K2O Doped Dolomite as Heterogeneous Catalyst for Fatty Acid Methyl Ester Production from Palm Oil
Abstract
:1. Introduction
Mechanism of K2O/CaO-MgO Catalyst
2. Results
2.1. X-ray Diffraction Analysis (XRD)
2.2. Brunauer-Emmett-Teller Surface Area Measurement (BET)
2.3. Temperature Programmed Desorption (TPD-CO2)
2.4. Thermo Gravimetry–Differential Thermal Gravimetric (TG-DTG)
2.5. Scanning Electron Microscope (SEM)
2.6. Fourier Transform-Infrared Spectroscopy (FT-IR)
2.7. Catalytic Activity
2.8. Catalyst Reusability
2.9. Fuel Properties of Biodiesel
2.10. Viscosity
2.11. Density
2.12. Pour Point
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Transesterification
3.4. Reusability Study
3.5. Leaching Test
3.6. Biodiesel Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boz, N.; Degirmenbasi, N.; Kalyon, D.M. Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Appl. Catal. B Environ. 2013, 138–139, 236–242. [Google Scholar] [CrossRef]
- Chen, G.; Shan, R.; Shi, J.; Liu, C.; Yan, B. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Convers. Manag. 2015, 98, 463–469. [Google Scholar] [CrossRef]
- Yaakob, Z.; Mohammad, M.; Alherbawi, M.; Alam, Z.; Sopian, K. Overview of the production of biodiesel from Waste cooking oil. Renew. Sustain. Energy Rev. 2013, 18, 184–193. [Google Scholar] [CrossRef]
- Ngamcharussrivichai, C.; Wiwatnimit, W.; Wangnoi, S. Modified dolomites as catalysts for palm kernel oil transesterification. J. Mol. Catal. A Chem. 2007, 276, 24–33. [Google Scholar] [CrossRef]
- Farooq, M.; Ramli, A.; Subbarao, D. Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J. Clean. Prod. 2013, 59, 131–140. [Google Scholar] [CrossRef]
- Ilgen, O.; Temp, R. Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process. Technol. 2011, 92, 452–455. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, C.; Shan, R.; Wang, Y.; Yuan, H. A novel peat biochar supported catalyst for the transesterification reaction. Energy Convers. Manag. 2017, 139, 89–96. [Google Scholar] [CrossRef]
- Marques, L.; de Sousa, N.; Sousa, D.; Loureiro, C., Jr.; Antonio, J.; Rodríguez-castellón, E.; Silveira, R. Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chem. Eng. J. 2015, 269, 35–43. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B. Development of biodiesel: Current scenario. Renew. Sustain. Energy Rev. 2009, 13, 1646–1651. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Renew. Sustain. Energy Rev. 2016, 57, 496–504. [Google Scholar] [CrossRef]
- Chen, G.; Shan, R.; Yan, B.; Shi, J.; Li, S.; Liu, C. Remarkably enhancing the biodiesel yield from palm oil upon abalone shell-derived CaO catalysts treated by ethanol. Fuel Process. Technol. 2016, 143, 110–117. [Google Scholar] [CrossRef]
- Peterson, G.R.; Scarrah, W.P. Rapeseed Oil Transesterification by Heterogeneous Catalysis. J. Am. Oil Chem. Soc. 1984, 61, 1593–1594. [Google Scholar] [CrossRef]
- Kataria, J.; Mohapatra, S.K.; Kundu, K. Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine. J. Energy Inst. 2018, 1–13. [Google Scholar] [CrossRef]
- Avhad, M.R.; Marchetti, J.M. A review on recent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev. 2015, 50, 696–718. [Google Scholar] [CrossRef]
- Samart, C.; Chaiya, C.; Reubroycharoen, P. Biodiesel production by methanolysis of soybean oil using calcium supported on mesoporous silica catalyst. Energy Convers. Manag. 2010, 51, 1428–1431. [Google Scholar] [CrossRef]
- Zabeti, M.; Mohd, W.; Wan, A.; Aroua, M.K. Activity of solid catalysts for biodiesel production: A review. Fuel Process. Technol. 2009, 90, 770–777. [Google Scholar] [CrossRef]
- Sun, C.; Qiu, F.; Yang, D.; Ye, B. Preparation of biodiesel from soybean oil catalyzed by Al-Ca hydrotalcite loaded with K2CO3 as heterogeneous solid base catalyst. Fuel Process. Technol. 2014, 126, 383–391. [Google Scholar] [CrossRef]
- Shan, R.; Shi, J.; Yan, B.; Chen, G.; Yao, J.; Liu, C. Transesterification of palm oil to fatty acids methyl ester using K2CO3/palygorskite catalyst. Energy Convers. Manag. 2016, 116, 142–149. [Google Scholar] [CrossRef]
- Aslan, S.; Aka, N.; Karaoglu, M.H. Environmental Effects NaOH impregnated sepiolite based heterogeneous catalyst and its utilization for the production of biodiesel from canola oil. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 1–8. [Google Scholar] [CrossRef]
- Nur, Z.A.S.; Taufiq-Yap, Y.H.; Hussein, M.Z. Tin Oxide Doped on Activated Dolomites as Efficient Catalyst for Biodiesel Production. Adv. Mater. Res. 2012, 620, 378–383. [Google Scholar] [CrossRef]
- Jindapon, W.; Ngamcharussrivichai, C. Heterogeneously catalyzed transesterification of palm oil with methanol to produce biodiesel over calcined dolomite: The role of magnesium oxide. Energy Convers. Manag. 2018, 171, 1311–1321. [Google Scholar] [CrossRef]
- Buasri, A.; Rochanakit, K.; Wongvitvichot, W. The Application of Calcium Oxide and Magnesium Oxide from Natural Dolomitic Rock for Biodiesel Synthesis. Energy Procedia 2015, 79, 562–566. [Google Scholar] [CrossRef] [Green Version]
- Maes, I.I.; Gryglewicz, G.; Yperman, J.; Franco, D.V.; Van Poucke, L.C. Effect of calcium and calcium minerals in coal on its thermal analysis. Fuel 1997, 76, 143–147. [Google Scholar] [CrossRef]
- Patnaik, P.; York, N.; San, C.; Lisbon, F.; Madrid, L.; City, M.; New, M.; San, D.; Singapore, J.S.; Toronto, S. Handbook of Inorganic Chemicals. McGraw-Hill Library of Congress Cataloging-in-Publication Data; McGraw-Hill: New York, NY, USA, 2003; ISBN 0-07-049439-8. [Google Scholar]
- Wilson, K.; Hardacre, C.; Lee, A.F.; Montero, M.; Shellard, L. The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem. 2008, 10, 654–659. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel 2007, 86, 328–333. [Google Scholar] [CrossRef]
- Xie, W.; Li, H. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J. Mol. Catal. A Chem. 2006, 255, 1–9. [Google Scholar] [CrossRef]
- Krstic, J.; Jovanovic, D. Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil. Bioresour. Technol. 2009, 100, 4690–4696. [Google Scholar] [CrossRef]
- Liu, H.; Su, L.; Liu, F.; Li, C.; Solomon, U.U. Cinder supported K2CO3 as catalyst for biodiesel production. Appl. Catal. B Environ. 2011, 106, 550–558. [Google Scholar] [CrossRef]
- Issariyakul, T.; Dalai, A.K. Biodiesel from vegetable oils. Renew. Sustain. Energy Rev. 2014, 31, 446–471. [Google Scholar] [CrossRef]
- Pure, U.O.F. Provisional International Union of Pure and Applied Chemistry Commission on Colloid and Surface Chemistry Subcommittee on Reporting Gas Adsorption Data * Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of S. Pure Appl.Chem. 1982, 54, 2201–2218. [Google Scholar]
- Noiroj, K.; Intarapong, P.; Luengnaruemitchai, A.; Jai-in, S. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew. Energy 2009, 34, 1145–1150. [Google Scholar] [CrossRef]
- Limmanee, S.; Naree, T.; Bunyakiat, K.; Ngamcharussrivichai, C. Mixed oxides of Ca, Mg and Zn as heterogeneous base catalysts for the synthesis of palm kernel oil methyl esters. Chem. Eng. J. 2013, 225, 616–624. [Google Scholar] [CrossRef]
- Yan, S.; Dimaggio, C.; Mohan, S.; Kim, M.; Salley, S.O.; Ng, K.Y.S. Advancements in Heterogeneous Catalysis for Biodiesel Synthesis. Top. Catal. 2010, 53, 721–736. [Google Scholar] [CrossRef]
- Taufiq-Yap, Y.H.; Lee, H.V.; Hussein, M.Z.; Yunus, R. Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass Bioenergy 2011, 35, 827–834. [Google Scholar] [CrossRef]
- Mcintosh, R.M.; Sharp, J.H.; Wilburn, F.W. The thermal decomposition of dolomite. Thermochim. Acta 1990, 165, 281–296. [Google Scholar]
- Olszak-Humienik, M.; Jablonski, M. Thermal behavior of natural dolomite. J. Therm. Anal. Calorim. 2015, 119, 2239–2248. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yang, H.; Guo, H.; Yang, J.; Xiong, L.; Huang, C.; Chen, X.; Ma, L.; Chen, Y. Solvent-free selective epoxidation of soybean oil catalyzed by peroxophosphotungstate supported on palygorskite. Appl. Clay Sci. 2014, 90, 175–180. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, H.; Wang, Y.; Shan, R. Transesterification of vegetable oil on low cost and efficient meat and bone meal biochar catalysts. Energy Convers. Manag. 2017, 150, 214–221. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, L.; Xing, S.; Luo, W.; Wang, Z.; Lv, P. Biodiesel production by a highly effective renewable catalyst from pyrolytic rice husk. J. Clean. Prod. 2018, 199, 772–780. [Google Scholar] [CrossRef]
- Tesfa, B.; Mishra, R.; Gu, F.; Powles, N. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renew. Energy 2010, 35, 2752–2760. [Google Scholar] [CrossRef] [Green Version]
- Zaharin, M.S.M.; Abdullah, N.R.; Naja, G.; Sharudin, H.; Yusaf, T. Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review. Renew. Sustain. 2017, 79, 475–493. [Google Scholar] [CrossRef]
- Sarin, A.; Arora, R.; Singh, N.P.; Sarin, R.; Malhotra, R.K. Blends of biodiesels synthesized from non-edible and edible oils: Influence on the OS (oxidation stability). Energy 2010, 35, 3449–3453. [Google Scholar] [CrossRef]
Catalyst | BET Surface Area (m2/g) | Pore Volume (cc/g) | Pore Size (Å) |
---|---|---|---|
Dolomite | 19.0 | 0.034 | 57.16 |
5 wt% K/D | 6.9 | 0.024 | 60.54 |
10 wt% K/D | 5.2 | 0.019 | 60.02 |
15 wt% K/D | 4.2 | 0.015 | 61.24 |
20 wt% K/D | 1.3 | 0.008 | 55.56 |
No. | Catalyst | Basic Site (µmol/g) | Temperature of CO2 Desorption Tmax (°C) |
---|---|---|---|
1 | Dolomite | 501.4 | 601, 621 |
2 | 5K/D | 892.2 | 603, 693 |
3 | 10K/D | 1692.5 | 604, 648, 720 |
4 | 15K/D | 3165.2 | 607, 683, 755 |
5 | 20K/D | 1827.2 | 771 |
S/N | FAME Yield | K+ Concentration (mg/L) |
---|---|---|
1 | 98.7 | 4. 82 |
2 | 94.4 | 0.063 |
3 | 93.1 | 0.025 |
4 | 91.9 | 0.018 |
5 | 88.6 | 0.033 |
6 | 87.2 | 0.14 |
Properties | Unit | ASTM D-6751 | EN 14214 | Biodiesel (This Work) |
---|---|---|---|---|
Kinematic viscosity | mm2/s at 40 °C | 1.9–6.0 | 3.50–5.0 | 6.0 |
Saponification number | mg KOH/g | - | - | 183.72 |
Mean molecular mass | g/mol | - | - | 916.02 |
Acid value | mg KOH/g | 0.05 | <0.05 | 0.04 |
Density (15 °C) | (Kg/m2) | 860–900 | 860–894 | 875 |
Pour point | (°C) | −15 to 9 | - | 5.0 |
FAME | Structure | Composition (wt%) |
---|---|---|
Methyl myristate | C14:0 | 1.09 |
Methyl palmitate | C16:0 | 39.70 |
Methyl stearate | C18:0 | 8.46 |
Methyl oleate | C18:1 | 46.56 |
Methyl linoleates | C18:2 | 3.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahaya, M.; Ramli, I.; Muhamad, E.N.; Ishak, N.S.; Idris Nda-Umar, U.; Taufiq-Yap, Y.H. K2O Doped Dolomite as Heterogeneous Catalyst for Fatty Acid Methyl Ester Production from Palm Oil. Catalysts 2020, 10, 791. https://doi.org/10.3390/catal10070791
Yahaya M, Ramli I, Muhamad EN, Ishak NS, Idris Nda-Umar U, Taufiq-Yap YH. K2O Doped Dolomite as Heterogeneous Catalyst for Fatty Acid Methyl Ester Production from Palm Oil. Catalysts. 2020; 10(7):791. https://doi.org/10.3390/catal10070791
Chicago/Turabian StyleYahaya, Muhammad, Irmawati Ramli, Ernee Noryana Muhamad, Nor Shafizah Ishak, Usman Idris Nda-Umar, and Yun Hin Taufiq-Yap. 2020. "K2O Doped Dolomite as Heterogeneous Catalyst for Fatty Acid Methyl Ester Production from Palm Oil" Catalysts 10, no. 7: 791. https://doi.org/10.3390/catal10070791
APA StyleYahaya, M., Ramli, I., Muhamad, E. N., Ishak, N. S., Idris Nda-Umar, U., & Taufiq-Yap, Y. H. (2020). K2O Doped Dolomite as Heterogeneous Catalyst for Fatty Acid Methyl Ester Production from Palm Oil. Catalysts, 10(7), 791. https://doi.org/10.3390/catal10070791