Facile Synthesis of Tin Dioxide Nanoparticles for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Operating Conditions for the Preparation of SnO2
2.2. Characterization of Photocatalyst
2.3. Effect of the Operation Conditions on Photocatalytic Efficiency
2.4. Optimization and Interactions of Photocatalysis Process
2.5. Photocatalyst Comparison and Reusability
3. Materials and Method
3.1. Materials
3.2. Preparation of SnO2 by Precipitation
3.3. SnO2 Photocatalyst Characterizations
3.4. Photocatalytic Degradation of CR Dye
3.5. Process Variables and Experimental Design
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, L. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour. Technol. 2008, 99, 2938–2946. [Google Scholar] [CrossRef] [PubMed]
- Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B 2002, 39, 75–90. [Google Scholar] [CrossRef]
- Yu, M.; Wang, J.; Tang, L.; Feng, C.; Liu, H.; Zhang, H.; Peng, B.; Chen, Z.; Xie, Q. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. Water Res. 2020, 175, 115673. [Google Scholar] [CrossRef] [PubMed]
- Obotey-Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Belhouchat, N.; Zaghouane-Boudiaf, H.; Viseras, C. Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl. Clay Sci. 2017, 135, 9–15. [Google Scholar] [CrossRef]
- Debnath, S.; Ballav, N.; Maity, A.; Pillay, K. Competitive adsorption of ternary dye mixture using pine cone powder modified with β-cyclodextrin. J. Mol. Liq. 2017, 225, 679–688. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L. Enhanced treatment of dispersed dye-production wastewater by self-assembled organobentonite in a one-step process with poly-aluminium chloride. Sci. Rep. 2017, 7, 6843. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wu, B.; Jiang, L.; Zhang, X.X.; Ren, H.Q.; Li, M. Comparative analysis of toxicity reduction of wastewater in twelve industrial park wastewater treatment plants based on battery of toxicity assays. Sci. Rep. 2019, 9, 3751. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Y.; Heo, Y.J.; Park, S.J. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. Catalysts 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Nethi, S.K.; Anand, N.A.; Rico-Oller, B.; Rodriguez-Dieguez, A.; Gomez-Ruiz, S.; Patra, C.R. Design, synthesis and characterization of doped-titanium oxide nanomaterials with environmental and angiogenic applications. Sci. Total Environ. 2017, 599, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.; Wang, L.C.; Ma, C.M.; Chou, Y.C. Photocatalytic oxidation of reactive red 22 in aqueous solution using La2Ti2O7 photocatalyst. Water Air Soil Pollut. 2011, 215, 97–103. [Google Scholar] [CrossRef]
- Ma, C.M.; Hong, G.B.; Chen, H.W.; Hang, N.T.; Shen, Y.S. Photooxidation contribution study on the decomposition of azo dyes in aqueous solutions by VUV-based AOPs. Int. J. Photoenergy 2011, 2011, 1–8. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; de-Ridder, D.J.; Zhai, J.; Wei, Y.; Deng, H. Advantages of TiO2/5A composite catalyst for photocatalytic degradation of antibiotic oxytetracycline in aqueous solution: Comparison between TiO2 and TiO2/5A composite system. Chem. Eng. J. 2014, 248, 280–289. [Google Scholar] [CrossRef]
- Ochiai, T.; Nakata, K.; Murakami, T.; Fujishima, A.; Yao, Y.; Tryk, D.A.; Kubota, Y. Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst. Water Res. 2010, 44, 904–910. [Google Scholar] [CrossRef]
- Ma, C.M.; Ku, Y.; Kuo, Y.L.; Chou, Y.C.; Jeng, F.T. Effects of silver on the photocatalytic degradation of gaseous isopropanol. Water Air Soil Pollut. 2009, 197, 313–321. [Google Scholar] [CrossRef]
- Sayed, M.; Shah, L.A.; Khan, J.A.; Shah, N.S.; Nisar, J.; Khan, H.M.; Zhang, P.; Khan, A.R. Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with exposed {001} facets. J. Phys. Chem. A 2016, 120, 9916–9931. [Google Scholar] [CrossRef]
- Mohanta, D.; Ahmaruzzaman, M. Tin oxide nanostructured materials: An overview of recent developments in synthesis, modifications and potential applications. RSC Adv. 2016, 6, 110996–111015. [Google Scholar] [CrossRef]
- Muneer, I.; Farrukh, M.A.; Shaghraf, S.; Khaleeq-Ur-Rahman, M.; Umar, A.A.; Adnan, R. Solvent controlled synthesis of tin oxide nanocatalysts and their applications in photodegradation of environmental hazardous materials. Mater. Sci. Forum 2013, 756, 197–204. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Z.; Zhang, L.; Xie, H. Photodegradation of gas phase benzene by SnO2 nanoparticles by direct hole oxidation mechanism. Catalysts 2020, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Shamaila, S.; Sajjad, A.K.L.; Ryma, N.U.A.; Farooqi, S.A.; Jabeen, N.; Majeed, S.; Farooq, I. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today 2016, 5, 150–199. [Google Scholar] [CrossRef]
- Vatanparast, M.; Taghizadeh, M.T. One-Step hydrothermal synthesis of tin dioxide nanoparticles and its photocatalytic degradation of methylene blue. J. Mater. Sci. Mater. Electron. 2016, 27, 54–63. [Google Scholar] [CrossRef]
- Mani, R.; Vivekanandan, K.; Subiramaniyam, N.P. Photocatalytic activity of different organic dyes by using pure and Fe doped SnO2 nanopowders catalyst under UV light irradiation. J. Mater. Sci. Mater. Electron. 2017, 28, 13846–13852. [Google Scholar] [CrossRef]
- Suligoj, A.; Pavlovic, J.; Arcon, I.; Rajic, N.; Novak Tucar, N. SnO2-containing clinoptilolite as a composite photocatalyst for dyes removal from wastewater under solar light. Catalysts 2020, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Peng, X.-L.; Li, F.; Yao, M.-M. SnO2 composite films for enhanced photocatalytic activities. Catalysts 2018, 8, 453. [Google Scholar] [CrossRef] [Green Version]
- Ali-Baig, A.B.; Rathinam, V.; Palaninathan, J. Fabrication of Zr-doped SnO2 nanoparticles with synergistic influence for improved visible-light photocatalytic action and antibacterial performance. Appl. Water Sci. 2020, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Al-Hamdi, A.M.; Sillanpaa, M.; Dutta, J. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation. J. Alloys Compd. 2015, 618, 366–371. [Google Scholar] [CrossRef]
- Li, P.G.; Lei, M.; Tanga, W.H.; Guoa, X.; Wang, X. Facile route to straight SnO2 nanowires and their optical properties. J. Alloys Compd. 2009, 477, 515–518. [Google Scholar] [CrossRef]
- Song, K.H.; Kang, Y. Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Mater. Lett. 2000, 42, 283–289. [Google Scholar] [CrossRef]
- Jana, S.; Mitra, B.C.; Bera, P.; Sikdar, M.; Mondal, A. Photocatalytic activity of galvanically synthesized nanostructure SnO2 thin films. J. Alloy. Compd. 2014, 602, 42–48. [Google Scholar] [CrossRef]
- Kim, S.P.; Choi, M.Y.; Choi, H.C. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater. Res. Bull. 2016, 74, 85–89. [Google Scholar] [CrossRef]
- Chakraborty, S.; Roy, M.; Saha, R. Cost-Effective synthesis method of facile environment friendly SnO2 nanoparticle for efficient photocatalytic degradation of water contaminating compound. Water Sci. Technol. 2020, 8, 508–517. [Google Scholar] [CrossRef]
- Li, L.; Ma, Q.; Wang, S.; Song, S.; Li, B.; Guo, R.; Cheng, X.; Cheng, Q. Photocatalytic performance and degradation mechanism of aspirin by TiO2 through response surface methodology. Catalysts 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.M.; Cheng, C.L.; Lee, S.C.; Hong, G.B. Antioxidant capacity, insecticidal ability and heat-oxidation stability of tagetes lemmonii leaf extract. Ecotoxicol. Environ. Saf. 2018, 151, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.B.; Wang, Y.K. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology. Appl. Surf. Sci. 2017, 423, 800–809. [Google Scholar] [CrossRef]
- Nair, A.T.; Makwana, A.R.; Ahammed, M.M. The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: A review. Water Sci. Technol. 2014, 69, 464–478. [Google Scholar] [CrossRef]
- Akkaya, G.K.; Erkan, H.S.; Sekman, E.; Top, S.; Karaman, H.; Bilgili, M.S.; Engin, G.O. Modeling and optimizing Fenton and electro-Fenton processes for dairy wastewater treatment using response surface methodology. Int. J. Environ. Sci. Technol. 2019, 16, 2343–2358. [Google Scholar] [CrossRef]
- Al-Hamdi, A.M.; Rinner, U.; Sillanpaa, M. Tin dioxide as a photocatalyst for water treatment: A review. Process. Saf. Environ. Prot. 2017, 107, 190–205. [Google Scholar] [CrossRef]
- Upadhaya, D.; Talinungsang; Kumar, P.; Purkayastha, D.P. Tuning the wettability and photocatalytic efficiency of heterostructure ZnO-SnO2 composite films with annealing temperature. Mater. Sci. Semicond. Process. 2019, 95, 28–34. [Google Scholar] [CrossRef]
- Al-Hamdi, A.M.; Sillanpa, M.; Dutta, J. Intermediate formation during photodegradation of phenol using lanthanum doped tin dioxide nanoparticles. Res. Chem. Intermed. 2016, 42, 3055–3069. [Google Scholar] [CrossRef]
- Cui, Y.H.; Feng, Y.J.; Liu, J.; Ren, N. Comparison of various organic compounds destruction on rare earths doped Ti/Sb-SnO2 electrodes. J. Hazard. Mater. 2012, 239, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Roy, S. Effect of ageing on Sn6O4(OH)4 in aqueous medium—simultaneous production of SnO and SnO2 nanoparticles at room temperature. J. Solgel. Sci. Technol. 2016, 81, 769–773. [Google Scholar] [CrossRef]
- Ibarguen, C.A.; Mosquera, A.; Parra, R.; Castro, M.S.; Rodriguez-Paez, J.E. Synthesis of SnO2 nanoparticles through the controlled precipitation route. Mater. Chem. Phys. 2007, 101, 433–440. [Google Scholar] [CrossRef]
- Moreno, M.S.; Punte, G.; Rigotti, G.; Mercader, R.C.; Weisz, A.D.; Blesa, M.A. Kinetic study of the disproportionation of tin monoxide. Solid State Ion. 2001, 144, 81–86. [Google Scholar] [CrossRef]
- Sinha, A.K.; Pradhan, M.; Sarkar, S.; Pal, T. Large-Scale solid-state synthesis of Sn−SnO2 nanoparticles from layered SnO by sunlight: A material for dye degradation in water by photocatalytic reaction. Environ. Sci. Technol. 2013, 47, 2339–2345. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Ahmaruzzaman, M.; Devi, T.B.; Nath, J. Photodegradation of methyl violet 6B and methylene blue using tin-oxide nanoparticles (synthesized via a green route). J. Photochem. Photobiol. A 2016, 325, 116–124. [Google Scholar] [CrossRef]
- Ilka, M.; Bera, S.; Kwon, S.H. Influence of Surface Defects and Size on Photochemical Properties of SnO2 Nanoparticles. Materials 2018, 11, 904. [Google Scholar] [CrossRef] [Green Version]
- Nejati, K. Synthesis by precipitation method and investigation of SnO2 nanoparticles. Cryst. Res. Technol. 2012, 47, 567–572. [Google Scholar] [CrossRef]
- Santos, S.C.R.; Oliveira, A.F.M.; Boaventura, R.A.R. Bentonitic clay as adsorbent for the decolourisation of dyehouse effluents. J. Clean. Prod. 2016, 126, 667–676. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991, 58, 2924–2926. [Google Scholar] [CrossRef] [Green Version]
- Rai, R.C.; Guminiak, M.; Wilser, S.; Cai, B.; Nakarmi, M.L. Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition. J. Appl. Phys. 2012, 111, 073511. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, A.; Ouyang, G.; Yang, G. Band gap tunability in semiconductor nanocrystals by strain: Size and temperature effect. J. Phys. Chem. C 2011, 115, 6462–6466. [Google Scholar] [CrossRef]
- Mourabet, M.; Rhilassi, A.E.; Boujaady, H.E.; Bennani-Ziatni, M.; Hamri, R.E.; Taitai, A. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. J. Saudi Chem. Soc. 2015, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Fakhri, A. Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles. J. Saudi Chem. Soc. 2014, 18, 340–347. [Google Scholar] [CrossRef]
- Cao, R.; Fan, M.; Hu, J.; Ruan, W.; Xiong, K.; Wei, X. Optimizing low-concentration mercury removal from aqueous solutions by reduced graphene oxide-supported Fe3O4 composites with the aid of an artificial neural network and genetic algorithm. Materials 2017, 10, 1279. [Google Scholar] [CrossRef] [Green Version]
- Pham, V.T.; TNguyen, H.-T.; Thi Cam Nguyen, D.; TN Le, H.; Thi Nguyen, T.; Thi Hong Le, N.; Lim, K.T.; Duy Nguyen, T.; Tran, T.V.; Bach, L.G. Process optimization by a response surface methodology for adsorption of congo red dye onto exfoliated graphite-decorated MnFe2O4 nanocomposite: The pivotal role of surface chemistry. Processes 2019, 7, 305. [Google Scholar] [CrossRef] [Green Version]
- Sadeghzadeh-Attar, A. Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Sol. Energy Mater. Sol. Cells 2018, 183, 16–27. [Google Scholar] [CrossRef]
- Viet, P.V.; Thi, C.M.; Hieu, L.V. The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal method. J. Nanomater. 2016, 2016, 1–8. [Google Scholar]
- Nasir, Z.; Shakir, M.; Wahab, R.; Shoeb, M.; Alam, P.; Khan, R.H.; Mobin, M.; Lutfullah. Co-Precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. Int. J. Biol. Macromol. 2017, 94, 554–565. [Google Scholar] [CrossRef]
- Osuntokun, J.; Onwudiwe, D.C.; Ebenso, E.E. Biosynthesis and photocatalytic properties of SnO2 nanoparticles prepared using aqueous extract of cauliflower. J. Clust. Sci. 2017, 28, 1883–1896. [Google Scholar] [CrossRef]
- Nuray Guy, N.; Çakar, S.; Ozacar, M. Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation. J. Colloid Interface Sci. 2016, 466, 128–137. [Google Scholar]
- Rupa, E.J.; Kaliraj, L.; Abid, S.; Yang, D.C.; Jung, S.K. Synthesis of a zinc oxide nanoflower photocatalyst from sea buckthorn fruit for degradation of industrial dyes in wastewater treatment. Nanomaterials 2019, 9, 1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials | BET Surface Area (m2/g) | Average Pore Volume (cm3/g) | Pore Size (Å) |
---|---|---|---|
Un-calcined (Sn6O4(OH)4) | 27.967 | 0.043 | 611 |
600 °C | 19.718 | 0.029 | 597 |
700 °C | 14.353 | 0.018 | 514 |
Run | Independent Variables | Responses | ||
---|---|---|---|---|
X1: Time (min) | X2: Temperature (°C) | X3: Dosage (mg/L) | Dye Degradation Rate (%) | |
1 | 82.5 (0) | 45 (0) | 550 (0) | 77.94 |
2 | 82.5 (0) | 45 (0) | 550 (0) | 88.29 |
3 | 150 (1) | 30 (−1) | 550 (0) | 93.97 |
4 | 82.5 (0) | 30 (−1) | 100 (−1) | 50.35 |
5 | 15 (−1) | 30 (−1) | 550 (0) | 19.97 |
6 | 82.5 (0) | 45 (0) | 550 (0) | 79.31 |
7 | 82.5 (0) | 60 (1) | 100 (−1) | 81.52 |
8 | 82.5 (0) | 45 (0) | 550 (0) | 85.39 |
9 | 15 (−1) | 45 (0) | 100 (−1) | 14.60 |
10 | 82.5 (0) | 60 (1) | 1000 (1) | 100 |
11 | 82.5 (0) | 30 (−1) | 1000 (1) | 80.03 |
12 | 150 (1) | 45 (0) | 1000 (1) | 100.00 |
13 | 82.5 (0) | 45 (0) | 550 (0) | 79.40 |
14 | 150 (1) | 45 (0) | 100 (−1) | 90.71 |
15 | 150 (1) | 60 (1) | 550 (0) | 100.00 |
16 | 15 (−1) | 60 (1) | 550 (0) | 31.4 |
17 | 15 (−1) | 45 (0) | 1000 (1) | 30.2 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 5.91 | 9 | 0.66 | 143.84 | <0.0001 | significant |
A | 4.10 | 1 | 4.10 | 898.83 | <0.0001 | significant |
B | 0.19 | 1 | 0.19 | 40.84 | 0.0004 | significant |
C | 0.28 | 1 | 0.28 | 61.13 | 0.0001 | significant |
A–B | 0.038 | 1 | 0.038 | 8.42 | 0.0229 | significant |
A–C | 0.100 | 1 | 0.100 | 21.81 | 0.0023 | significant |
B–C | 0.017 | 1 | 0.017 | 3.68 | 0.0966 | not significant |
A2 | 1.13 | 1 | 1.13 | 246.98 | <0.0001 | significant |
B2 | 3.179 × 10−4 | 1 | 3.179 × 10−4 | 0.070 | 0.7994 | not significant |
C2 | 0.033 | 1 | 0.033 | 7.17 | 0.0316 | significant |
Residual | 0.032 | 7 | 4.563 × 10−3 | - | - | - |
Lack of Fit | 0.020 | 3 | 6.702 × 10−3 | 2.27 | 0.2229 | not significant |
Catalyst | Prepared Method | Dye | Concentration (mg/L) | Reaction Time (min) | Degradation Rate (%) | Reference |
---|---|---|---|---|---|---|
SnO2 | Liquid phase deposition | MB | 10 | 180 | 51–82 | [57] |
SnO2 | Hydrothermal | MB | 10 | 120 | 90 | [58] |
SnO2 | Co-precipitation | MB | 25 | 60 | 60 | [59] |
SnO2 | Biosynthesis | MB | 80 | 180 | 88–91 | [60] |
SnO2 | Precipitation | MB | 10 | 180 | 80 | [31] |
ZnO | Microwave-hydrothermal | CR | 160 | 180 | 43 | [61] |
ZnO | Green synthesis | CR | 15 | 80 | 99 | [62] |
SnO2 | Precipitation | CR | 750 | 97 | 100 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.M.; Hong, G.B.; Lee, S.C. Facile Synthesis of Tin Dioxide Nanoparticles for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution. Catalysts 2020, 10, 792. https://doi.org/10.3390/catal10070792
Ma CM, Hong GB, Lee SC. Facile Synthesis of Tin Dioxide Nanoparticles for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution. Catalysts. 2020; 10(7):792. https://doi.org/10.3390/catal10070792
Chicago/Turabian StyleMa, Chih Ming, Gui Bing Hong, and Shang Chieh Lee. 2020. "Facile Synthesis of Tin Dioxide Nanoparticles for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution" Catalysts 10, no. 7: 792. https://doi.org/10.3390/catal10070792
APA StyleMa, C. M., Hong, G. B., & Lee, S. C. (2020). Facile Synthesis of Tin Dioxide Nanoparticles for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution. Catalysts, 10(7), 792. https://doi.org/10.3390/catal10070792