A Polyoxometalate Composite Based on Hierarchical MIL-101 with Enhanced Catalytic Activity in Methanolysis of Styrene Oxide
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. The Preparation of MIL-101s
3.2. The Preparation of S@PTA Composites
3.3. Characterization
3.4. Catalysis Reaction
3.5. ICP-OES Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.C.; Liu, Z.; Asahina, S. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.; Zhang, L.; Chen, X.; Liu, L.; Zhang, D.; Han, Y.; Chen, J.; Long, J.; Luque, R.; Li, Y.; et al. Dered macro-microporous metal-organic framework single crystals. Science 2018, 359, 206–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.-B.; Li, J.-R.; Park, J.; Zhou, H.-C. Cooperative template-directed assembly of mesoporous metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 126–129. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Ge, J.; Jiang, H.-L.; Yu, S.-H. A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136, 16978–16981. [Google Scholar] [CrossRef]
- Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040. [Google Scholar] [CrossRef]
- Bromberg, L.; Diao, Y.; Wu, H.; Speakman, S.A.; Hatton, T.A. Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties. Chem. Mater. 2012, 24, 1664–1675. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, T.; Boldog, I.; Janiak, C.; Yang, X.-Y.; Li, Q.; Zhou, Y.-J.; Xia, Y.; Lai, D.-W.; Liu, Y.-J. Benzoic acid as a selector–modulator in the synthesis of MIL-88B(Cr) and nano-MIL-101(Cr). Dalton Trans. 2019, 48, 989–996. [Google Scholar] [CrossRef]
- Zhao, T.; Li, S.-H.; Shen, L.; Wang, Y.; Yang, X.-Y. The sized controlled synthesis of MIL-101(Cr) with enhanced CO2 adsorption property. Inorg. Chem. Commun. 2018, 96, 47–51. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, K.; Kong, C.; Chen, L. Acetate-assisted Synthesis of Chromium(III) Terephthalate and its gas adsorption properties. Bull. Korean Chem. Soc. 2013, 34, 1625–1631. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Dong, M.; Zhao, Y. A novel fabrication of [Fe(HB(pz)3)2]@MIL-101 hybrid material via diffusion and the lower temperature shift on its spin transition behavior. Appl. Phys. A Mater. 2019, 125, 670. [Google Scholar] [CrossRef]
- Zhao, T.; Boldog, I.; Janiak, C.; Liu, Y. Effect of Metal-organic Frameworks on the Spin-transition Behavior of [Fe(HB(pz)3)2]. Chin. J. Inorg. Chem. 2017, 33, 1330–1338. [Google Scholar]
- Herbst, A.; Khutia, A.; Janiak, C. Bronsted instead of lewis acidity in functionalized mil-101cr mofs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorg. Chem. 2014, 53, 7319–7333. [Google Scholar] [CrossRef]
- Wickenheisser, M.; Herbst, A.; Tannert, R.; Milow, B.; Janiak, C. Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe,Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications. Microporous Mesoporous Mater. 2015, 215, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Wu, W.; Kang, Q.; Hu, Q.; Yu, L. Detection of organophosphorus pesticides with liquid crystals supported on the surface deposited with polyoxometalate-based acetylcholinesterase-responsive supramolecular spheres. Food Chem. 2020, 320. [Google Scholar] [CrossRef]
- Yao, F.; Fu, W.; Ge, X.; Wang, L.; Wang, J.; Zhong, W. Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H3PW12O40/TiO2) composite and the photocatalytic oxidation of high-concentration ammonia nitrogen. Total Environ. 2020, 727, 138425. [Google Scholar] [CrossRef]
- Adhikary, S.D.; Mandal, D. Polyoxometalate catalyzed imine synthesis: Investigation of mechanistic pathways. Tetrahedron 2020, 76, 131245. [Google Scholar] [CrossRef]
- Tao, M.; Yi, X.; Delidovich, I.; Palkovits, R.; Shi, J.; Wang, X. Hetropolyacid-catalyzed oxidation of glycerol into lactic acid under mild base-free conditions. ChemSusChem 2015, 8, 4195–4201. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Xie, J.; Liu, Y.; Guo, Z.; Wang, Q.; Lyu, Y.; Zhou, Y.; Wang, J. Pyrazinium polyoxometalate tetrakaidecahedron-like crystals esterify oleic acid with equimolar methanol at room temperature. J. Catal. 2016, 339, 123–134. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Shanmugan, S.; Kirubakaran, K.P.; Thomas, A.; Prakash, M.; Senthil, C.; Lee, C.W.; Vediappan, K. High energy storage of Li-ions on keggin-type polyoxometalate as electrodes for rechargeable lithium batteries. J. Phys. Chem. Solids 2020, 142, 109468. [Google Scholar] [CrossRef]
- Kumar, D.; Tomar, A.K.; Singal, S.; Singh, G.; Sharma, R.K. Ammonium decavanadate nanodots/reduced graphene oxide nanoribbon as ‘inorganic-organic’ hybrid electrode for high potential aqueous symmetric supercapacitors. J. Power Sources 2020, 462, 228173. [Google Scholar] [CrossRef]
- Miras, H.N.; Yan, J.; Long, D.-L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Z.; Chen, W.; Miras, H.N.; Song, Y. Rational design of a polyoxometalate intercalated layered double hydroxide: Highly efficient catalytic epoxidation of allylic alcohols under mild and solvent-free conditions. Chem. Eur. J. 2017, 23, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Fikri, Z.A.; Ha, J.M.; Park, Y.K.; Lee, H.; Suh, D.J.; Jae, J. Diels-Alder cycloaddition of oxidized furans and ethylene over supported heteropolyacid catalysts for renewable terephthalic acid. Catal. Today 2020, 351, 37–43. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P.W.; Chen, L.L.; He, J.; Wu, Y.; Wang, C.; Chao, Y.; Lu, L.; He, M.; Zhu, W. 3D-printing of integrated spheres as a superior support of phosphotungstic acid for deep oxidative desulfurization of fuel. J. Energy Chem. 2020, 45, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Vilanculo, C.B.; Leles, L.C.D.; da Silva, M.J. H4SiW12O40-catalyzed levulinic acid esterification at room temperature for production of fuel bioadditives. Waste Biomass Valori. 2020, 11, 1895–1904. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Q.Q.; Yang, C.J.; Zhang, B.G.; Deng, K.J. Highly selective oxidation of glucose to gluconic acid and glucaric acid in water catalyzed by an efficient synergistic photocatalytic system. Catal. Sci. Technol. 2020, 10, 2231–2241. [Google Scholar] [CrossRef]
- Maksimchuk, N.V.; Timofeeva, M.N.; Melgunov, M.S.; Shmakov, A.N.; Chesalov, Y.A.; Dybtsev, D.N.; Fedin, V.P.; Kholdeeva, O.A. Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J. Catal. 2008, 257, 315–323. [Google Scholar] [CrossRef]
- Zhao, T.; Dong, M.; Yang, L.; Liu, Y. Synthesis of stable hierarchical MIL-101(Cr) with enhanced catalytic activity in the oxidation of indene. Catalysts 2018, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Dong, M.; Zhu, H. Comparison of catalytic activity of chromium-benzenedicarboxylate metal-organic framework based on various synthetic approach. Catalysts 2020, 10, 318. [Google Scholar] [CrossRef] [Green Version]
Sample | SBET (m2/g) a | SLangmuir (m2/g) | Vpore (cm3/g) b |
---|---|---|---|
S1 | 2330 | 3350 | 1.49 |
PTA@S1 | 780 | 1130 | 0.45 |
S2 | 3500 | 4780 | 1.73 |
PTA@S2 | 2530 | 3600 | 1.32 |
Sample b | Catalyst Weight (mg) | TON c | TOF (mmol·g−1·min−1 ) d | Conversion (%) 1st Run/5th Run |
---|---|---|---|---|
S1 | 40 | - | - | <3/- |
S2 | 40 | - | - | <3/- |
PTA@S1 | 10 | 177.32 | 3.07 | 79.3/63.7 |
PTA@S2 | 40 | 100.22 | 1.74 | 45.1/15.7 |
PTA | 3.5 | 194.81 | 3.38 | 94.7/- |
Sample b | Run | W conc. (mg/L) | PTA conc. (mg/L) a | PTA Leaching (mg) b |
---|---|---|---|---|
PTA@S1 | 1 | 3.672 | 4.794 | 0.0479 |
2 | 2.098 | 2.739 | 0.0274 | |
3 | 2.583 | 3.372 | 0.0337 | |
4 | 2.272 | 2.966 | 0.0297 | |
5 | 2.478 | 3.235 | 0.0324 | |
PTA@S2 | 1 | 3.353 | 4.377 | 0.0438 |
2 | 2.764 | 3.608 | 0.0361 | |
3 | 3.347 | 4.369 | 0.0437 | |
4 | 2.341 | 3.056 | 0.0306 | |
5 | 2.253 | 2.941 | 0.0294 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Zhu, H.; Dong, M. A Polyoxometalate Composite Based on Hierarchical MIL-101 with Enhanced Catalytic Activity in Methanolysis of Styrene Oxide. Catalysts 2020, 10, 772. https://doi.org/10.3390/catal10070772
Zhao T, Zhu H, Dong M. A Polyoxometalate Composite Based on Hierarchical MIL-101 with Enhanced Catalytic Activity in Methanolysis of Styrene Oxide. Catalysts. 2020; 10(7):772. https://doi.org/10.3390/catal10070772
Chicago/Turabian StyleZhao, Tian, Hexin Zhu, and Ming Dong. 2020. "A Polyoxometalate Composite Based on Hierarchical MIL-101 with Enhanced Catalytic Activity in Methanolysis of Styrene Oxide" Catalysts 10, no. 7: 772. https://doi.org/10.3390/catal10070772
APA StyleZhao, T., Zhu, H., & Dong, M. (2020). A Polyoxometalate Composite Based on Hierarchical MIL-101 with Enhanced Catalytic Activity in Methanolysis of Styrene Oxide. Catalysts, 10(7), 772. https://doi.org/10.3390/catal10070772