Study of Curing Characteristics of Cellulose Nanofiber-Filled Epoxy Nanocomposites
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Raw Materials
3.2. Extraction of Cellulose Nanofiber (CNF)
3.3. Processing of CNF-Filled Epoxy Nanocomposites
3.4. Characterisation
3.5. Testing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Valentino, O.; Melanie, M.; George, P.S.; Landi, G.; Neitzert, H.-C. The effect of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE nanocomposites. Polym. Eng. Sci. 2017, 57, 665–673. [Google Scholar]
- Fei, H.; Wenjian, Z.; Armin, T.R.; Nieh, M.P.; Cornelius, C.J. SiO2-TiO2-PBC nanocomposite film morphology, solvent swelling, estimated parameter, and liquid transport. Polymer 2017, 123, 247–257. [Google Scholar]
- He, H.; Li, K.; Wang, J.; Sun, G.; Li, Y.; Wang, J. Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater. Des. 2011, 32, 4521–4527. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, Y.; Li, M.; Shen, Y.; Nan, C.-W. Characterization of mesoporous silica nanoparticle composites at low filler content. J. Compos. Mater. 2016, 50, 715–722. [Google Scholar] [CrossRef]
- Velmurugan, R.; Mohan, T.P. Epoxy–Clay Nanocomposites and Hybrids: Synthesis and Characterization. J. Reinf. Plast. Compos. 2009, 28, 17–37. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.; Chi, M.; Hu, W.; Zhang, N.; He, W. Porous polymer-titanium dioxide/copper composite with improved photocatalytic activity toward degradation of organic pollutants in wastewater: Fabrication and characterization as well as photocatalytic activity evaluation. Catalysts 2020, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- Giuseppina, L.; Claudio, I.; Giuseppe, V. Photosensitive hybrid nanostructured materials: The big challenges for sunlight capture. Catalysts 2020, 10, 103. [Google Scholar]
- Kargarzadeh, H.; Huang, N.; Lin, I.; Ahmad, M.; Mariano, A.; Dufresne, A.; Thomas, S.; Galeski, A. Recent developments in nanocellulose-based biodgradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci. 2018, 87, 197–227. [Google Scholar] [CrossRef]
- Punyanich, I.; Aroon, K.; Kavichat, K. The potential of chicken eggshell waste as a bio-filler filled epoxidized natural rubber (ENR) composite and its properties. J. Polym. Environ. 2013, 21, 245–258. [Google Scholar]
- Munlika, B.; Kaewta, K. Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydr. Polym. 2013, 97, 315–320. [Google Scholar]
- Gallo, E.; Schartel, B.; Acierno, D.; Cimino, F.; Russo, P. Tailoring the flame retardant and mechanical performances of natural fibre-reinforced biopolymer by multi-component laminate. Compos. B Eng. 2013, 44, 112–119. [Google Scholar] [CrossRef]
- Zuhri, M.Y.M.; Guan, Z.W.; Cantwell, W.J. The mechanical properties of natural fibre based honeycomb core materials. Compos. B Eng. 2014, 58, 1–9. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Suchart, S.; Jyotishkumar, P.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar]
- Engin, S.; Hasan, C.; Hakan, D. Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos. B Eng. 2019, 167, 461–466. [Google Scholar]
- Mohamadreza, N.; Dilara, S.; Pierre, J.C.; Kamal, M.R.; Heuzey, M.-C. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar]
- Jin, F.-L.; Hu, R.-R.; Park, S.J. Improvement of thermal behaviors of biodegradable poly (lactic acid) polymer: A review. Compos. B Eng. 2019, 164, 287–295. [Google Scholar] [CrossRef]
- Nguyen, M.A.; Wyatt, H.; Susser, L.; Geoffrion, M.; Rasheed, A.; Duchez, A.-C.; Cottee, M.L.; Afolayan, E.; Farah, E.; Kahiel, Z.; et al. Delievery of microRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano 2019, 13, 6491–6505. [Google Scholar] [CrossRef]
- Nooshin, V.; Farhad, G.; Behjat, T.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids. Surf. B 2019, 177, 25–32. [Google Scholar]
- Monika, Y.; Priynshi, G.; Kunwar, P.; Kumar, M.; Pareek, N.; Vivekanand, V. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess. 2019, 6, 8. [Google Scholar]
- Mondher, H.; Abderrahim, E.M.; Zouhaier, J.; Akrout, A.; Haddar, M. Static and fatigue characterization of flax fiber reinforced thermoplastic composites by acoustic emission. Appl. Acoust. 2019, 147, 100–110. [Google Scholar]
- Amy, L.; William, P.; Shannon, B.; Frantz, D.; Burholder, J.; Kiziltas, A.; Mielewski, D. Heat-treated blue agave fiber composites. Compos. B Eng. 2019, 165, 712–724. [Google Scholar]
- Dang, C.-Y.; Shen, X.-J.; Nie, H.-J.; Yang, S.; Shen, J.-X.; Yang, X.-H.; Fu, S.-Y. Enchanced interlaminar shear strength of ramie fiber/polypropylene composites by optimal combination of graphene oxide size and content. Compos. B Eng. 2019, 168, 448–495. [Google Scholar] [CrossRef]
- Abraham, E.; Thomas, M.S.; John, C.; Pothan, L.A.; Shoseyov, O.; Thomas, S.; Smith, R.H. Green nanocomposites of natural rubber/nanocellulose: Membrane transport, rheological and thermal degradation characterisations. Ind. Crop. Prod. 2013, 51, 415–424. [Google Scholar] [CrossRef]
- Codispoti, R.; Oliveira, D.V.; Olivito, R.S.; Paulo, B.L.; Fangueiro, R. Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. Compos. B Eng. 2015, 77, 74–83. [Google Scholar] [CrossRef]
- Mohan, T.P.; Kanny, K. Nanoclay infused banana fiber and its effects on mechanical and thermal properties of composites. J. Compos. Mater. 2016, 50, 261–276. [Google Scholar] [CrossRef]
- Roni, M.d.S.; Wilson, P.F.N.; Hudson, A.S.; Dantas, N.O.; Neto, W.P.F. Cellulose nanocrystals from pineapple leaf, a new approach for thereuse of this agro-waste. Ind. Crop. Prod. 2013, 50, 707–714. [Google Scholar]
- Ligia, M.M.C.; Gabriel, M.d.O.; Bibin, M.C.; Leao, A.L.; de Souza, S.F.; Ferreira, M. Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Ind. Crop. Prod. 2013, 41, 198–202. [Google Scholar]
- Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, L.; Liu, Y. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym. 2012, 90, 1609–1613. [Google Scholar] [CrossRef]
- Erika, M.; Riccardo, R.; Marco, A.O.; Simone, G.B.; Luciano, P. Comparison of cellulose nanocrystals obtained by sulphuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 2016, 23, 779–793. [Google Scholar]
- Fleur, R.; Mohamed, N.B.; Alessandro, G.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar]
- Maiju, H.; Kristiina, O. Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersion. Compos. Part A Appl. Sci. Manuf. 2018, 109, 538–545. [Google Scholar]
- Xu, K.; Liu, C.; Kang, K.; Zheng, Z.; Wang, S.; Tang, Z.; Yang, W. Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility. Compos. Sci. Technol. 2018, 154, 8–17. [Google Scholar] [CrossRef]
- Goeun, S.; Yanqing, L.; van de Ven, T. Transparent composite films prepared from chemically modified cellulose fibers. Cellulose 2016, 23, 2011–2024. [Google Scholar]
- Sinke, H.O.; Christina, D.; Sven, F.; Andres, B.; Engstrand, P.; Norgren, S.; Engström, A.-C. Nanofibrillated cellulose/nanographite composite films. Cellulose 2016, 23, 2487–2500. [Google Scholar]
- Saba, N.; Ahmad, S.; Sanyang, M.L.; Andres, B. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromol. 2017, 102, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Ziaullah, K.; Yousif, B.F.; Mainul, I. Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos. B Eng. 2017, 116, 186–199. [Google Scholar]
- Zheng, N.; Huang, Y.; Liu, H.-Y.; Gao, J.; Mai, Y.W. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves. Compos. Sci. Technol. 2017, 140, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Sifiso, P.N.; Krishnan, K. Extraction of hemicellulose and lignin from sugarcane bagasse for biopolymer films: Green process. J. Adv. Mater. Process. 2018, 6, 57–65. [Google Scholar]
- Heloisa, T.; Franciele, M.P.; Florencia, C.M. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT Food Sci. Technol. 2014, 59, 1311–1318. [Google Scholar]
- Alemdar, A.; Sain, M. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Technol. 2008, 68, 557–565. [Google Scholar] [CrossRef]
- Patterson, W.A. Infrared absorption bands characteristic of oxirane rings. Anal. Chem. 1954, 26, 823–835. [Google Scholar] [CrossRef]
- Chike, K.E.; Myrick, M.L.; Lyon, R.E.; Angel, S.M. Raman and near infrared studies of an epoxy resin. Appl. Spectrosc. 1993, 47, 1631–1635. [Google Scholar] [CrossRef]
- Ticiane, T.; Luana, A.S.; Simone, M.L.R.; Bica, C.I.D.; Nachtigall, S.M.B. Cellulose nanocrystals from acacia bark–Influence of solvent extraction. Int. J. Biol. Macromol. 2017, 101, 553–561. [Google Scholar]
- Abeer, A.; Amira, E.; Atef, I.; El-Shafei, A.M.; Kamar, M. Extraction of oxidized nanocellulose from date palm (Phoenix Dactylifera, L.) sheath fibers: Influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films. Ind. Crop. Prod. 2018, 124, 155–165. [Google Scholar]
- George, T.M.; Abraham, E.; Jyotishkumar, P.; Maria, H.J.; Pothen, L.A.; Thomas, S. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. Int. J. Biol. Macromol. 2015, 81, 768–777. [Google Scholar]
- Joseph, S.; Sreekala, M.S.; Oommen, Z.; Koshy, P.; Thomas, S. A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 2002, 62, 1857–1868. [Google Scholar] [CrossRef]
Material | Modulus, GPa | Ultimate Tensile Strength, MPa | Elongation at Break, % |
---|---|---|---|
Epoxy (E) | 2.2 | 41.6 | 4.2 |
E + 0.5 wt.% CNF | 2.2 | 42.3 | 3.9 |
E + 1 wt.% CNF | 2.0 | 34.4 | 4.3 |
E + 2 wt.% CNF | 2.4 | 40.6 | 3.5 |
E + 3 wt.% CNF | 2.1 | 45.6 | 5.3 |
E + 5 wt.% CNF | 4.1 | 46.2 | 2.7 |
Material | Mass Loss at 125 °C, % | Mass Loss at 200 °C, % | Mass Gain at 425 °C, % | Mass Gain at 525 °C, % | Onset Decomposition Temperature, °C | Mass Loss at Onset Decomposition, % | Endset Decomposition Temperature, °C | Mass Gain at Endset Decomposition, % |
---|---|---|---|---|---|---|---|---|
CNF | 5.7 | 5.4 | 4.4 | 3.6 | 295 | 12.7 | 380 | 5.8 |
Banana fiber | 8.2 | 8.2 | 26.2 | 22.9 | 255 | 12.8 | 350 | 31.7 |
Epoxy (E) | 7.1 | 10.1 | 20.8 | 19.5 | 260 | 16.1 | 345 | 25.2 |
E + 0.5 wt.% CNF | 9.5 | 13.5 | 19.1 | 17.8 | 270 | 22.8 | 345 | 23.3 |
E + 1 wt.% CNF | 7.7 | 12.4 | 23.0 | 21.8 | 275 | 22.2 | 340 | 28.1 |
E + 2 wt.% CNF | 6.2 | 9.6 | 24.0 | 23.3 | 265 | 16.7 | 340 | 29.5 |
E + 3 wt.% CNF | 6.4 | 8.5 | 17.9 | 16.8 | 270 | 14.8 | 345 | 22.7 |
E + 5 wt.% CNF | 8.4 | 10.6 | 11.5 | 9.8 | 265 | 19.1 | 350 | 16.6 |
Material | Storage Modulus at 25 °C, MPa | Storage Modulus at 80 °C, MPa | Storage Modulus at 100 °C, MPa | Tg, °C | Tan δ Peak |
---|---|---|---|---|---|
Epoxy | 2107 | 11.84 | 7.31 | 70 | 0.765 |
E + 0.5 wt.% CNF | 2424 | 14.51 | 8.91 | 70 | 0.782 |
E + 1 wt.% CNF | 2656 | 15.27 | 9.97 | 68 | 0.766 |
E + 2 wt.% CNF | 2708 | 18.51 | 10.85 | 70 | 0.717 |
E + 3 wt.% CNF | 2323 | 16.56 | 9.47 | 72 | 0.716 |
E + 5 wt.% CNF | 1570 | 12.24 | 6.36 | 72 | 0.698 |
Material | Equilibrium Water Uptake, % |
---|---|
Epoxy (E) | 6.94 |
E + 0.5 wt.% CNF | 6.57 |
E + 1 wt.% CNF | 6.15 |
E + 2 wt.% CNF | 5.78 |
E + 3 wt.% CNF | 5.15 |
E + 5 wt.% CNF | 4.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandurangan, M.T.; Kanny, K. Study of Curing Characteristics of Cellulose Nanofiber-Filled Epoxy Nanocomposites. Catalysts 2020, 10, 831. https://doi.org/10.3390/catal10080831
Pandurangan MT, Kanny K. Study of Curing Characteristics of Cellulose Nanofiber-Filled Epoxy Nanocomposites. Catalysts. 2020; 10(8):831. https://doi.org/10.3390/catal10080831
Chicago/Turabian StylePandurangan, Mohan Turup, and Krishnan Kanny. 2020. "Study of Curing Characteristics of Cellulose Nanofiber-Filled Epoxy Nanocomposites" Catalysts 10, no. 8: 831. https://doi.org/10.3390/catal10080831
APA StylePandurangan, M. T., & Kanny, K. (2020). Study of Curing Characteristics of Cellulose Nanofiber-Filled Epoxy Nanocomposites. Catalysts, 10(8), 831. https://doi.org/10.3390/catal10080831