Main Structural Targets for Engineering Lipase Substrate Specificity
Abstract
:1. Introduction
2. Primary Lipase Classification
3. Advance Lipase Classification
4. The Lipases Expression System
5. Lipases Main Structural Features
5.1. The Lid
5.2. The Oxyanion Hole
5.3. Substrate Binding Area
5.4. Enzyme Catalytic Mechanism
6. Lipase Selectivity
6.1. Chemoselectivity
6.2. Regioselectivity
6.3. Stereoselectivity
7. Lipase Reactions and Applications
8. Major Challenges of Implementing Wild Type Lipase in Industrial Application
9. Enzyme Engineering Approaches
9.1. Directed Evolution
9.2. Rational Design
9.3. Combined Engineering Strategies
10. Targeting Loop and Binding Area for Engineering Specificity
11. Conclusions and Future Prospective
Author Contributions
Funding
Conflicts of Interest
References
- Su, F.; Li, G.; Fan, Y.; Yan, Y. Enhanced performance of lipase via microcapsulation and its application in biodiesel preparation. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornscheuer, U.T.; Kazlauskas, R.J. Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations; John Wiley & Sons: New Jersey, NJ, USA, 2006; ISBN 3527607129. [Google Scholar]
- Zaks, A.; Klibanov, A.M. Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA 1985, 82, 3192–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reetz, M.T. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 2002, 6, 145–150. [Google Scholar] [CrossRef]
- Sarmah, N.; Revathi, D.; Sheelu, G.; Yamuna Rani, K.; Sridhar, S.; Mehtab, V.; Sumana, C. Recent advances on sources and industrial applications of lipases. Biotechnol. Prog. 2018, 34, 5–28. [Google Scholar] [CrossRef]
- Bornscheuer, U.T. Alteration of lipase properties by protein engineering methods. OCL Ol. Corps Gras Lipides 2008, 15, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Pleiss, J.; Fischer, M.; Schmid, R.D. Anatomy of lipase binding sites: The scissile fatty acid binding site. Chem. Phys. Lipids 1998, 93, 67–80. [Google Scholar] [CrossRef]
- Jaeger, K.-E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 2002, 13, 390–397. [Google Scholar] [CrossRef]
- Richmond, G.S.; Smith, T.K. Phospholipases A1. Int. J. Mol. Sci. 2011, 12, 588–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, Y.B.; Verger, R.; Abousalham, A. Lipases or esterases: Does it really matter? Toward a new bio-physico-chemical classification. In Lipases and Phospholipases: Methods and Protocols; Sandoval, G., Ed.; Humana Press: Totowa, NJ, USA, 2012; pp. 31–51. ISBN 978-1-61779-600-5. [Google Scholar]
- Chen, S.; Su, L.; Chen, J.; Wu, J. Cutinase: Characteristics, preparation, and application. Biotechnol. Adv. 2013, 31, 1754–1767. [Google Scholar] [CrossRef] [PubMed]
- Van Tilbeurgh, H.; Egloff, M.-P.; Martinez, C.; Rugani, N.; Verger, R.; Cambillau, C. Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 1993, 362, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Fojan, P.; Jonson, P.H.; Petersen, M.T.N.; Petersen, S.B. What distinguishes an esterase from a lipase: A novel structural approach. Biochimie 2000, 82, 1033–1041. [Google Scholar] [CrossRef]
- Chahiniana, H.; Sarda, L. Distinction between esterases and lipases: Comparative biochemical properties of sequence-related carboxylesterases. Protein Pept. Lett. 2009, 16, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.-E.; Ransac, S.; Dijkstra, B.W.; Colson, C.; van Heuvel, M.; Misset, O. Bacterial lipases. FEMS Microbiol. Rev. 1994, 15, 29–63. [Google Scholar] [CrossRef]
- Eggert, T.; van Pouderoyen, G.; Dijkstra, B.W.; Jaeger, K.-E. Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett. 2001, 502, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, F.; De Castro, M.S.; Sanchez-Montero, J.M.; Sinisterra, J.V.; Valmaseda, M.; Elson, S.W.; Alvarez, E. Novel microbial lipases: Catalytic activity in reactions in organic media. Enzym. Microb. Technol. 2001, 28, 145–154. [Google Scholar] [CrossRef]
- Arpigny, J.L.; Jaeger, K.E. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 1999, 343, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, S.; Koyanagi, T.; Kanaya, E. An esterase from Escherichia coli with a sequence similarity to hormone-sensitive lipase. Biochem. J. 1998, 332, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Masomian, M.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Basri, M. Solubility analysis, cloning and functional overexpression of the lipase from Aneurinibacillus thermoaerophilus strain HZ, the first member of true lipases subfamily I.9. Appl. Biochem. Microbiol. 2018, 54, 269–276. [Google Scholar] [CrossRef]
- Kim, K.K.; Song, H.K.; Shin, D.H.; Hwang, K.Y.; Choe, S.; Yoo, O.J.; Suh, S.W. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an α/β hydrolase with broad substrate specificity. Structure 1997, 5, 1571–1584. [Google Scholar] [CrossRef] [Green Version]
- Leow, T.C.; Rahman, R.N.Z.R.A.; Basri, M.; Salleh, A.B. High level expression of thermostable lipase from Geobacillus sp. strain T1. Biosci. Biotechnol. Biochem. 2004, 68, 96–103. [Google Scholar] [CrossRef]
- Upton, C. A new family of lipolytic enzymes? Trends Biochem. Sci. 1995, 20, 178–179. [Google Scholar] [CrossRef]
- Akoh, C.C.; Lee, G.-C.; Liaw, Y.-C.; Huang, T.-H.; Shaw, J.-F. GDSL family of serine esterases/lipases. Prog. Lipid Res. 2004, 43, 534–552. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, S.; Jaeger, K.-E. Lipolytic enzymes from bacteria. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin, Heidelberg, 2010; ISBN 3540775846. [Google Scholar]
- Österlund, T.; Danielsson, B.; Degerman, E.; Contreras, J.A.; Edgren, G.; Davis, R.C.; Schotz, M.C.; Holm, C. Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem. J. 1996, 319, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, Y.M.; Ghazy, M.A.; Sayed, A.; Ouf, A.; El-Dorry, H.; Siam, R. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool. Sci. Rep. 2013, 3, 3358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nacke, H.; Will, C.; Herzog, S.; Nowka, B.; Engelhaupt, M.; Daniel, R. Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiol. Ecol. 2011, 78, 188–201. [Google Scholar] [CrossRef] [Green Version]
- Galleni, M.; Lindberg, F.; Normark, S.; Cole, S.; Honore, N.; Joris, B.; Frère, J.-M. Sequence and comparative analysis of three Enterobacter cloacae ampC β-lactamase genes and their products. Biochem. J. 1988, 250, 753–760. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC β-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, M.; Shimizu, M.; Ohkawa, H.; Kanaoka, M. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: Cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia Coli. Appl. Environ. Microbiol. 1995, 61, 3208–3215. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, G.M.; Trono, D. Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int. J. Mol. Sci. 2015, 16, 20774–20840. [Google Scholar] [CrossRef] [Green Version]
- Eggert, T.; Pencreac ‘h, G.; Douchet, I.; Verger, R.; Jaeger, K. A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. Eur. J. Biochem. 2000, 267, 6459–6469. [Google Scholar] [CrossRef] [Green Version]
- Salwoom, L.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Shariff, F.M.; Convey, P.; Pearce, D.; Ali, M.S.M. Isolation, characterisation, and lipase production of a cold-adapted bacterial strain Pseudomonas sp. LSK25 isolated from Signy Island, Antarctica. Molecules 2019, 24, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latip, W.; Raja Abd Rahman, R.N.Z.R.A.; Leow, A.T.C.; Mohd Shariff, F.; Kamarudin, N.H.A.; Mohamad Ali, M.S. The effect of N-terminal domain removal towards the biochemical and structural features of a thermotolerant lipase from an antarctic Pseudomonas sp. Strain AMS3. Int. J. Mol. Sci. 2018, 19, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, H.M.; Zaghloul, T.I.; Khalil, I.A.; Abdelbaeth, T.M. Molecular cloning and expression in Escherichia coli of Pseudomonas aeruginosa lipase gene. Biotechnology 2006, 5, 62–68. [Google Scholar]
- Van Bloois, E.; Winter, R.T.; Kolmar, H.; Fraaije, M.W. Decorating microbes: Surface display of proteins on Escherichia Coli. Trends Biotechnol. 2011, 29, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.T.; Qi, F.; Yuan, C.; Zhao, X.; Ramkrishna, D.; Liu, D.; Varma, A. Lipase-catalyzed process for biodiesel production: Protein engineering and lipase production. Biotechnol. Bioeng. 2014, 111, 639–653. [Google Scholar] [CrossRef]
- Tafakori, V.; Torktaz, I.; Doostmohammadi, M.; Ahmadian, G. Microbial cell surface display; its medical and environmental applications. Iran. J. Biotechnol. 2012, 10, 231–239. [Google Scholar]
- Tanaka, T.; Yamada, R.; Ogino, C.; Kondo, A. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl. Microbiol. Biotechnol. 2012, 95, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Ogata, K.; Nishikawa, H.; Ohsugi, M. A yeast capable of utilizing methanol. Agric. Biol. Chem. 1969, 33, 1519–1520. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, X.; Du, L.; Li, S. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: An efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts. Biotechnol. Biofuels 2014, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Katoch, M.; Srivastava, P.S.; Qazi, G.N. Approaches for refining heterologous protein production in filamentous fungi. World J. Microbiol. Biotechnol. 2009, 25, 2083–2094. [Google Scholar] [CrossRef]
- Høegh, I.; Patkar, S.; Halkier, T.; Hansen, M.T. Two lipases from Candida antarctica: Cloning and expression in Aspergillus oryzae. Can. J. Bot. 1995, 73, 869–875. [Google Scholar] [CrossRef]
- Fu, C.; Hu, Y.; Xie, F.; Guo, H.; Ashforth, E.J.; Polyak, S.W.; Zhu, B.; Zhang, L. Molecular cloning and characterization of a new cold-active esterase from a deep-sea metagenomic library. Appl. Microbiol. Biotechnol. 2011, 90, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Oh, K.H.; Lee, M.H.; Kang, C.H.; Oh, T.K.; Yoon, J.H. Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl. Environ. Microbiol. 2009, 75, 257–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.H.; Lee, C.H.; Oh, T.K.; Song, J.K.; Yoon, J.H. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: Evidence for a new family of bacterial lipases. Appl. Environ. Microbiol. 2006, 72, 7406–7409. [Google Scholar] [CrossRef] [Green Version]
- Brzozowski, A.M.; Derewenda, U.; Derewenda, Z.S.; Dodson, G.G.; Lawson, D.M.; Turkenburg, J.P.; Bjorkling, F.; Huge-Jensen, B.; Patkar, S.A.; Thim, L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 1991, 351, 491–494. [Google Scholar] [CrossRef]
- Brocca, S.; Secundo, F.; Ossola, M.; Alberghina, L.; Carrea, G.; Lotti, M. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci. 2003, 12, 2312–2319. [Google Scholar] [CrossRef] [Green Version]
- Hamid, T.H.A.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Basri, M. The role of lid in protein-solvent interaction of the simulated solvent stable thermostable lipase from Bacillus strain 42 in water-solvent mixtures. Biotechnol. Biotechnol. Equip. 2009, 23, 1524–1530. [Google Scholar] [CrossRef] [Green Version]
- Barbe, S.; Lafaquière, V.; Guieysse, D.; Monsan, P.; Remaud-Siméon, M.; André, I. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Proteins Struct. Funct. Bioinforma. 2009, 77, 509–523. [Google Scholar] [CrossRef]
- Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.E.; Miller, R. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 2009, 147, 237–250. [Google Scholar] [CrossRef]
- Cajal, Y.; Svendsen, A.; Girona, V.; Patkar, S.A.; Alsina, M.A. Interfacial control of lid opening in Thermomyces lanuginosa lipase. Biochemistry 2000, 39, 413–423. [Google Scholar] [CrossRef]
- Verger, R. Enzyme kinetics of lipolysis. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 1980; Volume 64, pp. 340–392. ISBN 0076-6879. [Google Scholar]
- Secundo, F.; Carrea, G.; Tarabiono, C.; Gatti-Lafranconi, P.; Brocca, S.; Lotti, M.; Jaeger, K.-E.; Puls, M.; Eggert, T. The lid is a structural and functional determinant of lipase activity and selectivity. J. Mol. Catal. B Enzym. 2006, 39, 166–170. [Google Scholar] [CrossRef]
- Tang, L.; Su, M.; Zhu, L.; Chi, L.; Zhang, J.; Zhou, Q. Substitution of Val72 residue alters the enantioselectivity and activity of Penicillium expansum lipase. World J. Microbiol. Biotechnol. 2013, 29, 145–151. [Google Scholar] [CrossRef]
- Van Pouderoyen, G.; Eggert, T.; Jaeger, K.E.; Dijkstra, B.W. The crystal structure of Bacillus subtilis lipase: A minimal α/β hydrolase fold enzyme. J. Mol. Biol. 2001, 309, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Mezzetti, A.; Schrag, J.D.; Cheong, C.S.; Kazlauskas, R.J. Mirror-image packing in enantiomer discrimination: Molecular basis for the enantioselectivity of B. cepacia lipase toward 2-methyl-3-phenyl-1-propanol. Chem. Biol. 2005, 12, 427–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ericsson, D.J.; Kasrayan, A.; Johansson, P.; Bergfors, T.; Sandström, A.G.; Bäckvall, J.E.; Mowbray, S.L. X-ray Structure of Candida antarctica Lipase A Shows a Novel Lid Structure and a Likely Mode of Interfacial Activation. J. Mol. Biol. 2008, 376, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Kumari, A.; Syal, P.; Singh, Y. Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog. Lipid Res. 2015, 57, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Gupta, R. Phenylalanine to leucine point mutation in oxyanion hole improved catalytic efficiency of Lip12 from Yarrowia lipolytica. Enzym. Microb. Technol. 2013, 53, 386–390. [Google Scholar] [CrossRef]
- Pleiss, J.; Fischer, M.; Peiker, M.; Thiele, C.; Schmid, R.D. Lipase engineering database: Understanding and exploiting sequence–structure–function relationships. J. Mol. Catal. B Enzym. 2000, 10, 491–508. [Google Scholar] [CrossRef]
- Lenfant, N.; Hotelier, T.; Velluet, E.; Bourne, Y.; Marchot, P.; Chatonnet, A. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: Tools to explore diversity of functions. Nucleic Acids Res. 2012, 41, D423–D429. [Google Scholar] [CrossRef] [Green Version]
- Korman, T.P.; Bowie, J.U. Crystal structure of Proteus mirabilis lipase, a novel lipase from the Proteus/psychrophilic subfamily of lipase family I.1. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Bassegoda, A.; Pastor, F.I.J.; Diaz, P. Rhodococcus sp. strain CR-53 lipr, the first member of a new bacterial lipase family (Family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Appl. Environ. Microbiol. 2012, 78, 1724–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cygler, M.; Schrag, J.D.; Bouthillier, F.; Grochulski, P.; Kazlauskas, R.J.; Serreq, A.N.; Gupta, A.K.; Rubin, B. A structural basis for the chiral preferences of lipases. J. Am. Chem. Soc. 1994, 116, 3180–3186. [Google Scholar] [CrossRef]
- Carrasco-López, C.; Godoy, C.; de las Rivas, B.; Fernández-Lorente, G.; Palomo, J.M.; Guisán, J.M.; Fernández-Lafuente, R.; Martínez-Ripoll, M.; Hermoso, J.A. Activation of bacterial thermo alkalophilic lipases is spurred by dramatic structural rearrangements. J. Biol. Chem. 2009, 284, 4365–4372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA—A self-parameterizing force field. Proteins Struct. Funct. Bioinform. 2002, 47, 393–402. [Google Scholar] [CrossRef]
- Rose, A.S.; Bradley, A.R.; Valasatava, Y.; Duarte, J.M.; Prlic, A.; Rose, P.W. NGL viewer: Web-based molecular graphics for large complexes. Bioinformatics 2018, 34, 3755–3758. [Google Scholar] [CrossRef] [Green Version]
- Holmquist, M. Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa. Chem. Phys. Lipids 1998, 93, 57–65. [Google Scholar] [CrossRef]
- Widmann, M.; Juhl, P.B.; Pleiss, J. Structural classification by the Lipase Engineering Database: A case study of Candida antarctica lipase A. BMC Genom. 2010, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wu, J.; Yang, L.; Xu, G. Characterization and structure basis of Pseudomonas alcaligenes lipase’s enantiopreference towards d,l-menthyl propionate. J. Mol. Catal. B Enzym. 2014, 102, 81–87. [Google Scholar] [CrossRef]
- Panizza, P.; Cesarini, S.; Diaz, P.; Rodríguez Giordano, S. Saturation mutagenesis in selected amino acids to shift Pseudomonas sp. acidic lipase Lip I.3 substrate specificity and activity. Chem. Commun. 2015, 51, 1330–1333. [Google Scholar] [CrossRef]
- Ghosh, D.; Wawrzak, Z.; Pletnev, V.Z.; Li, N.; Kaiser, R.; Pangborn, W.; Jörnvall, H.; Erman, M.; Duax, W.L. Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase. Structure 1995, 3, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Quaglia, D.; Alejaldre, L.; Ouadhi, S.; Rousseau, O.; Pelletier, J.N. Holistic engineering of Cal-A lipase chain-length selectivity identifies triglyceride binding hot-spot. PLoS ONE 2019, 14, 1–17. [Google Scholar] [CrossRef]
- Turner, J.M.; Larsen, N.A.; Basran, A.; Barbas, C.F.; Bruce, N.C.; Wilson, I.A.; Lerner, R.A. Biochemical characterization and structural analysis of a highly proficient cocaine esterase. Biochemistry 2002, 41, 12297–12307. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.-E.; Reetz, M.T. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 1998, 16, 396–403. [Google Scholar] [CrossRef]
- Heikinheimo, P.; Goldman, A.; Jeffries, C.; Ollis, D.L. Of barn owls and bankers: A lush variety of α/β hydrolases. Structure 1999, 7, R141–R146. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Gupta, N.; Rathi, P. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 2004, 64, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Dijkstra, B.W. α/β hydrolase fold enzymes: The family keeps growing. Curr. Opin. Struct. Biol. 1999, 9, 732–737. [Google Scholar] [CrossRef]
- Petersen, M.T.N.; Fojan, P.; Petersen, S.B. How do lipases and esterases work: The electrostatic contribution. J. Biotechnol. 2001, 85, 115–147. [Google Scholar] [CrossRef]
- Nardini, M.; Lang, D.A.; Liebeton, K.; Jaeger, K.E.; Dijkstra, B.W. Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases. J. Biol. Chem. 2000, 275, 31219–31225. [Google Scholar] [CrossRef] [Green Version]
- Uppenberg, J.; Ohmer, N.; Norin, M.; Hult, K.; Kleywegt, G.J.; Patkar, S.; Waagen, V.; Anthonsen, T.; Jones, T.A. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 1995, 34, 16838–16851. [Google Scholar] [CrossRef]
- Derewenda, U.; Brzozowski, A.; Lawson, D.M.; Derewenda, Z.S. Catalysis at the interface: The anatomy of a conformational change in. Biochemistry 1992, 31, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Egloff, M.-P.; Marguet, F.; Buono, G.; Verger, R.; Cambillau, C.; Van Tilbeurgh, H. A resolution structure of the pancreatic lipase-colipase complex. Biochemistry 1995, 34, 2751–2762. [Google Scholar] [CrossRef] [PubMed]
- Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding; Macmillan: New York, NY, USA, 1999; ISBN 0716732688. [Google Scholar]
- Pauling, L. Chemical achievement and hope for the future. Am. Sci. 1948, 36, 51. [Google Scholar] [PubMed]
- Warshel, A. Energetics of enzyme catalysis. Proc. Natl. Acad. Sci. USA 1978, 75, 5250–5254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Lan, D.; Yang, B.; Wang, Y. Biochemical Properties and Structure Analysis of a DAG-Like Lipase from Malassezia globosa. Int. J. Mol. Sci. 2015, 16, 4865–4879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barriuso, J.; Vaquero, M.E.; Prieto, A.; Martínez, M.J. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnol. Adv. 2016, 34, 874–885. [Google Scholar] [CrossRef]
- Hedfors, C.; Hult, K.; Martinelle, M. Lipase chemoselectivity towards alcohol and thiol acyl acceptors in a transacylation reaction. J. Mol. Catal. B Enzym. 2010, 66, 120–123. [Google Scholar] [CrossRef]
- Taniguchi, I.; Kuhlman, W.A.; Mayes, A.M.; Griffith, L.G. Functional modification of biodegradable polyesters through a chemoselective approach: Application to biomaterial surfaces. Polym. Int. 2006, 55, 1385–1397. [Google Scholar] [CrossRef]
- Uyama, H.; Kobayashi, S.; Morita, M.; Habaue, S.; Okamoto, Y. Chemoselective ring-opening polymerization of a lactone having exo-methylene group with lipase catalysis. Macromolecules 2001, 34, 6554–6556. [Google Scholar] [CrossRef]
- Veld, M.A.J.; Palmans, A.R.A.; Meijer, E.W. Selective polymerization of functional monomers with Novozym 435. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 5968–5978. [Google Scholar] [CrossRef]
- Van Der Meulen, I.; De Geus, M.; Antheunis, H.; Deumens, R.; Joosten, E.A.J.; Koning, C.E.; Heise, A. Polymers from functional macrolactones as potential biomaterials: Enzymatic ring opening polymerization, biodegradation, and biocompatibility. Biomacromolecules 2008, 9, 3404–3410. [Google Scholar] [CrossRef]
- Polloni, A.E.; Chiaradia, V. Polyesters from Macrolactones Using Commercial Lipase NS 88011 and Novozym 435 as Biocatalysts. Appl. Biochem. Biotechnol. 2017, 184, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, Z.-L.; He, W.; Geng, X.-C.; Fang, Z.; Li, X.; Li, Z.-J.; Guo, K. Highly chemoselective lipase from Candida sp. 99-125 catalyzed ring-opening polymerization for direct synthesis of thiol-terminated poly (ɛ-caprolactone). Chin. Chem. Lett. 2015, 26, 361–364. [Google Scholar] [CrossRef]
- Li, Y.M.; Chang, X.P.; Cheng, Y.J.; Chen, S.; He, F.; Zhuo, R.X. Mercaptan acids modified amphiphilic copolymers for efficient loading and release of doxorubicin. Colloids Surf. B Biointerfaces 2017, 153, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Borza, P.; Peter, F.; Paul, C. Improved enantioselectivity of Candida antarctica A lipase through sol-gel entrapment. Chem.Bull “POLITEHNICA” Univ. (Timisoara). 2015, 60, 49–54. [Google Scholar]
- Ribeiro, B.D.; de Castro, A.M.; Coelho, M.A.Z.; Freire, D.M.G. Production and use of lipases in bioenergy: A review from the feedstocks to biodiesel production. Enzym. Res. 2011, 2011, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wuensch, C.; Glueck, S.M.; Gross, J.; Koszelewski, D.; Schober, M.; Faber, K. Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives. Org. Lett. 2012, 14, 1974–1977. [Google Scholar] [CrossRef]
- Oláh, J.; Mulholland, A.J.; Harvey, J.N. Understanding the determinants of selectivity in drug metabolism through modeling of dextromethorphan oxidation by cytochrome P450. Proc. Natl. Acad. Sci. USA 2011, 108, 6050–6055. [Google Scholar] [CrossRef] [Green Version]
- Chaker, L.; Yongye, A.B.; Nefzi, A.; Martínez-Mayorga, K. Prediction of the experimental regioselectivity of C60 fullerene bis-adducts. J. Phys. Org. Chem. 2012, 25, 894–901. [Google Scholar] [CrossRef]
- Lonsdale, R.; Houghton, K.T.; Zurek, J.; Bathelt, C.M.; Foloppe, N.; De Groot, M.J.; Harvey, J.N.; Mulholland, A.J. Quantum mechanics/molecular mechanics modeling of regioselectivity of drug metabolism in cytochrome P450 2C9. J. Am. Chem. Soc. 2013, 135, 8001–8015. [Google Scholar] [CrossRef]
- Johnston, J.B.; Singh, A.A.; Clary, A.A.; Chen, C.K.; Hayes, P.Y.; Chow, S.; De Voss, J.J.; Ortiz De Montellano, P.R. Substrate analog studies of the ω-regiospecificity of Mycobacterium tuberculosis cholesterol metabolizing cytochrome P450 enzymes CYP124A1, CYP125A1 and CYP142A1. Bioorg. Med. Chem. 2012, 20, 4064–4081. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, E.; Pedersen, P.L. High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase. Proc. Natl. Acad. Sci. USA 1977, 74, 3735–3739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Jahan, F.; Mahajan, R.V.; Saxena, R.K. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant. Bioresour. Technol. 2016, 218, 1246–1248. [Google Scholar] [CrossRef]
- Rivero, C.W.; Palomo, J.M. Covalent immobilization of Candida rugosa lipase at Alkaline pH and their application in the regioselective deprotection of Per-O-acetylated thymidine. Catalysts 2016, 6, 115. [Google Scholar] [CrossRef] [Green Version]
- Paques, F.W.; Macedo, G.A. Plant lipases from latex: Properties and industrial applications [lipases De Látex Vegetais: Propriedades E Aplicações Industriais]. Quim. Nova 2006, 29, 93–99. [Google Scholar] [CrossRef]
- Huh, J.W.; Yokoigawa, K.; Esaki, N.; Soda, K. Total conversion of racemic pipecolic acid into the L-enantiomer by a combination of enantiospecific oxidation with D-amino acid oxidase and reduction with sodium borohydride. Biosci. Biotechnol. Biochem. 1992, 56, 2081–2082. [Google Scholar]
- Schulz, T.; Schmid, R.D.; Pleiss, J. Structural basis of stereoselectivity in Candida rugosa lipase-catalyzed hydrolysis of secondary alcohols. Mol. Model. Annu. 2001, 7, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, R.; Hirano, N.; Kanaya, S.; Saito, I.; Haruki, M. Enhancement of the enzymatic activity of Escherichia coli acetyl esterase by random mutagenesis. J. Mol. Catal. B Enzym. 2010, 67, 155–161. [Google Scholar] [CrossRef]
- Chen, H.; Meng, X.; Xu, X.; Liu, W.; Li, S.; Chen, H. The molecular basis for lipase stereoselectivity. Appl. Microbiol. Biotechnol. 2018, 102, 3487–3495. [Google Scholar] [CrossRef] [PubMed]
- Muralidhar, R.V.; Chirumamilla, R.R.; Marchant, R.; Ramachandran, V.N.; Ward, O.P.; Nigam, P. Understanding lipase stereoselectivity. World J. Microbiol. Biotechnol. 2002, 18, 81–97. [Google Scholar] [CrossRef]
- Li, J.; Yue, L.; Li, C.; Pan, Y.; Yang, L. Enantioselectivity and catalysis improvements of Pseudomonas cepacia lipase with Tyr and Asp modification. Catal. Sci. Technol. 2015, 5, 2681–2687. [Google Scholar] [CrossRef]
- Kapoor, M.; Gupta, M.N. Lipase promiscuity and its biochemical applications. Process Biochem. 2012, 47, 555–569. [Google Scholar] [CrossRef]
- Soumanou, M.M.; Pérignon, M.; Villeneuve, P. Lipase-catalyzed interesterification reactions for human milk fat substitutes production: A review. Eur. J. Lipid Sci. Technol. 2013, 115, 270–285. [Google Scholar] [CrossRef]
- Horchani, H.; Aissa, I.; Ouertani, S.; Zarai, Z.; Gargouri, Y.; Sayari, A. Staphylococcal lipases: Biotechnological applications. J. Mol. Catal. B Enzym. 2012, 76, 125–132. [Google Scholar] [CrossRef]
- Laguerre, M.; Nlandu Mputu, M.; Brïys, B.; Lopez, M.; Villeneuve, P.; Dubreucq, E. Regioselectivity and fatty acid specificity of crude lipase extracts from Pseudozyma tsukubaensis, Geotrichum candidum, and Candida rugosa. Eur. J. Lipid Sci. Technol. 2017, 119, 1600302. [Google Scholar] [CrossRef]
- Ota, Y.; Sawamoto, T.; Hasuo, M. Tributyrin specifically induces a lipase with a preference for the sn-2 position of triglyceride in Geotrichum sp. FO401B. Biosci. Biotechnol. Biochem. 2000, 64, 2497–2499. [Google Scholar] [CrossRef]
- Sugihara, A.; Hata, S.; Shimada, Y.; Goto, K.; Tsunasawa, S.; Tominaga, Y. Characterization of Geotrichum candidum lipase III with some preference for the inside ester bond of triglyceride. Appl. Microbiol. Biotechnol. 1993, 40, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Yamasaki, S.; Basak, S.; Bera, A.; Bag, P.K. Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere. Process Biochem. 2012, 47, 858–866. [Google Scholar] [CrossRef]
- Yan, Q.; Duan, X.; Liu, Y.; Jiang, Z.; Yang, S. Expression and characterization of a novel 1,3-regioselective cold-adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis. Biotechnol. Biofuels 2016, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, M. Thermally Stable and Positionally Non-Specific Lipase Isolated from Candida. US patent 5273898, 28 December 1992. [Google Scholar]
- Schmid, R.D.; Verger, R. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. 1998, 37, 1608–1633. [Google Scholar] [CrossRef]
- Tong, X.; Busk, P.K.; Lange, L. Characterization of a new sn-1,3-regioselective triacylglycerol lipase from Malbranchea Cinnamomea. Biotechnol. Appl. Biochem. 2016, 63, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lafuente, R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal. B Enzym. 2010, 62, 197–212. [Google Scholar] [CrossRef]
- Brígida, A.I.S.; Amaral, P.F.F.; Coelho, M.A.Z.; Gonçalves, L.R.B. Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. J. Mol. Catal. B Enzym. 2014, 101, 148–158. [Google Scholar] [CrossRef]
- Stöcklein, W.; Sztajer, H.; Menge, U.; Schmid, R.D. Purification and properties of a lipase from Penicillium expansum. Biochim. Biophys. Acta 1993, 1168, 181–189. [Google Scholar] [CrossRef]
- Lanser, A.C.; Manthey, L.K.; Hou, C.T. Regioselectivity of New Bacterial Lipases Determined by Hydrolysis of Triolein. Curr. Microbiol 2002, 44, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, R.; Arulpandi, I.; Geetha, A. Bacterial lipases as potential industrial biocatalysts: An overview. Res. J. Microbiol. 2011, 6, 1–24. [Google Scholar] [CrossRef]
- Royter, M.; Schmidt, M.; Elend, C.; Höbenreich, H.; Schäfer, T.; Bornscheuer, U.T.; Antranikian, G. Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles 2009, 13, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.H.; Raghavendra, T.; Madamwar, D. A thermostable alkaline lipase from a local isolate Bacillus subtilis EH 37: Characterization, partial purification, and application in organic synthesis. Appl. Biochem. Biotechnol. 2010, 160, 2102–2113. [Google Scholar] [CrossRef]
- Joseph, B.; Ramteke, P.W.; Thomas, G. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv. 2008, 26, 457–470. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, L.; Liao, X.; Ding, Y.; Sun, J. Purification and partial characterization of two new cold-adapted lipases from mesophilic Geotrichum sp. SYBC WU-3. Process Biochem. 2009, 44, 786–790. [Google Scholar] [CrossRef]
- Champagne, E.; Strandman, S.; Zhu, X. Recent developments and optimization of lipase-catalyzed lactone formation and ring-opening polymerization. Macromol. Rapid Commun. 2016, 37, 1986–2004. [Google Scholar] [CrossRef] [PubMed]
- Castillo, E.; Casas-Godoy, L.; Sandoval, G. Medium-engineering: A useful tool for modulating lipase activity and selectivity. Biocatalysis 2016, 1, 178–188. [Google Scholar] [CrossRef]
- Priego, J.; Ortíz-Nava, C.; Carrillo-Morales, M.; López-Munguía, A.; Escalante, J.; Castillo, E. Solvent engineering: An effective tool to direct chemoselectivity in a lipase-catalyzed Michael addition. Tetrahedron 2009, 65, 536–539. [Google Scholar] [CrossRef]
- Coleman, M.H.; Macrae, A.R. Rearrangement of fatty acid esters in fat reaction reactants. Ger. Pat. 1977, 2, 608. [Google Scholar]
- Masayama, A.; Takahashi, T.; Tsukada, K.; Nishikawa, S.; Takahashi, R.; Adachi, M.; Koga, K.; Suzuki, A.; Yamane, T.; Nakano, H.; et al. Streptomyces phospholipase D mutants with altered substrate specificity capable of phosphatidylinositol synthesis. ChemBioChem 2008, 9, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Oroz-guinea, I.; Zorn, K.; Bornscheuer, U.T. Enhancement of lipase CAL-A selectivity by protein engineering for the hydrolysis of erucic acid from crambe oil. Eur. J. Lipid Sci. Tech. 2020, 1900115, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Brundiek, H.; Padhi, S.K.; Kourist, R.; Evitt, A.; Bornscheuer, U.T. Altering the scissile fatty acid binding site of Candida antarctica lipase A by protein engineering for the selective hydrolysis of medium chain fatty acids. Eur. J. Lipid Sci. Technol. 2012, 114, 1148–1153. [Google Scholar] [CrossRef]
- Sharma, S.; Kanwar, S.S. Organic solvent tolerant lipases and applications. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.; Gajera, H.; Gupta, A.; Manocha, L.; Madamwar, D. Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochem. Eng. J. 2015, 95, 62–70. [Google Scholar] [CrossRef]
- Zorn, K.; Oroz-guinea, I.; Brundiek, H.; Do, M.; Bornscheuer, U.T. Alteration of chain length selectivity of Candida antarctica lipase a by semi-rational design for the enrichment of erucic and gondoic fatty acids. Adv. Synth. Catal. 2018, 360, 4115–4131. [Google Scholar] [CrossRef] [Green Version]
- Engström, K.; Nyhlén, J.; Sandström, A.G.; Bäckvall, J.E. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters. J. Am. Chem. Soc. 2010, 132, 7038–7042. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Suzuki, K.; Tanikawa, S.; Akita, H. First synthesis of (+)- and (-)-elvirol based on an enzymatic function. Tetrahedron Asymmetry 2001, 12, 2597–2604. [Google Scholar] [CrossRef]
- Svendsen, A.; Gregory, P.C.; Borch, K. Lipases for Pharmaceutical Use. US patent 20090047266A1, 19 February 2009. [Google Scholar]
- Grabner, G.F.; Zimmermann, R.; Schicho, R.; Taschler, U. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol. Therapeut. 2017, 175, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Pham, C.T.N.; Weilbaecher, K.N.; Tomasson, M.H.; Wickline, S.A.; Lanza, G.M. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 85–106. [Google Scholar] [CrossRef] [PubMed]
- Loli, H.; Kumar Narwal, S.; Kumar Saun, N.; Gupta, R. Lipases in medicine: An overview. Mini-Rev. Med. Chem. 2015, 15, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Iso, M.; Chen, B.; Eguchi, M.; Kudo, T.; Shrestha, S. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B Enzym. 2001, 16, 53–58. [Google Scholar] [CrossRef]
- Baron, A.M.; Barouh, N.; Barea, B.; Villeneuve, P.; Mitchell, D.A.; Krieger, N. Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. Fuel 2014, 117, 458–462. [Google Scholar] [CrossRef]
- Amoah, J.; Ho, S.-H.; Hama, S.; Yoshida, A.; Nakanishi, A.; Hasunuma, T.; Ogino, C.; Kondo, A. Converting oils high in phospholipids to biodiesel using immobilized Aspergillus oryzae whole-cell biocatalysts expressing Fusarium heterosporum lipase. Biochem. Eng. J. 2016, 105, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Du, W.; Liu, D. Efficient biodiesel production from phospholipids-containing oil: Synchronous catalysis with phospholipase and lipase. Biochem. Eng. J. 2015, 94, 45–49. [Google Scholar] [CrossRef]
- Kanmani, P.; Aravind, J.; Kumaresan, K. An insight into microbial lipases and their environmental facet. Int. J. Environ. Sci. Technol. 2015, 12, 1147–1162. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, P.; Bhunia, B. Industrial application of lipase: A review. Biopharm. J. 2017, 1, 41–47. [Google Scholar]
- Meng, Y.; Li, S.; Yuan, H.; Zou, D.; Liu, Y.; Zhu, B.; Li, X. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste. Bioresour. Technol. 2015, 179, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, D.; Anusuya, C.A.; Divya, B.B.; Usha, M. Environmentally benign scouring of wool fibers using mesophile acidic lipase. Fibers Polym. 2014, 15, 1902–1907. [Google Scholar] [CrossRef]
- Adulkar, T.V.; Rathod, V.K. Pre-treatment of high fat content dairy wastewater using different commercial lipases. Desalin. Water Treat. 2015, 53, 2450–2455. [Google Scholar] [CrossRef]
- Rodrigues, J.P.; Orrico, A.C.A.; Junior, O.; Previdelli, M.A.; de Seno, L.O.; de Araújo, L.C.; de Sunada, N.S. Adding oil and lipase on the anaerobic digestion of pig manure. Ciência Rural 2014, 44, 544–547. [Google Scholar] [CrossRef] [Green Version]
- Bojsen, K.; Borch, K.; Budolfsen, G.; Fuglsang, K.C.; Glad, S.S.; Petri, A.; Shamkant, A.P.; Svendsen, A.; Vind, J. Lipolytic Enzyme Variants. US patent 7851176B2, 25 December 2007. [Google Scholar]
- Müller, J.; Sowa, M.A.; Dörr, M.; Bornscheuer, U.T. The acyltransferase activity of lipase CAL-A allows efficient fatty acid esters formation from plant oil even in an aqueous environment. Eur. J. Lipid Sci. Technol. 2015, 117, 1903–1907. [Google Scholar] [CrossRef]
- Chowdhury, A.; Mitra, D. A kinetic study on the Novozyme 435-catalyzed esterification of free fatty acids with octanol to produce octyl esters. Biotechnol. Prog. 2015, 31, 1494–1499. [Google Scholar] [CrossRef]
- Chaplin, J.A.; Gardiner, N.S.; Mitra, R.K.; Parkinson, C.J.; Portwig, M.; Mboniswa, B.A.; Evans-Dickson, M.D.; Brady, D.; Marais, S.F.; Reddy, S. Process for Preparing (-) Menthol and Similar Compounds. WO2002036795A2, 11 November 2006. [Google Scholar]
- Ganguly, S.; Nandi, S. Process optimization of lipase catalyzed synthesis of diesters in a packed bed reactor. Biochem. Eng. J. 2015, 102, 2–5. [Google Scholar] [CrossRef]
- Kim, J.-H.; Bhatia, S.K.; Yoo, D.; Seo, H.M.; Yi, D.-H.; Kim, H.J.; Lee, J.H.; Choi, K.-Y.; Kim, K.J.; Lee, Y.K. Lipase-catalyzed production of 6-o-cinnamoyl-sorbitol from d-sorbitol and cinnamic acid esters. Appl. Biochem. Biotechnol. 2015, 176, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-M.; Han, S.-S.; Kim, H.-S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015, 33, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial enzymes: Industrial progress in 21st century. 3 Biotech. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Coker, J.A. Extremophiles and biotechnology: Current uses and prospects. F1000Research 2016, 5, 1–7. [Google Scholar] [CrossRef]
- Bommarius, A.; Bommarius-Riebel, B. Fundamentals of Biocatalysis; Wiley-Blackwell: New Jersey, NJ, USA, 2005; ISBN 978-3-527-30344-1. [Google Scholar]
- Woolley, P. Lipases; their structure, biochemistry and application. Seq. Anal. Lipases Esterases Relat. Proteins 1994, 22, 27–28. [Google Scholar]
- Bhat, E.A.; Abdalla, M.; Rather, I.A. Key factors for successful protein purification and crystallization. Glob. J. Biotechnol. Biomater. Sci. 2018, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; Dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef] [Green Version]
- Kazlauskas, R.J.; Bornscheuer, U.T. Finding better protein engineering strategies. Nat. Chem. Biol. 2009, 5, 526–529. [Google Scholar] [CrossRef]
- Sissi, C.; Palumbo, M. Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res. 2009, 37, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Eckert, K.A.; Kunkel, T.A. DNA polymerase fidelity and the polymerase chain reaction. Genome Res. 1991, 1, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Stemmer, WP DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 1994, 91, 10747–10751. [CrossRef] [PubMed] [Green Version]
- Moore, J.C.; Arnold, F.H. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 1996, 14, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.-P.; Reymond, J.-L. Enzyme assays for high-throughput screening. Curr. Opin. Biotechnol. 2004, 15, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Bommarius, A.S. Biocatalysis: A status report. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 319–345. [Google Scholar] [CrossRef]
- Sun, Z.; Wikmark, Y.; Bäckvall, J.E.; Reetz, M.T. New concepts for increasing the efficiency in directed evolution of stereoselective enzymes. Chem. A Eur. J. 2016, 22, 5046–5054. [Google Scholar] [CrossRef]
- Pavelka, A.; Chovancova, E.; Damborsky, J. HotSpot Wizard: A web server for identification of hot spots in protein engineering. Nucleic Acids Res. 2009, 37, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Seelig, B.; Szostak, J.W. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 2007, 448, 828–831. [Google Scholar] [CrossRef] [Green Version]
- Antikainen, N.M.; Martin, S.F. Altering protein specificity: Techniques and applications. Bioorgan. Med. Chem. 2005, 13, 2701–2716. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T.; Carballeira, J.D.; Vogel, A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed. 2006, 45, 7745–7751. [Google Scholar] [CrossRef] [PubMed]
- Svedendahl, M.; Jovanović, B.; Fransson, L.; Berglund, P. Suppressed native hydrolytic activity of a lipase to reveal promiscuous Michael addition activity in water. ChemCatChem 2009, 1, 252–258. [Google Scholar] [CrossRef]
- Li, G.; Fang, X.; Su, F.; Chen, Y.; Xu, L.; Yan, Y. Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Joo, J.C.; Park, K.; Yoo, Y.J. Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol. Bioprocess Eng. 2012, 17, 722–728. [Google Scholar] [CrossRef]
- Le, Q.A.T.; Joo, J.C.; Yoo, Y.J.; Kim, Y.H. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnol. Bioeng. 2012, 109, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Sebestova, E.; Bendl, J.; Brezovsky, J.; Damborsky, J. Computational tools for designing smart libraries. In Directed Evolution Library Creation; Springer: New York, NY, USA, 2014; Volume 1179, pp. 291–314. ISBN 978-1-4939-1052-6. [Google Scholar]
- Smith, M. In vitro mutagenesis. Annu. Rev. Genet. 1985, 19, 423–462. [Google Scholar] [CrossRef]
- Sharma, S.V.; Hooda, S. An analysis upon various strategies for redesign and direct evolution of enzyme engineering. Adv. Sci. Technol. 2017, 13, 144–150. [Google Scholar]
- Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194. [Google Scholar] [CrossRef]
- Geddie, M.L.; Matsumura, I. Rapid evolution of β-glucuronidase specificity by saturation mutagenesis of an active site loop. J. Biol. Chem. 2004, 279, 26462–26468. [Google Scholar] [CrossRef] [Green Version]
- Reetz, M.T.; Carballeira, J.D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2007, 2, 891. [Google Scholar] [CrossRef]
- Reetz, M.T. Laboratory evolution of stereoselective enzymes: A prolific source of catalysts for asymmetric reactions. Angew. Chem. Int. Ed. 2011, 50, 138–174. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T.; Carballeira, J.D.; Peyralans, J.; Höbenreich, H.; Maichele, A.; Vogel, A. Expanding the substrate scope of enzymes: Combining mutations obtained by CASTing. Chem. Eur. J. 2006, 12, 6031–6038. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z.; Tomlinson, G.; Huang, H.; Tan, X.; Bibbs, L.; Chen, P. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc. 2003, 125, 11476–11477. [Google Scholar] [CrossRef] [PubMed]
- Dalby, P.A. Engineering enzymes for biocatalysis. Recent Pat. Biotechnol. 2007, 1, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Thai, Q.K.; Grieb, M.; Pleiss, J. DWARF–a data warehouse system for analyzing protein families. BMC Bioinform. 2006, 7, 495. [Google Scholar] [CrossRef] [Green Version]
- Kourist, R.; Jochens, H.; Bartsch, S.; Kuipers, R.; Padhi, S.K.; Gall, M.; Böttcher, D.; Joosten, H.J.; Bornscheuer, U.T. The α/β-hydrolase fold 3DM database (ABHDB) as a tool for protein engineering. ChemBioChem 2010, 11, 1635–1643. [Google Scholar] [CrossRef]
- Fischer, M.; Pleiss, J. The Lipase Engineering Database: A navigation and analysis tool for protein families. Nucleic Acids Res. 2003, 31, 319–321. [Google Scholar] [CrossRef]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S. The protein data bank. Acta Crystallogr. D Biol. Cryst. 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Rapp, B.A.; Wheeler, D.L. GenBank. Nucleic Acids Res. 2002, 30, 17–20. [Google Scholar] [CrossRef]
- Radivojac, P.; Obradovic, Z.; Smith, D.K.; Zhu, G.; Vucetic, S.; Brown, C.J.; Lawson, J.D.; Dunker, A.K. Protein flexibility and intrinsic disorder. Protein Sci. 2004, 13, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Juhl, P.B.; Doderer, K.; Hollmann, F.; Thum, O.; Pleiss, J. Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J. Biotechnol. 2010, 150, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Ruslan, R.; Rahman, R.N.Z.R.A.; Leow, T.C.; Ali, M.S.M.; Basri, M.; Salleh, A.B. Improvement of thermal stability via outer-loop ion pair interaction of mutated T1 lipase from Geobacillus zalihae strain T1. Int. J. Mol. Sci. 2012, 13, 943–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.-Q. Improved thermostability of lipase B from Candida antarctica by directed evolution and display on yeast surface. Appl. Biochem. Biotechnol. 2013, 169, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, N.; Öztürk, M.T.; Öztürk, S.İ.; Gümüşel, F. Improvement of the activity and thermostability of lipase producing local Bacillus pumilus isolates by directed evolution. J. Biotechnol. 2013, 164, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Subhedar, P.B.; Botelho, C.; Ribeiro, A.; Castro, R.; Pereira, M.A.; Gogate, P.R.; Cavaco-Paulo, A. Ultrasound intensification suppresses the need of methanol excess during the biodiesel production with Lipozyme TL-IM. Ultrason. Sonochem. 2015, 27, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-J.; Zheng, R.-C.; Ma, H.-Y.; Zheng, Y.-G. Engineering of Thermomyces lanuginosus lipase Lip: Creation of novel biocatalyst for efficient biosynthesis of chiral intermediate of Pregabalin. Appl. Microbiol. Biotechnol. 2014, 98, 2473–2483. [Google Scholar] [CrossRef]
- Wi, A.R.; Jeon, S.-J.; Kim, S.; Park, H.J.; Kim, D.; Han, S.J.; Yim, J.H.; Kim, H.-W. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus Pumilus. Biotechnol. Lett. 2014, 36, 1295–1302. [Google Scholar] [CrossRef]
- Raftari, M.; Ghafourian, S.; Bakar, F.A. Metabolic engineering of Lactococcus lactis influence of the overproduction of lipase enzyme. J. Dairy Res. 2013, 80, 490–495. [Google Scholar] [CrossRef]
- Zaugg, J.; Gumulya, Y.; Gillam, E.M.J.; Bodén, M. Computational tools for directed evolution: A comparison of prospective and retrospective strategies. Methods Mol. Biol. 2014, 1179, 315–333. [Google Scholar]
- Nobili, A.; Tao, Y.; Pavlidis, I.V.; Van Den Bergh, T. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering. ChemBioChem 2015, 16, 805–810. [Google Scholar] [CrossRef]
- Damnjanović, J.; Kuroiwa, C.; Tanaka, H.; Ishida, K.; Nakano, H.; Iwasaki, Y. Directing positional specificity in enzymatic synthesis of bioactive 1-phosphatidylinositol by protein engineering of a phospholipase D. Biotechnol. Bioeng. 2016, 113, 62–71. [Google Scholar] [CrossRef]
- Müller, J.; Sowa, M.A.; Fredrich, B.; Brundiek, H.; Bornscheuer, U.T. Enhancing the acyltransferase activity of Candida antarctica lipase A by rational design. ChemBioChem 2015, 16, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.H.; Subileau, M.; Deyrieux, C.; Perrier, V.; Dubreucq, É. Elucidation of a key position for acyltransfer activity in Candida parapsilosis lipase/acyltransferase (CpLIP2) and in Pseudozyma antarctica lipase A (CAL-A) by rational design. Biochim. Biophys. Acta Proteins Proteom. 2016, 1864, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Brocca, S.; Schmid, R.D.; Pleiss, J. Blocking the tunnel: Engineering of Candida rugosa lipase mutants with short chain length specificity. Protein Eng. 2002, 15, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.-W.; Zhu, S.-S.; Xiao, R.; Xu, Y. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping. J. Lipid Res. 2014, 55, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Willems, N.; Lelimousin, M.; Skjold-Jørgensen, J.; Svendsen, A.; Sansom, M.S.P. The effect of mutations in the lid region of Thermomyces lanuginosus lipase on interactions with triglyceride surfaces: A multi-scale simulation study. Chem. Phys. Lipids 2018, 211, 4–15. [Google Scholar] [CrossRef]
- Wikmark, Y.; Engelmarkcassimjee, K.; Lihammar, R.; Bäckvall, J.E. Removing the active-site flap in lipase A from Candida antarctica produces a functional enzyme without interfacial activation. ChemBioChem 2016, 17, 141–145. [Google Scholar] [CrossRef]
- Tang, L.; Su, M.; Yan, J.; Xie, S.; Zhang, W. Lid hinge region of Penicillium expansum lipase affects enzyme activity and interfacial activation. Process Biochem. 2015, 50, 1218–1223. [Google Scholar] [CrossRef]
- Sandström, A.G.; Engström, K.; Nyhlén, J.; Kasrayan, A.; Bäckvall, J.-E. Directed evolution of Candida antarctica lipase A using an episomaly replicating yeast plasmid. Protein Eng. Des. Sel. 2009, 22, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafaquière, V.; Barbe, S.; Puech-Guenot, S.; Guieysse, D.; Cortés, J.; Monsan, P.; Siméon, T.; André, I.; Remaud-Siméon, M. Control of lipase enantioselectivity by engineering the substrate binding site and access channel. ChemBioChem 2009, 10, 2760–2771. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Koga, Y.; Nakano, H.; Yamane, T. Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site. Protein Eng. 2002, 15, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.S.; Nam, S.H.; Lee, J.K.; Yoon, C.N.; Mannervik, B.; Benkovic, S.J.; Kim, H.S. Design and evolution of new catalytic activity with an existing protein scaffold. Science 2006, 311, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Jochens, H.; Stiba, K.; Savile, C.; Fujii, R.; Yu, J.G.; Gerassenkov, T.; Kazlauskas, R.J.; Bornscheuer, U.T. Erratum: Converting an esterase into an epoxide hydrolase. Angew. Chem. Int. Ed. 2009, 48, 3532–3535. [Google Scholar] [CrossRef] [PubMed]
- Santarossa, G.; Lafranconi, P.G.; Alquati, C.; DeGioia, L.; Alberghina, L.; Fantucci, P.; Lotti, M. Mutations in the “lid” region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Lett. 2005, 579, 2383–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damnjanović, J.; Nakano, H.; Iwasaki, Y.; Petersen, E. Acyl chain that matters: Introducing sn-2 acyl chain preference to a phospholipase D by protein engineering. Protein Eng. Des. Sel. 2019, 32, 1–11. [Google Scholar] [CrossRef]
- Chang, R.; Chou, S.; Shaw, J. Synthesis of Fatty Acid Esters by Recombinant Staphylococcus epidermidis lipases in aqueous environment. J. Agric. Food Chem. 2001, 49, 2619–2622. [Google Scholar] [CrossRef]
- Padhi, S.K.; Fujii, R.; Legatt, G.A.; Fossum, S.L.; Berchtold, R.; Kazlauskas, R.J. Article switching from an esterase to a hydroxynitrile lyase mechanism requires only two amino acid substitutions. Chem. Biol. 2010, 17, 863–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallin, M.; Syrén, P.O.; Hult, K. Mutant lipase-catalyzed kinetic resolution of bulky phenyl alkyl sec-alcohols: A thermodynamic analysis of enantioselectivity. Chembiochem 2010, 11, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Trodler, P.; Eiben, S.; Koschorreck, K.; Müller, M.; Pleiss, J.; Maurer, S.C.; Branneby, C.; Schmid, R.D.; Hauer, B. Rational design of Pseudozyma antarctica lipase B yielding a general esterification catalyst. Chembiochem 2010, 11, 789–795. [Google Scholar] [CrossRef]
- Magnusson, A.O.; Rotticci-mulder, J.C.; Santagostino, A.; Hult, K. Creating space for large secondary alcohols by rational redesign of Candida antarctica Lipase B. Chembiochem 2005, 6, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Rotticci, D.; Rotticci-mulder, J.C.; Denman, S.; Norin, T.; Hult, K. Improved enantioselectivity of a lipase by rational protein engineering. Chembiochem 2001, 2, 766–770. [Google Scholar] [CrossRef]
- Yu, X.W.; Tan, N.J.; Xiao, R.; Xu, Y. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: Increased thermostability and altered acyl chain length specificity. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Fujii, R.; Nakagawa, Y.; Hiratake, J.; Sogabe, A.; Sakata, K. Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng. Des. Sel. 2005, 18, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Durmaz, E.; Kuyucak, S. Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex. Protein Eng. Des. Sel. 2013, 26, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Lan, D.; Zhao, Z.; Li, S.; Li, X.; Wang, Y. A thermostable monoacylglycerol lipase from marine Geobacillus sp. 12AMOR1: Biochemical characterization and mutagenesis study. Int. J. Mol. Sci. 2019, 20, 780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wikmark, Y.; Svedendahl Humble, M.; Bäckvall, J.E. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent. Angew. Chem. Int. Ed. 2015, 54, 4284–4288. [Google Scholar] [CrossRef] [Green Version]
- Liebeton, K.; Zonta, A.; Schimossek, K.; Nardini, M.; Lang, D.; Dijkstra, B.W.; Reetz, M.T.; Jaeger, K.E. Directed evolution of an enantioselective lipase. Chem. Biol. 2000, 7, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Reetz, M.T.; Bocola, M.; Carballeira, J.D.; Zha, D.; Vogel, A. Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angew. Chem. Int. Ed. 2005, 44, 4192–4196. [Google Scholar] [CrossRef] [PubMed]
- Joerger, R.D.; Haas, M.J. Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis. Lipids 1994, 29, 377. [Google Scholar] [CrossRef]
- Klein, R.R.; King, G.; Moreau, R.A.; Haas, M.J. Altered acyl chain length specificity of Rhizopus delemar lipase through mutagenesis and molecular modeling. Lipids 1997, 32, 123. [Google Scholar] [CrossRef]
- Dröge, M.J.; Boersma, Y.L.; Van Pouderoyen, G.; Vrenken, T.E.; Rüggeberg, C.J.; Reetz, M.T.; Dijkstra, B.W.; Quax, W.J. Directed evolution of Bacillus subtilis lipase A by use of enantiomeric phosphonate inhibitors: Crystal structures and phage display selection. ChemBioChem 2006, 7, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Duarte, D.; Polaina, J.; López-Cortés, N.; Alcalde, M.; Plou, F.J.; Elborough, K.; Ballesteros, A.; Timmis, K.N.; Golyshin, P.N.; Ferrer, M. Conversion of a carboxylesterase into a triacylglycerol lipase by a random mutation. Angew. Chem. Int. Ed. 2005, 44, 7553–7557. [Google Scholar] [CrossRef] [PubMed]
Family | Subfamily | Enzyme Producing Strain | (Accession No, UniProt or PDB) |
---|---|---|---|
Family I | |||
1 | Pseudomonas aeruginosa (LipA) | D50587 | |
Pseudomonas fluorescens C9 | AF031226 | ||
Vibrio cholera | X16945 | ||
Pseudomonas aeruginosa (LipC) | U75975 | ||
Acinetobacter calcoaceticus | X80800 | ||
Pseudomonas fragi | X14033 | ||
Pseudomonas wisconsinensis | U88907 | ||
Proteus vulgaris | U33845 | ||
Rhodoferax ferrireducens | Q21T36 | ||
Vibrio harveyi | A6AS17 | ||
Vibrio parahaemolyticus | A6B1H2 | ||
Aeromonas hydrophila | A0KFL9 | ||
Dehalococcoides sp. VS | A8CY80 | ||
Proteus mirabilis | 4GXN | ||
Chromobacterium violaceum | Q7NU14 | ||
2 | Burkholderia glumae | X70354 | |
Burkholderia cepacia | M58494 | ||
Burkholderia multivorans | Q45VN4, A9AMF2 | ||
Burkholderia thailandensis | Q2T7L1 | ||
Pseudomonas KWI-56 | P25275 | ||
Pseudomonas luteola | AF050153 | ||
3 | Pseudomonas fluorescens SIKW1 | D11455 | |
Pseudomonas Fluorescens PfO1 | Q3KCS9 | ||
Pseudomonas sp. 7323 | Q2KTB3 | ||
Serratia proteamaculans | A8GDX0 | ||
Serratia marcescens | D13253 | ||
Uncultured bacterium | A7J993 | ||
Uncultured bacterium | A0A0F7IH45 | ||
4 | Bacillus subtilis (LipA) | M74010 | |
Bacillus amyloliquefaciens | A7Z124 | ||
Bacillus pumilus | A34992 | ||
Bacillus licheniformis | U35855 | ||
Bacillus megaterium | Q8RJP5 | ||
Bacillus clausii | Q5WDN0 | ||
Bacillus subtilis (LipB) | C69652 | ||
5 | Geobacillus stearothermophilus L1 | U78785 | |
Geobacillus stearothermophilus P1 | AF237623 | ||
Geobacillus thermocatenulatus | X95309 | ||
Geobacillus thermoleovorans | AF134840 | ||
Geobacillus thermocatenulatus | 2W22 | ||
Geobacillus zalihae | 2DSN | ||
6 | Staphylococcus aureus | M12715 | |
Staphylococcus haemolyticus | AF096928 | ||
Staphylococcus epidermidis | AF090142 | ||
Staphylococcus hyicus | X02844 | ||
Staphylococcus xylosus | AF208229 | ||
Staphylococcus warneri | AF208033 | ||
Staphylococcus simulans | Q84EK3 | ||
7 | Propionibacterium acnes | X99255 | |
Streptomyces cinnamoneus | U80063 | ||
Corynebacterium glutamicum | Q8NU59, Q8NU60 | ||
8 | Fervidobacterium Rt17-B1 | ABS61180 | |
Thrmosipho melanesiensis B1429 | ABR31744 | ||
Thermotoga petrophila RKU-1 | WP011943454 | ||
Thermotoga maritima MSB8 | WP 004082539 | ||
Thermotoga sp RQ | WP012310808 | ||
Pseudoalteromonas haloplanktis | Q3IF07 | ||
Pseudoalteromonas tunicata | A4CF12 | ||
9 | Aneurinibacillus thermoaerophilus strain HZ * | GU272057 | |
Bacillus pseudomycoides DSM 12442 | WP_006094994 | ||
Bacillus mycoides Rock3-17 | EEM11082 | ||
Bacillus cereus B4264 | WP 000517067 | ||
Bacillus anthracis str. CDC684 | ACP13431 | ||
EML 1 * | DQ229155 | ||
Lip G * | DQ458963 | ||
Lip EH 166* | EU515239 | ||
Family II | |||
Salmonella typhimurium | AF047014 | ||
Photorhabdus luminescens | X66379 | ||
Pseudomonas aeruginosa | AF005091 | ||
Pseudomonas putida | Q0P6P2,Q6B6R8, 5VXL2 | ||
Xanthomonas vesicatoria | Q7X4K7 | ||
Family III | |||
Streptomyces exfoliates | M86351 | ||
Kineococcus radiotolerans | A6WEQ4 | ||
Moraxella sp | X53053 | ||
Clavibacter michiganensis | B0RCM8, B0RFW0 | ||
Streptomyces albus | U03114 | ||
Thermobifida fusca | Q47RJ6, Q47RJ7 | ||
Family IV | |||
Escherichia coli | AE000153 | ||
Archaeoglobus fulgidus | AE000985 | ||
Pseudomonas sp. B11-1 | (AF034088) | ||
Alcaligenes eutrophus | L36817 | ||
Family V | |||
Sulfolobus acidocaldarius | AF071233 | ||
Haemophilus influenza | U32704 | ||
Moraxella sp | X53869 | ||
Psychrobacter immobilis | X67712 | ||
Polaromonas naphthalenivorans EstF ** | A1VLL6 | ||
Family VI | |||
Spirulina platensis | Q53415 | ||
Anabaena variabilis | Q3M6G8 | ||
Bordetella avium | Q2KUZ2 | ||
Polaromonas sp. JS666 | Q127I1 | ||
Shewanella amazonensis | A1S771 | ||
Xanthomonas campestris | B0RNI6, Q3BXV6 | ||
Rhodoferax ferrireducens | Q21XU9 | ||
Family VII | |||
Streptomyces coelicolor | Q9Z545 | ||
Bacillus pumilus | Q66M67 | ||
Bacillus stearothermophilus | Q8GCC7 | ||
Bacillus subtilis | P37967 | ||
Arthrobacter oxydans | Q01470 | ||
Family VIII | |||
Pseudomonas fluorescens SIKW1 | AAC60471 | ||
Streptomyces chrysomallus | CAA78842 | ||
Arthrobacter globiformis | AAA99492 | ||
Arthrobacter aurescens | A1RB78 | ||
Saccharopolyspora erythraea | A4F8E6 | ||
Pseudomonas gingeri | B0M0H4 | ||
Pseudomonas syringae | Q48LQ9 |
Bacterial Species | Sn- Regioselectivity | References |
---|---|---|
Chromobacterium viscosum Pseudomonas glumae | Non-specific Non-specific | [116] [116] |
Rhizopus delemar | 1,3 | [117] |
Rhizomucor miehei | 1,3 | [117] |
Rhizopus oryzae | 1,3 | [117] |
Fusarium heterosporum Staphylococcus Psudozyma tsukubaensis | 1,3 2 Non-specific | [117] [118] [119] |
Candida rugosa | Non-specific | [90,119] |
Geotricum candidum I, II | Non-specific | [119,120] |
Geotrichum candidum III Staphylococcus aureus | 2 Non-specific | [120,121] [122] |
Rhizomucor endophyticus | 1,3 | [123] |
Rhizopus niveus Candida humicola Candida foliorum | 1,3 1,3 1,3 | [100] [124] [124] |
Candida auricularia | 1,3 | [124] |
Candida antarctica B | 1,3 | [125] |
Malbranchea cinnamomea | 1,3 | [126] |
Aspergillus niger | 1,3 | [116] |
Thermomyces lanuginosus | 1,3 | [127] |
Yarrowia lipolytica | 1,3 | [128] |
Penicillium expansum | Non-specific | [129] |
Burkholderia cepacia Pseudomonas fluorescens | Non-specific Non-specific | [130] [116] |
Pseudomonas aeruginosa sp | Non-specific | [130] |
Enzyme Origin | Mutagenesis Method | Structural Target | Improved Property | References |
---|---|---|---|---|
Candida antarctica lipase A | Saturation mutagenesis & Randomization | Substrate binding area | Substrate selectivity | [75] |
Candida antarctica lipase A | Saturation mutagenesis combinatorial active-site saturation test (CAST) | Substrate binding area | Enantioselectivity | [225] |
Penicillium expansum lipase | Saturation mutagenesis | Loop helix (lid) | Substrate selectivity | [224] |
Burkholderia cepacia lipase | Rational design | Binding access channel | Enantioselectivity | [226] |
Thermomyces lanuginosus lipase | Rational design | Loop helix (lid) | Substrate selectivity | [222] |
Pseudomonas sp lipase | Saturation mutagenesis | Binding access channel | Substrate specificity | [73] |
Candida antarctica lipase A | Combinatorial saturation test (CAST) | Substrate binding area | Enantioselectivity | [146] |
Burkholderia cepacia lipase | Combinatorial site directed mutagenesis | Binding access channel | Substrate selectivity | [227] |
Human (glyoxalase II) | Rational design(insertion +deletion) | Substrate binding area | Substrate selectivity | [228] |
Pseudomonas fluorescens (esterase) | Rational design | Substrate binding area | Substrate selectivity | [229] |
Pseudomonas fragi lipase | Rational design | Loop helix (lid) | Substrate selectivity | [230] |
Candida antarctica lipase | Semi rational design | Binding access channel | Chain length selectivity | [145] |
Streptomyces antibioticus PLD lipase | Semi rational design | Substrate binding area | Chain length selectivity | [231] |
Staphylococcus epidermidis lipase | Rational design | Substrate binding area | Substrate specificity | [232] |
Nicotiana tabacum esterase | Rational design | Substrate binding area | Substrate specificity | [233] |
Candida antarctica B lipase | Rational design | Substrate binding area | Enantioselectivity | [234] |
Candida antarctica B lipase | Rational design | Substrate binding area | Substrate specificity | [235] |
Candida antarctica B lipase | Rational design | Substrate binding area | Substrate specificity | [236] |
Candida antarctica B lipase | Rational design | Substrate binding area | Enantioselectivity | [237] |
Pseudomonas fragi lipase | Rational design | Loop helix (lid) | Chain length selectivity | [55]] |
Rhizopus chinensis lipase | Rational design | Loop helix (lid) | Chain length selectivity | [238] |
Rhizopus chinensis lipase | Rational design | Loop helix (lid) | substrate specificity | [221] |
Pseudomonas aeruginosa lipase | directed evolution | Substrate binding area | Substrate specificity | [239] |
Bacillus thermocatenulatus lipase | Rational design | Substrate binding area | Chain length selectivity | [240] |
Streptomyces antibioticus phospholipase | Site-saturation mutagenesis | Substrate binding area | Substrate specificity | [217] |
Candida antarctica lipase A | Rational design | Substrate binding area | Substrate specificity | [218] |
Candida antarctica lipase A | Rational design | Binding access channel | Chain length selectivity | [142] |
Geobacillus sp. lipase | Rational design | Binding access channel | Substrate specificity | [241] |
Candida antarctica A lipase | Combinatorial site directed mutagenesis | Substrate binding area | Enantioselectivity | [242] |
Candida antarctica A lipase | Rational design | Substrate binding area | Substrate specificity | [141] |
Pseudomonas aeruginosa lipase | ep-PCR and saturation mutagenesis | Substrate binding area | Enantioselectivity | [243] |
Pseudomonas aeruginosa lipase | Combinatorial saturation test (CAST) | Substrate binding area | Substrate specificity | [244] |
Rhizopus delemar lipase | Rational design | Substrate binding area | Chain length selectivity | [245] |
Rhizopus delemar lipase | Rational design | Substrate binding area | Chain length selectivity | [246] |
Bacillus subtilis lipase A | Saturation mutagenesis | Substrate binding area | Enantioselectivity | [247] |
Alicyclobacillus acidocaldarius esterase EST2 | directed evolution ep-PCR | Substrate binding area | Chain length selectivity; sn2 specificity | [248]] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albayati, S.H.; Masomian, M.; Ishak, S.N.H.; Mohamad Ali, M.S.b.; Thean, A.L.; Mohd Shariff, F.b.; Muhd Noor, N.D.b.; Raja Abd Rahman, R.N.Z. Main Structural Targets for Engineering Lipase Substrate Specificity. Catalysts 2020, 10, 747. https://doi.org/10.3390/catal10070747
Albayati SH, Masomian M, Ishak SNH, Mohamad Ali MSb, Thean AL, Mohd Shariff Fb, Muhd Noor NDb, Raja Abd Rahman RNZ. Main Structural Targets for Engineering Lipase Substrate Specificity. Catalysts. 2020; 10(7):747. https://doi.org/10.3390/catal10070747
Chicago/Turabian StyleAlbayati, Samah Hashim, Malihe Masomian, Siti Nor Hasmah Ishak, Mohd Shukuri bin Mohamad Ali, Adam Leow Thean, Fairolniza binti Mohd Shariff, Noor Dina binti Muhd Noor, and Raja Noor Zaliha Raja Abd Rahman. 2020. "Main Structural Targets for Engineering Lipase Substrate Specificity" Catalysts 10, no. 7: 747. https://doi.org/10.3390/catal10070747
APA StyleAlbayati, S. H., Masomian, M., Ishak, S. N. H., Mohamad Ali, M. S. b., Thean, A. L., Mohd Shariff, F. b., Muhd Noor, N. D. b., & Raja Abd Rahman, R. N. Z. (2020). Main Structural Targets for Engineering Lipase Substrate Specificity. Catalysts, 10(7), 747. https://doi.org/10.3390/catal10070747