Hierarchical Ternary Sulfides as Effective Photocatalyst for Hydrogen Generation Through Water Splitting: A Review on the Performance of ZnIn2S4
Abstract
:1. Introduction
2. Crystalline Structures of Sulfide Based Photocatalysts
3. Electronic Structure Beneficial for Water Splitting
4. Photocatalytic Hydrogen Evolution by ZnIn2S4
5. Strategies for Enhancing Photocatalytic Performance
5.1. Heterostructure Formation
5.2. Doping as a Strategy to Enhance Photocatalysis
5.3. Morphology and Porosity
5.4. Role of Sacrificial Agent
6. Compounds with AB2X4 Structure Other than ZnIn2S4
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Ismael, M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Sol Energy 2020, 211, 522–546. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I.; Naterer, G.F. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 2016, 40, 1449–1473. [Google Scholar] [CrossRef]
- Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrog. Energy 2019, 44, 540–577. [Google Scholar] [CrossRef]
- Lui, J.; Chen, W.H.; Tsang, D.C.W.; You, S. A critical review on the principles applications, and challenges of waste to hydrogen technologies. Renew. Sustain. Energy Rev. 2020, 134, 110365. [Google Scholar] [CrossRef]
- Singla, S.; Sharma, S.; Basu, S.; Nagaraj, P.; Kakarla, S.; Reddy, R. graphene/graphitic carbon notride- based ternary nanohybrids: Synthesis methods, properties, and applications for photocatlytic hydrogen production. FlatChem 2020, 24, 100200. [Google Scholar] [CrossRef]
- Gupta, N.M. Factors affecting the efficiency of a water splitting photocatalyst: A perspective. Renew. Sustain. Energy Rev. 2017, 71, 585–601. [Google Scholar] [CrossRef]
- Liang, Z.; Shen, R.; Ng, H.Y.; Zhang, P.; Xiang, Q.; Li, X. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J. Mater. Sci. Technol. 2020, 56, 89–121. [Google Scholar] [CrossRef]
- Tasleem, S.; Tahir, M. Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production. Renew. Sustain. Energy Rev. 2020, 132, 110073. [Google Scholar] [CrossRef]
- Morillo, E.S.; Toledo, N.M.; Luisa, J.; Fierro, G.; Rufino, M.; Yerga, N. Role of the Sulphur Source in the Solvothermal Synthesis of Ag-CdS Photocatalysts: Effects on the Structure and Photoactivity for Hydrogen Production. Hydrogen 2020, 1, 64–89. [Google Scholar] [CrossRef]
- Saleem, Z.; Pervaiz, E.; Yousaf, M.U.; Niazi, M. Two-Dimensional Materials and Composites as Potential Water Splitting Photocatalysts: A Review. Catalysts 2020, 10, 464. [Google Scholar] [CrossRef]
- Martín, S.S.; Rivero, M.J.; Ortiz, I. Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts 2020, 10, 901. [Google Scholar] [CrossRef]
- Wang, S.; Ding, Z.; Chang, X.; Xu, J.; Wang, D.H. Modified Nano-TiO2 Based Composites for Environmental Photocatalytic Applications. Catalysts 2020, 10, 759. [Google Scholar] [CrossRef]
- Lee, S.L.; Chang, C.J. Recent Progress on Metal Sulfide Composite Nanomaterials for Photo Catalytic Hydrogen Production. Catalysts 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Calvo, P.J.; Paineau, E.; Ghazzal, M.N. Metal Chalcogenides Based Heterojunctions and Novel Nanostructures for Photocatalytic Hydrogen Evolution. Catalysts 2020, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Jafari, T.; Moharreri, E.; Amin, A.Z.; Miao, R.; Song, W.; Suib, S.L. Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef]
- Sato, J.; Saito, S.; Nishiyama, H.; Inoue, Y. New Photocatalyst Group for Water Decomposition of RuO2-Loaded p-Block Metal (In, Sn, and Sb) Oxides with d10 Configuration. J. Phys. Chem. B 2001, 105, 6061. [Google Scholar] [CrossRef]
- Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, S.; Nishiyama, H.; Inoue, Y. Photocatalysis for Water Decomposition by RuO2-Dispersed ZnGa2O4 with d10 Configuration. J. Phys. Chem. B 2002, 106, 9048. [Google Scholar] [CrossRef]
- Sato, J.; Saito, S.; Nishiyama, H.; Inoue, Y. Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. I. Influences of Preparation Conditions on Activity. J. Phys. Chem. B 2003, 107, 7965. [Google Scholar] [CrossRef]
- Sato, J.; Kobayashi, H.; Inoue, Y. Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. II. Roles of Geometric and Electronic Structures. J. Phys. Chem. B 2003, 107, 7970. [Google Scholar] [CrossRef]
- Sato, J.; Kobayashi, H.; Ikarashi, K.; Saito, S.; Nishiyama, H.; Inoue, Y. Photocatalytic Activity for Water Decomposition of RuO2-Dispersed Zn2GeO4 with d10 Configuration. J. Phys. Chem. B 2004, 108, 4369. [Google Scholar] [CrossRef]
- Kadowaki, H.; Saito, N.; Nishiyama, H.; Inoue, Y. RuO2-loaded Sr2+-doped CeO2 with d0 Electronic Configuration as a New Photocatalyst for Overall Water Splitting. Chem. Lett. 2007, 36, 440–441. [Google Scholar] [CrossRef]
- Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations Energy Environ. Science 2009, 2, 364–386. [Google Scholar]
- Chen, Z.; Xing, P.; Chen, P.; Chen, Q.; Wang, Y.; Yu, J.; He, Y. Synthesis of carbon doped KTaO3 and its enhanced performance in photocatalytic H2 generation. Catal. Commun. 2018, 109, 6–9. [Google Scholar] [CrossRef]
- Iwashina, K.; Kudo, A. Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation. J. Am. Chem. Soc. 2011, 133, 13272–13275. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A Review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Pareek, A.; Gopalakrishnan, A.; Borse, P.H. Efficiency and stability aspects of CdS photoanode for solar hydrogen generation technology. J. Phys. Conf. Ser. 2016, 755, 012006. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Peng, S.; Lu, G.; Li, S. Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int. J. Hydrogen Energy 2010, 35, 7116–7126. [Google Scholar] [CrossRef]
- Seo, W.S.; Otsuka, R.; Okuno, H.; Ohta, M.; Koumoto, K. Thermoelectric properties of sintered polycrystalline ZnIn2S4. J. Mater. Res. 1999, 14, 4176–4181. [Google Scholar] [CrossRef]
- Chen, Z.; Li, D.; Zhang, W.; Chen, C.; Li, W.; Sun, M.; He, Y.; Fu, X. Low-Temperature and Template-Free Synthesis of ZnIn2S4Microspheres. Inorg. Chem. 2008, 47, 9766–9772. [Google Scholar] [CrossRef]
- Gou, X.; Cheng, F.; Shi, Y.; Zhang, L.; Peng, S.; Chen, A.J.; Shen, P. Shape-Controlled Synthesis of Ternary Chalcogenide ZnIn2S4 and CuIn(S,Se)2 Nano-/Microstructures via Facile Solution Route. J. Am. Chem. Soc. 2006, 128, 7222–7229. [Google Scholar] [CrossRef]
- Chaudhari, N.S.; Bhirud, A.P.; Sonawane, R.S.; Nikam, L.K.; Warule, S.S.; Rane, V.H.; Kale, B.B. Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst. Green Chem. 2011, 13, 2500–2506. [Google Scholar] [CrossRef]
- Romeo, N.; Dallaturca, A.; Braglia, R.; Sberveglieri, G. Charge storage in ZnIn2S4single crystals. Appl. Phys. Lett. 1973, 22, 21–22. [Google Scholar] [CrossRef]
- Bai, X.; Li, J. Photocatalytic hydrogen generation over porous ZnIn2S4 microspheres synthesized via a CPBr-assisted hy-drothermal method. Mater. Res. Bull. 2011, 46, 1028–1034. [Google Scholar] [CrossRef]
- Yang, M.-Q.; Xu, Y.-J.; Lu, W.; Zeng, K.; Zhu, H.; Xu, Q.-H.; Ho, G.W. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224. [Google Scholar] [CrossRef]
- Zhenyi, Z.; Kuichao, L.; Zhiqing, F.; Yanan, B.; Bin, D. Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 production Based on Photoinduced Interfacial Charge Transfer. Sci Rep. 2016, 6, 19221. [Google Scholar]
- Lin, B.; Li, H.; An, H.; Hao, W.; Wei, J.J.; Dai, Y.; Ma, C.; Yang, G. Preparation of 2D/2D g-C3N4 nanosheet@ ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl. Catal. B 2018, 220, 542–555. [Google Scholar] [CrossRef]
- Tian, F.; Zhu, R.; He, Y.; Ouyang, F. Improving photocatalytic activity for hydrogen evolution over ZnIn2S4 under visi-ble-light: A case study of rare earth modification. Int. J. Hydrog. Energy 2014, 39, 6335–6344. [Google Scholar] [CrossRef]
- Tian, F.; Zhu, R.; Song, K.; Ouyang, F.; Cao, G. The effects of amount of La on the photocatalytic performance of ZnIn2S4 for hydrogen generation under visible light. Int. J. Hydrog. Energy 2015, 40, 2141–2148. [Google Scholar] [CrossRef]
- Pudkon, W.; Bahruji, H.; Miedziak, P.J.; Davies, T.E.; Morgan, D.J.; Pattisson, S.; Kaowphong, S.; Hutchings, G.J. Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. Catal. Sci. Technol. 2020, 10, 2838–2854. [Google Scholar] [CrossRef]
- Bai, X.; Danc, W.C.; Peng, W. Photodecomposition of H2S to H2 over CdxZn1−xS composite photocatalysts. Rare Met. 2009, 28, 2. [Google Scholar] [CrossRef]
- Li, W.; Lin, W.; Yang, G. 2D self-assembled MoS2/ ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale 2017, 9, 18290–18298. [Google Scholar] [CrossRef]
- Zhu, R.; Tian, F.; Che, S.; Cao, G.; Ouyang, F. The photocatalytic performance of modified ZnIn2S4 with graphene and La for hydrogen generation under visible light. Renew. Energy 2017, 113, 1503–1514. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Tu, J.R.; Ye, Z.J.; Chen, D.Q.; Hub, B.; Huang, Y.W. MoS2-graphene/ ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Appl. Catal. B 2016, 188, 13–22. [Google Scholar] [CrossRef]
- Lei, Z.; You, W.; Liu, M.; Zhou, G.; Takata, T.; Hara, M.; Domen, K.; Li, C. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem. Commun. 2003, 2142–2143. [Google Scholar] [CrossRef]
- Chai, B.; Peng, T.; Zeng, P.; Zhang, X.; Liu, X. Template-Free Hydrothermal Synthesis of ZnIn2S4 Floriated Microsphere as an Efficient Photocatalyst for H2 Production under Visible-Light Irradiation. J. Phys. Chem. C 2011, 115, 6149–6155. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, L.; Guo, L. Cetyltrimethylammoniumbromide (CTAB) assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible light drivenphotocatalyst for hydrogen production. Int. J. Hydrog. Energy 2008, 33, 4500–4510. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, L.; Guo, L. Crystallite, optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Mater. Res. Bull. 2009, 44, 100–105. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, L.; Guan, X.; Guo, L. Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4: A case study of alkaline-earth metal doping. J. Phys. Chem. Solids 2012, 73, 79–83. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, L.; Guo, L. Morphology, structure and photocatalytic performance of ZnIn2S4 synthesized via a sol-vothermal/hydrothermal route in different solvents. J. Phys. Chem. Solids 2008, 69, 2426–2432. [Google Scholar] [CrossRef]
- Shen, S.; Guo, P.; Zhao, L.; Yuanchang, D.; Liejin, G. Insights into photoluminescence property and photocatalytic ac-tivity of cubic and rhombohedral ZnIn2S4. J. Solid State Chem. 2011, 184, 2250–2256. [Google Scholar] [CrossRef]
- Chai, B.; Peng, T.; Zeng, P.; Zhang, X. Preparation of a MWCNTs/ ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation. Dalton Trans. 2012, 41, 1179. [Google Scholar] [CrossRef]
- Fan, W.J.; Zhou, Z.F.; Xu, W.B.; Shi, Z.F.; Ren, F.M.; Ma, H.H.; Huang, S.W. Preparation of ZnIn2S4/fluoropolymer fiber composites and its photocatalytic H2 evolution from splitting of water using Xe lamp irradiation. Int. J. Hydrog. Energy 2010, 35, 6525–6530. [Google Scholar] [CrossRef]
- Shen, S.; Chen, X.; Ren, F.; Kronawitter, C.X.; Mao, S.S.; Guo, L. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides. Nanoscale Res. Lett. 2011, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Zhao, L.; Zhou, Z.; Guo, L. Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped ZnIn2S4 under Visible Light Irradiation. J. Phys. Chem. C 2008, 112, 16148–16155. [Google Scholar] [CrossRef]
- Jing, D.; Liu, M.; Guo, L. Enhanced Hydrogen Production from Water over Ni Doped ZnIn2S4 Microsphere Photocatalysts. Catal. Lett. 2010, 140, 167–171. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Yao, L.; Deng, L.; Bowen, C. Recent advances in metal sulfides: From controlled fabrication to elec-trocatalytic photocatalytic and photoelectrochemical water splitting and beyond. Chem.Soc. Rev. 2019, 48, 4178–4280. [Google Scholar] [CrossRef]
- Rohrer, G.S. Structure and Bonding in Crystalline Materials; Amsterdam University Press: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Vaughan, D.J.; Corkhill, C.L. Mineralogy of Sulfides. Elements 2017, 13, 81–87. [Google Scholar] [CrossRef]
- Hauck, J.; Mika, K. Ordering of Metal Atoms in Wurtzite and Sphalerite Structures. J. Solid State Chem. 1998, 138, 334–341. [Google Scholar] [CrossRef]
- Pakiari, A.H.; Jamshidi, Z. Nature and Strength of M−S Bonds (M = Au, Ag, and Cu) in Binary Alloy Gold Clusters. J. Phys. Chem. A 2010, 114, 9212–9221. [Google Scholar] [CrossRef]
- Yina, X.; Sheng, P.; Zhong, F.; Van Nguyen, M.; Cai, Q.; Grimes, C. CdS/ZnIn2S4/TiO2 3D-Heterostructures and Their Photoelectrochemical Properties. New J. Chem. 2016, 40, 6675–6685. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, X.; Jiang, L.; Yu, H.; Zhang, J.; Wang, H.; Guan, R.; Guangming, Z. Recent advances in synthesis, modi-fication and photocatalytic application of micro/nano-structured zinc indium sulfide. Chem. Eng. J. 2018, 354, 407–431. [Google Scholar]
- Chen, J.; Xin, F.; Yin, X.; Xiang, T.; Wang, Y. Synthesis of hexagonal and cubic ZnIn2S4 nanosheets for the photocatalytic reduction of CO2 with methanol. RSC Adv. 2015, 5, 3833. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Shawky, A.; Aljahdali, M.S. Palladium/zinc indium sulfide microspheres: Enhanced photo-catalysts prepare methanol under visible light conditions. J. Taiwan Inst. Chem. Eng. 2016, 65, 498–504. [Google Scholar] [CrossRef]
- Chen, J.; Xin, F.; Niu, H.; Mao, C.J.; Song, J.M. Photocatalytic reduction of CO2 with methanol over Bi2S- ZnIn2S4 nano-composites. Mat. Lett. 2017, 198, 1–3. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Tang, H.M.; Gao, S.-P. Density Functional Theory Study of ZnIn2S4 and CdIn2S4 Polymorphs Using Full-Potential Linearized Augmented Plane Wave Method and Modified Becke—Johnson Potential. Phys. Status Solidi B 2020, 257, 1900485. [Google Scholar] [CrossRef]
- Janani, R.; Priyanga, G.; Behara, S.; Melwin, A.A.; Shaheer, A.; Thomas, T.; Neppolian, B.; Singh, S. Enhanced solar light driven hydrogen generation and environment remediation through Nd incorporated ZnIn2S4. Renew. Energy 2020, 162, 2031–2040. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Chauhan, M.; Soni, K.; Karthik, P.E.; Reddy, K.P.; Gopinath, C.S.; Deka, S. Promising visible-light driven hydrogen production from water on a highly efficient CuCo2S4 nanosheet photocatalyst. J. Mater. Chem. A 2019, 7, 6985–6994. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Ma, J.; Liu, Z.; Li, Y. A bimetallic sulfide CuCo2S4 with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 552, 17–26. [Google Scholar] [CrossRef]
- Kumaravel, V.; Imam, M.D.; Badreldin, A.; Chava, R.K.; Do, J.Y.; Kang, M.; Wahab, A.A. Photocatalytic hydrogen pro-duction: Role of sacrificial agents on the activity of oxide, carbon, and sulfide catalysts. Catalysts 2019, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Guo, L. Metal sulfide semiconductor for photocatalytic hydrogen production. Catal. Sci. Technol. 2013, 3, 1672–1690. [Google Scholar] [CrossRef]
- Ding, J.; Sun, S.; Yan, W.; Bao, J.; Gao, C. Photocatalytic H2 evolution on a novel CaIn2S4 photocatalyst under visible light irradiation. Int. J. Hydrog. Energy 2013, 30, 13153–13158. [Google Scholar] [CrossRef]
- Kale, B.B.; Baeg, J.-O.; Kong, K.-J.; Moon, S.-J.; Nikam, L.K.; Patil, K.R. Self assembled CdLa2S4 hexagon flowers, nanoprisms and nanowires: Novel photocatalysts for solar hydrogen production. J. Mater. Chem. 2011, 21, 2624–2631. [Google Scholar] [CrossRef]
- Chen, W.; He, Z.-C.; Huang, G.-B.; Wu, C.-L.; Chen, W.-F.; Liu, X.-H. Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution. Chem. Eng. J. 2019, 359, 244–253. [Google Scholar] [CrossRef]
- Liang, H.; Feng, T.; Tan, S.; Zhao, K.; Wang, W.; Dong, B.; Cao, L. Two-dimensional (2D) MnIn2Se4 nanosheets with porous structure: A novel photocatalyst for water splitting without sacrificial agents. Chem. Commun. 2019, 55, 15061–15064. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Xu, Y.; Xie, M.; Liu, J.; Deng, J.; Huang, L.; Xu, H.; Li, H. Three dimensional polyaniline/MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production. Chem. Eng. J. 2019, 360, 1601–1612. [Google Scholar] [CrossRef]
- Jiang, D.; Li, J.; Xing, C.; Zhang, Z.; Meng, S.; Chen, M. Two-Dimensional CaIn2S4/g-C3N4 Heterojunction Nanocomposite with Enhanced Visible-Light Photocatalytic Activities: Interfacial Engineering and Mechanism Insight. ACS Appl. Mater. Interfaces 2015, 34, 19234–19242. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yang, C.; Wang, Z.; Jiao, S.; Zhu, H. Hydrothermal synthesis of CdS/CdLa2S4 heterostructures for efficient visi-ble-light driven photocatalytic hydrogen production. RSC Adv. 2012, 2, 10330–10336. [Google Scholar] [CrossRef]
- Kale, B.B.; Baeg, J.O.; Lee, S.M.; Chang, H.; Moon, S.J.; Lee, C.W. CdIn2S4 Nanotubes and “Marigold” Nanostruc-tures: A Visible-Light Photocatalyst. Adv. Funct. Mater. 2006, 16, 1349–1354. [Google Scholar] [CrossRef]
- Yuan, P.Y.; Cao, W.S.; Yin, S.L.; Xu, L.; Xue, C. NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photo-catalytic hydrogen generation under visible light irradiation. Int. J. Hydrog. Energ. 2013, 38, 7218–7223. [Google Scholar] [CrossRef]
No. | Photocatalyst | Synthesis Method | Morphology | Co-Catalyst Used | Light Source | Sacrificial Agent | Catalyst Mass Used (g) | Yield (μmol h−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1. | ZnIn2S4 | CPBr assisted Hydrothermal | Flower like microspheres | - | 250 W Hg lamp | Na2SO3/Na2S | 0.1 | 1544.8 (μmol g−1 h−1) | [34] |
2. | ZnIn2S4/MoSe2 | Electrostatic self-assembly | Uniform sheet like structure | - | 300 W Xe lamp | Lactic acid | 0.005 | 6454 | [35] |
3. | ZnIn2S4/g-C3N4 | Hydrothermal | Hierarchical sheets | 300 W Xe lamp | Triethanolamine | 0.005 | 14.1 | [36] | |
4. | g-C3N4/ZnIn2S4 | Hydrothermal | Micron-sized bulk morphology with sheets | - | 300 W Xe lamp | Triethanolamine | 0.05 | 2780 | [37] |
5. | 2 wt% Y-ZnIn2S4 | Hydrothermal | Microflowers with irregular opening | - | 350 W Xe lamp | Na2SO3/Na2S | 0.2 | 155.9 | [38] |
6. | 2 wt% Gd-ZnIn2S4 | Hydrothermal | Rose like micro-clusters | - | 350 W Xe lamp | Na2SO3/Na2S | 0.2 | 163.1 | [38] |
7. | 2 wt% Er-ZnIn2S4 | Hydrothermal | Microflowers and sheets of smaller width | - | 350 W Xe lamp | Na2SO3/Na2S | 0.2 | 173.1 | [38] |
8. | 2 wt% Ce-ZnIn2S4 | Hydrothermal | Microflowers and sheets of smaller width | - | 350 W Xe lamp | Na2SO3/Na2S | 0.2 | 181.7 | [38] |
9. | 2 wt% La-ZnIn2S4 | Hydrothermal | Completely developed microflower | - | 350 W Xe lamp | Na2SO3/Na2S | 0.2 | 219.5 | [38] |
10. | 1wt%La-ZnIn2S4 | Hydrothermal | Self-organised microflowers | - | 350 W Xe lamp | Na2SO3/Na2S | 0.2 | 583.4 (μmol g−1 h−1) | [39] |
11. | ZnIn2S4-MoS2 | Microwave synthesis | Flower-like microflowers | - | 150 W Xe lamp | Na2SO3/Na2S | 0.1 | 111.6 (μmol g−1 h−1) | [40] |
12. | CdxIn2S4-Zn1-xIn2S4 | Hydrothermal | Particle | - | 500 W Xe lamp | Na2SO3/Na2S | 0.2 | 590 (μmol g−1 h−1) | [41] |
13. | ZnIn2S4-MoS2 | Wet Chemical method | Flake like structure | - | 300 W Xe lamp | Triethanolamine | 0.025 | 8898 (μmol g−1 h−1) | [42] |
14. | 1wt%La1%rGO-ZnIn2S4 | Hydrothermal | Hollow spheres loaded with sheets | - | 350 W Xe lam | Na2SO3/Na2S | 0.2 | 2255 (μmol g−1 h−1) | [43] |
15. | MoS2/graphene/ZnIn2S4 | Hydrothermal | Flower like microstructure | - | 300 W Xe lamp | Na2SO3/Na2S | 0.05 | 4169 | [44] |
16. | ZnIn2S4 | Hydrothermal | - | Pt | 300 W Xe lamp | Na2SO3/Na2S | 0.3 | 257 (μmol g−1 h−1) | [45] |
17. | ZnIn2S4 | Hydrothermal | Flower, nanoplates nanostrips | - | 300 W Xe lamp | KOH(photodecomposition of H2S) | 0.5 | 5287 (μmol g−1 h−1) | [32] |
18. | ZnIn2S4 | Hydrothermal | Floriated microspheres | Pt | 300 W Xe lamp | Na2SO3/Na2S | 0.1 | 8420 (μmol g−1 h−1) | [46] |
19 | ZnIn2S4 | CTAB assisted Hydrothermal | Microspheres with petals | Pt | 300 W Xe lamp | Na2SO3/Na2S | 0.2 | 62.25 (μmol g−1 h−1) | [47] |
20. | ZnIn2S4 | Surfactant assisted Hydrothermal | Microspheres with petals | Pt | 300 W Xe lamp | Na2SO3/Na2S | 0.2 | 692 (μmol g−1 h−1) | [48] |
21. | ZnIn2S4 | microwave assisted Hydrothermal | Microclusters | Pt | 300 W Xe lamp | Na2SO3/Na2S | 0.1 | 69.2 | [49] |
22. | ZnIn2S4 | Solvothermal | Flowering cherry sphere like structure | Pt | 300 W Xe lamp | Na2SO3/Na2S | 0.2 | 136.5 (μmol g−1 h−1) | [50] |
23. | ZnIn2S4 | Thermal Sulfidation | Irregular lumps in micro scalar size | Pt | 300 W Xe lamp | Na2SO3/Na2S | 0.2 | ~55 (μmol g−1 h−1) | [51] |
24. | ZnIn2S4/MWCNT | Hydrothermal | Floriated microspheres | - | 300 W Xe lamp | Na2SO3/Na2S | 0.1 | 6840 (μmol g−1 h−1) | [52] |
25. | ZnIn2S4/Fluoropolymer | Solvothermal/polymerisation | Particles and flowers | - | 350 W Xe lamp | Na2SO3/Na2S | 1.02 | ~398 (μmol g−1 h−1) | [53] |
26. | ZnIn2S4/Transition metal loaded | CTAB assisted hydrothermal | Microspheres | Pt | 300 W Solar simulator | Na2SO3/Na2S | 0.05 | 4000 (μmol g−1 h−1) | [54] |
27. | Cu-ZnIn2S4 | Hydrothermal | Microsphere with petals/sheets | Pt | 300 W Xe lamp | Na2SO3/Na2S | 0.2 | 757.5 (μmol g−1 h−1) | [55] |
28. | Ni-ZnIn2S4 | Hydrothermal | Microsphere with petals/sheets | Pt | 350 W Xe lamp | Na2SO3/Na2S | 0.2 | ~45 (μmol g−1 h−1) | [56] |
29. | ZnS-ZnIn2S4 | Solvothermal | Microspheres | Pt | 400 W metal halide lamp | Glucose | 0.1 | 103 (μmol g−1 h−1) | [28] |
S. No. | Photocatalys | Synthesis Method | Morphology | Co-Catalyst Used | Light Source | Sacrificial Agent | Catalyst Mass Used (g) | Yield (μmol h−1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
1. | CaIn2S4 | Hydrothermal | Irregular grains | - | 300 W Xe lamp | - | 0.05 | 30.92 (μmol g−1 h−1) | 30.92 (μmol g−1 h−1) | [74] |
2. | CdLa2S4 | Hydrothermal | Nanoprism and nanowires | - | 450 W Xe lamp | Methanol | 00.01 | 2252 | [75] | |
3. | MnIn2S4/gC3N4 | Hydrothermal | Nanoflakes | - | 300 W Xe lamp | Na2SO3/Na2S | 0.03 | 200.8 (μmol g−1 h−1) | [76] | |
4. | MnIn2Se4 | Hydrothermal | Nanosheets | CoSeO3 | 300 W Xe lamp | Na2SO3/Na2S | - | 319 (μmol g−1 h−1) | [77] | |
5. | MgIn2S4/polyaniline | Solvothermal | Flower like microsphere with nanosheets | - | 300 W Xe lamp | - | - | 17.53 (μmol g−1 h−1) | [78] | |
6. | g-C3N4/CaIn2S4 | Hydrothermal | Thin and irregular nanosheets with wrinkles | - | 300 W Xe lamp | Na2SO3/Na2S | 0.05 | 102 | [79] | |
7. | 1wt%CdS-CdLa2S4 | Solvothermal | Submicrosphere consisting of nanoprism | - | 300 W Xe lamp | Na2SO3/Na2S | 0.2 | 500 | [80] | |
8. | 3wt%CdS-CdLa2S4 | Solvothermal | Submicrosphere consisting of nanoprism | - | 300 W Xe lam | Na2SO3/Na2S | 0.2 | 2280 | [80] | |
9. | 5wt%CdS-CdLa2S4 | Solvothermal | Submicrosphere consisting of nanoprism | - | 300 W Xe lam | Na2SO3/Na2S | 0.2 | 1420 | [80] | |
10. | CdIn2S4 | Hydrothermal | Microsphere with nanopetals and nanotubes | - | 450 W Xe lamp | KOH (photodecomposition of H2S) | 0.5 | 6960 (μmol g−1 h−1) | [81] | |
11. | CdIn2S4 | Surfactant assisted hydrothermal | Microsphere with nanopetals | - | 300 W Xe lamp | KOH (photodecomposition of H2S) | 0.5 | 6476 (μmol g−1 h−1) | [81] | |
12. | CuCo2S4 | Hydrothermal | 2D nanosheet like morphology | - | 250 W Mercury lamp | Na2SO3/Na2S | 0.06 | 25900 (μmol g−1 h−1) | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janani, R.; Preethi V, R.; Singh, S.; Rani, A.; Chang, C.-T. Hierarchical Ternary Sulfides as Effective Photocatalyst for Hydrogen Generation Through Water Splitting: A Review on the Performance of ZnIn2S4. Catalysts 2021, 11, 277. https://doi.org/10.3390/catal11020277
Janani R, Preethi V R, Singh S, Rani A, Chang C-T. Hierarchical Ternary Sulfides as Effective Photocatalyst for Hydrogen Generation Through Water Splitting: A Review on the Performance of ZnIn2S4. Catalysts. 2021; 11(2):277. https://doi.org/10.3390/catal11020277
Chicago/Turabian StyleJanani, Ravichandran, Raja Preethi V, Shubra Singh, Aishwarya Rani, and Chang-Tang Chang. 2021. "Hierarchical Ternary Sulfides as Effective Photocatalyst for Hydrogen Generation Through Water Splitting: A Review on the Performance of ZnIn2S4" Catalysts 11, no. 2: 277. https://doi.org/10.3390/catal11020277
APA StyleJanani, R., Preethi V, R., Singh, S., Rani, A., & Chang, C. -T. (2021). Hierarchical Ternary Sulfides as Effective Photocatalyst for Hydrogen Generation Through Water Splitting: A Review on the Performance of ZnIn2S4. Catalysts, 11(2), 277. https://doi.org/10.3390/catal11020277