation of Ru Olefin Metathesis Catalysts to Block Catalyst Decomposition. Catalysts. 2020; 10(6):687. https://doi.org/10.3390/catal10060687
Chicago/Turabian StylePareras, Gerard, Davide Tiana, and Albert Poater. 2020. "MOF Encapsulation of Ru Olefin Metathesis Catalysts to Block Catalyst Decomposition" Catalysts 10, no. 6: 687. https://doi.org/10.3390/catal10060687
APA StylePareras, G., Tiana, D., & Poater, A. (2020). MOF Encapsulation of Ru Olefin Metathesis Catalysts to Block Catalyst Decomposition. Catalysts, 10(6), 687. https://doi.org/10.3390/catal10060687