Rare-Earth Metals-Doped Nickel Aluminate Spinels for Photocatalytic Degradation of Organic Pollutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Morphological Study
2.2. Photocatalytic Activity Study
3. Materials and Methods
3.1. Materials
3.2. Synthetic Procedures
3.2.1. Synthesis of NiAl2O4
3.2.2. Synthesis of Sm, Eu, and Gd-doped NiAl2O4
3.3. Characterization of Photocatalysts
3.4. Photocatalysis Experiments
3.5. Reactive Species Scavenging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ahmadifard, T.; Heydari, R.; Tarrahi, M.J.; Khorramabadi, G.S. Photocatalytic Degradation of Diazinon in Aqueous Solutions Using Immobilized MgO Nanoparticles on Concrete. Int. J. Chem. React. Eng. 2019, 17. [Google Scholar] [CrossRef]
- Regulska, E.; Małgorzata Brus, D.; Karpinska, J. Photocatalytic Decolourization of Direct Yellow 9 on Titanium and Zinc Oxides. Int. J. Photoenergy 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Regulska, E.; Karpinska, J. Investigation of Photocatalytic Activity of C60/TiO2 Nanocomposites Produced by Evaporation Drying Method. Pol. J. Environ. Stud. 2014, 23, 2175–2182. [Google Scholar]
- Sapkota, K.P.; Lee, I.; Hanif, M.; Islam, M.; Hahn, J.R. Solar-Light-Driven Efficient ZnO-Single-Walled Carbon Nanotube Photocatalyst for the Degradation of a Persistent Water Pollutant Organic Dye. Catalysts 2019, 9, 498. [Google Scholar] [CrossRef] [Green Version]
- Regulska, E.; Brus, D.M.; Rodziewicz, P.; Sawicka, S.; Karpinska, J. Photocatalytic degradation of hazardous Food Yellow 13 in TiO2 and ZnO aqueous and river water suspensions. Catal. Today 2015, 72–81. [Google Scholar] [CrossRef]
- Regulska, E.; Rivera-Nazario, D.M.; Karpinska, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Enhanced Photocatalytic Performance of Porphyrin/Phthalocyanine and Bis(4-pyridyl)pyrrolidinofullerene modified Titania. ChemistrySelect 2017, 2, 2462–2470. [Google Scholar] [CrossRef]
- Regulska, E.; Rivera-Nazario, D.; Karpinska, J.; Plonska-Brzezinska, M.; Echegoyen, L. Zinc Porphyrin-Functionalized Fullerenes for the Sensitization of Titania as a Visible-Light Active Photocatalyst: River Waters and Wastewaters Remediation. Molecules 2019, 24, 1118. [Google Scholar] [CrossRef] [Green Version]
- Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ. Chem. Lett. 2019, 17, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Regulska, E.; Karpinska, J. Photocatalytic degradation of olanzapine in aqueous and river waters suspension of titanium dioxide. Appl. Catal. B Environ. 2012, 117, 96–104. [Google Scholar] [CrossRef]
- Regulska, E.; Karpinska, J. Investigation of novel material for effective photodegradation of bezafibrate in aqueous samples. Environ. Sci. Pollut. Res. 2014, 21, 5242–5248. [Google Scholar] [CrossRef] [Green Version]
- Fanourakis, S.K.; Peña-Bahamonde, J.; Bandara, P.C.; Rodrigues, D.F. Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. Npj Clean Water 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Regulska, E.; Breczko, J.; Basa, A. Pristine and Graphene-Quantum-Dots-Decorated Spinel Nickel Aluminate for Water Remediation from Dyes and Toxic Pollutants. Water 2019, 11, 953. [Google Scholar] [CrossRef] [Green Version]
- Suryaman, D.; Hasegawa, K. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water. J. Hazard. Mater. 2010, 183, 490–496. [Google Scholar] [CrossRef]
- Rubio, D.; Casanueva, J.F.; Nebot, E. Improving UV seawater disinfection with immobilized TiO2: Study of the viability of photocatalysis (UV254/TiO2) as seawater disinfection technology. J. Photochem. Photobiol. Chem. 2013, 271, 16–23. [Google Scholar] [CrossRef]
- Van Doorslaer, X.; Dewulf, J.; De Maerschalk, J.; Van Langenhove, H.; Demeestere, K. Heterogeneous photocatalysis of moxifloxacin in hospital effluent: Effect of selected matrix constituents. Chem. Eng. J. 2015, 261, 9–16. [Google Scholar] [CrossRef]
- Kahn, M.L.; Zhang, Z.J. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions. Appl. Phys. Lett. 2001, 78, 3651–3653. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Ateia, E.; El-Dek, S.I. Spectroscopic analysis of ferrite doped with different rare earth elements. Vib. Spectrosc. 2002, 30, 69–75. [Google Scholar] [CrossRef]
- Peng, Z.; Hu, G.; Liu, Y. Influence on performance and structure of spinel LiMn2O4 for lithium-ion batteries by doping rare-earth Sm. J. Cent. South Univ. Technol. 2005, 12, 28–32. [Google Scholar] [CrossRef]
- Foo, S.Y.; Cheng, C.K.; Nguyen, T.-H.; Adesina, A.A. Evaluation of lanthanide-group promoters on Co-Ni/Al2O3 catalysts for CH4 dry reforming. J. Mol. Catal. A Chem. 2011, 344, 28–36. [Google Scholar] [CrossRef]
- Silva, D.; Abreu, A.; Davolos, M.R.; Rosaly, M. Determination of the local site occupancy of Eu3+ ions in ZnAl2O4 nanocrystalline powders. Opt. Mater. 2011, 33, 1226–1233. [Google Scholar] [CrossRef]
- Lucena, M.A.M.; de Sá, G.F.; Rodrigues, M.O.; Alves, S.; Talhavini, M.; Weber, I.T. ZnAl2O4 -based luminescent marker for gunshot residue identification and ammunition traceability. Anal. Methods 2013, 5, 705–709. [Google Scholar] [CrossRef]
- Ferandez-Osorio, A.; Rivera, C.E.; Chavez, J. Europium-Doped ZnAl2O4 Nanophosphors: Structural and Luminescence Properties. Proc. World Congr. New Technol. 2015, 7, 360–365. [Google Scholar]
- Liu, Q.; Wang, L.; Wang, C.; Qu, W.; Tian, Z.; Ma, H.; Wang, D.; Wang, B.; Xu, Z. The effect of lanthanum doping on activity of Zn-Al spinel for transesterification. Appl. Catal. B Environ. 2013, 136, 210–217. [Google Scholar] [CrossRef]
- Rani, G.N.; Ayachit, N.H.; Nath, K.R.; Rao, V.J. Preparation and characterization of Eu3+ doped powder spinel phosphors (MgAl1.8Y0.2-xO4). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 2481–2485. [Google Scholar] [CrossRef]
- Wenisch, C.; Kurland, H.-D.; Grabow, J.; Müller, F.A. Europium(III)-Doped MgAl2O4 Spinel Nanophosphor Prepared by CO2 Laser Co-Vaporization. J. Am. Ceram. Soc. 2016, 99, 2561–2564. [Google Scholar] [CrossRef]
- Boulon, G.; Alombert-Goget, G.; Guyot, Y.; Guzik, M.; Epicier, T.; Blanchard, N.P.; Chen, L.; Hu, L.; Chen, W. Conjugation of TEM-EDX and optical spectroscopy tools for the localization of Yb3+, Er3+ and Co2+ dopants in laser glass ceramics composed of MgAl2O4 spinel nano-crystals embedded in SiO2 glass. J. Mater Chem. C 2014, 2, 9385–9397. [Google Scholar] [CrossRef] [Green Version]
- Gholami, A.; Maddahfar, M. Synthesis and characterization of novel samarium-doped CuAl2O4 and its photocatalytic performance through the modified sol-gel method. J. Mater. Sci. Mater. Electron. 2016, 27, 3341–3346. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Dwivedi, A.; Bahadur, A.; Rai, S.B. Effect of the concentration of the dopants (Er3+, Yb3+ and Zn2+) and temperature on the upconversion emission behavior of Er3+ /Yb3+ co-doped SrAl2O4 phosphor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 185, 155–162. [Google Scholar] [CrossRef]
- Lastovina, T.A.; Bugaev, A.L.; Kubrin, S.P.; Kudryavtsev, E.A.; Soldatov, A.V. Structural studies of magnetic nanoparticles doped with rare-earth elements. J. Struct. Chem. 2016, 57, 1444–1449. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Babar, M.; Qamar, S.; ur Rehman, Z.; Khan, M.A. Structural Rietveld refinement and magnetic features of prosademium (Pr) doped Cu nanocrystalline spinel ferrites. Ceram. Int. 2019, 45, 10187–10195. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Bishay, S.T.; Khafagy, R.M.; Saleh, N.M. Promising wastewater treatment using rare earth-doped nanoferrites. J. Magn. Magn. Mater. 2014, 350, 73–80. [Google Scholar] [CrossRef]
- Chen, A.; Miyao, T.; Higashiyama, K.; Yamashita, H.; Watanabe, M. High Catalytic Performance of Ruthenium-Doped Mesoporous Nickel-Aluminum Oxides for Selective CO Methanation. Angew. Chem. Int. Ed. 2010, 49, 9895–9898. [Google Scholar] [CrossRef] [PubMed]
- Farahani, M.D.; Dasireddy, V.D.B.C.; Friedrich, H.B. Oxidative Dehydrogenation of n-Octane over Niobium-Doped NiAl2O4: An Example of Beneficial Coking in Catalysis over Spinel. ChemCatChem 2018, 10, 2059–2069. [Google Scholar] [CrossRef]
- Akika, F.Z.; Benamira, M.; Lahmar, H.; Tibera, A.; Chabi, R.; Avramova, I.; Suzer, Ş.; Trari, M. Structural and optical properties of Cu-substitution of NiAl2O4 and their photocatalytic activity towards Congo red under solar light irradiation. J. Photochem. Photobiol. Chem. 2018, 364, 542–550. [Google Scholar] [CrossRef]
- Elakkiya, V.; Agarwal, Y.; Sumathi, S. Photocatalytic activity of divalent ion (copper, zinc and magnesium) doped NiAl2O4. Solid State Sci. 2018, 82, 92–98. [Google Scholar] [CrossRef]
- Yu, L.; Song, M.; Williams, P.T.; Wei, Y. Alumina-Supported Spinel NiAl2O4 as a Catalyst for Re-forming Pyrolysis Gas. Ind. Eng. Chem. Res. 2019, 58, 11770–11778. [Google Scholar] [CrossRef]
- Al Samarai, M.; Hahn, A.W.; Beheshti Askari, A.; Cui, Y.-T.; Yamazoe, K.; Miyawaki, J.; Harada, Y.; Rüdiger, O.; DeBeer, S. Elucidation of Structure–Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering. ACS Appl. Mater. Interfaces 2019, 11, 38595–38605. [Google Scholar] [CrossRef] [Green Version]
- Ragupathi, C.; Vijaya, J.J.; Surendhar, P.; Kennedy, L.J. Comparative investigation of nickel aluminate (NiAl2O4) nano and microstructures for the structural, optical and catalytic properties. Polyhedron 2014, 72, 1–7. [Google Scholar] [CrossRef]
- Sebai, I.; Salhi, N.; Rekhila, G.; Trari, M. Visible light induced H2 evolution on the spinel NiAl2O4 prepared by nitrate route. Int. J. Hydrog. Energy 2017, 42, 26652–26658. [Google Scholar] [CrossRef]
- Menon, S.G.; Swart, H.C. Microwave-assisted synthesis of blue-green NiAl2O4 nanoparticle pigments with high near-infrared reflectance for indoor cooling. J. Alloys Compd. 2020, 819, 152991. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Jiménez-González, C.; de Rivas, B.; Gutiérrez-Ortiz, J.I. Partial oxidation of methane to syngas on bulk NiAl2O4 catalyst. Comparison with alumina supported nickel, platinum and rhodium catalysts. Appl. Catal. Gen. 2012, 437, 53–62. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Zhang, Z. Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity. Catal. Sci. Technol. 2019, 9, 3979–3993. [Google Scholar] [CrossRef]
- Villa, K.; Murcia-López, S.; Andreu, T.; Morante, J.R. On the role of WO3 surface hydroxyl groups for the photocatalytic partial oxidation of methane to methanol. Catal. Commun. 2015, 58, 200–203. [Google Scholar] [CrossRef]
- Ooshiro, M.; Kobayashi, T.; Uchida, S. Compact Storage of Radioactive Cesium in Compressed Pellets of Zeolite Polymer Composite Fibers. Materials 2018, 11, 1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, D.-L.; Fan, Y.-J.; Qi, C.-L.; Sun, Z.-X. Facile synthesis of highly thermostable mesoporous ZnAl2O4 with adjustable pore size. J. Mater. Chem. A 2013, 1, 1651–1658. [Google Scholar] [CrossRef]
- Jayasree, S.; Manikandan, A.; Arul Antony, S.; Uduman Mohideen, A.M.; Barathiraja, C. Magneto-Optical and Catalytic Properties of Recyclable Spinel NiAl2O4 Nanostructures Using Facile Combustion Methods. J. Supercond. Nov. Magn. 2016, 29, 253–263. [Google Scholar] [CrossRef]
- Tangcharoen, T.; T-Thienprasert, J.; Kongmark, C. Effect of calcination temperature on structural and optical properties of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. J. Adv. Ceram. 2019, 8, 352–366. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Wiglusz, R.J.; Grzyb, T.; Bednarkiewicz, A.; Lis, S.; Strek, W. Investigation of Structure, Morphology, and Luminescence Properties in Blue-Red Emitter, Europium-Activated ZnAl2O4 Nanospinels. Eur. J. Inorg. Chem. 2012, 2012, 3418–3426. [Google Scholar] [CrossRef]
- Dimitrievska, M.; Ivetić, T.B.; Litvinchuk, A.P.; Fairbrother, A.; Miljević, B.B.; Štrbac, G.R.; Pérez Rodríguez, A.; Lukić-Petrović, S.R. Eu3+-Doped Wide Band Gap Zn2SnO4 Semiconductor Nanoparticles: Structure and Luminescence. J. Phys. Chem. C 2016, 120, 18887–18894. [Google Scholar] [CrossRef]
- Neilsen, G.; Rosen, P.F.; Dickson, M.S.; Popovic, M.; Schliesser, J.; Hansen, L.D.; Navrotsky, A.; Woodfield, B.F. Quantifying oxygen vacancies in neodymium and samarium doped ceria from heat capacity measurements. Acta Mater. 2020, 188, 740–744. [Google Scholar] [CrossRef]
Sample | BET (m2 g−1) | Pore Diameter (nm) (BET) | Pore Volume (cm3 g−1) | Nanoparticle Size (nm) | Transition Energy (eV) | Reference |
---|---|---|---|---|---|---|
NA | 13.9 | 3.9 | 0.013 | 432 | 1.70 | This work |
SmNA | 9.7 | 2.7 | 0.007 | 620 | 0.42 | This work |
EuNA | 11.1 | 7.5 | 0.021 | 541 | 0.39 | This work |
GdNA | 6.9 | 4.8 | 0.008 | 872 | 0.30 | This work |
NiAl2O4 | 6.9 | 15.3 | 0.015 | - | 1.84 | [39] |
NiAl2O4 | 17 | 10.4 | 0.040 | - | - | [33] |
Sample | Scavenger | η (%) | k (min−1) | t1/2 (min) |
---|---|---|---|---|
NA | ‒ | 79 | 0.0136 | 51 |
SmNA | ‒ | 90 | 0.0189 | 37 |
SmNA | AO 1 | 69 | 0.0093 | 75 |
SmNA | DMSO | 65 | 0.0094 | 74 |
SmNA | iPrOH | 53 | 0.0061 | 114 |
EuNA | ‒ | 93 | 0.0220 | 32 |
EuNA | AO 1 | 43 | 0.0046 | 151 |
EuNA | DMSO | 55 | 0.0066 | 105 |
EuNA | iPrOH | 24 | 0.0022 | 315 |
GdNA | ‒ | 89 | 0.0192 | 36 |
GdNA | AO 1 | 75 | 0.0112 | 62 |
GdNA | DMSO | 76 | 0.0114 | 61 |
GdNA | iPrOH | 65 | 0.0088 | 79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regulska, E.; Breczko, J.; Basa, A.; Dubis, A.T. Rare-Earth Metals-Doped Nickel Aluminate Spinels for Photocatalytic Degradation of Organic Pollutants. Catalysts 2020, 10, 1003. https://doi.org/10.3390/catal10091003
Regulska E, Breczko J, Basa A, Dubis AT. Rare-Earth Metals-Doped Nickel Aluminate Spinels for Photocatalytic Degradation of Organic Pollutants. Catalysts. 2020; 10(9):1003. https://doi.org/10.3390/catal10091003
Chicago/Turabian StyleRegulska, Elzbieta, Joanna Breczko, Anna Basa, and Alina Teresa Dubis. 2020. "Rare-Earth Metals-Doped Nickel Aluminate Spinels for Photocatalytic Degradation of Organic Pollutants" Catalysts 10, no. 9: 1003. https://doi.org/10.3390/catal10091003
APA StyleRegulska, E., Breczko, J., Basa, A., & Dubis, A. T. (2020). Rare-Earth Metals-Doped Nickel Aluminate Spinels for Photocatalytic Degradation of Organic Pollutants. Catalysts, 10(9), 1003. https://doi.org/10.3390/catal10091003