Deep Eutectic Solvents as Smart Cosubstrate in Alcohol Dehydrogenase-Catalyzed Reductions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Enzyme Production
3.3. Kinetic Assay
3.4. DES Preparation
3.5. Reduction of Cyclohexanone
3.6. GC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monti, D.; Ottolina, G.; Carrea, G.; Riva, S. Redox Reactions Catalyzed by Isolated Enzymes. Chem. Rev. 2011, 111, 4111–4140. [Google Scholar] [CrossRef]
- Brenna, E. Synthetic Methods for Biologically Active Molecules: Exploring the Potential of Bioreductions; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Faber, K. Biotransformations in Organic Chemistry; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 133–204. [Google Scholar]
- Hollmann, F.; Arends, I.W.C.E.; Holtmann, D. Enzymatic reductions for the chemist. Green Chem. 2011, 13, 2285. [Google Scholar] [CrossRef]
- Younus, H. Oxidoreductases: Overview and Practical Applications. In Biocatalysis; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 39–55. [Google Scholar]
- Kratzer, R.; Woodley, J.M.; Nidetzky, B. Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions. Biotechnol. Adv. 2015, 33, 1641–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisman, G.W.; Liang, J.; Krebber, A. Practical chiral alcohol manufacture using ketoreductases. Curr. Opin. Chem. Boil. 2010, 14, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Weckbecker, A.; Gröger, H.; Hummel, W. Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds. In Biosystems Engineering I; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2010; Volume 120, pp. 195–242. [Google Scholar]
- Chenault, H.K.; Whitesides, G.M. Regeneration of nicotinamide cofactors for use in organic synthesis. Appl. Biochem. Biotechnol. 1987, 14, 147–197. [Google Scholar] [CrossRef]
- Wu, H.; Tian, C.; Song, X.; Liu, C.; Yang, N.; Jiang, Z. Methods for the regeneration of nicotinamide coenzymes. Green Chem. 2013, 15, 1773–1789. [Google Scholar] [CrossRef]
- Hummel, W.; Gröger, H. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. J. Biotechnol. 2014, 191, 22–31. [Google Scholar] [CrossRef]
- Quinto, T.; Köhler, V.; Ward, T.R. Recent Trends in Biomimetic NADH Regeneration. Top. Catal. 2013, 57, 321–331. [Google Scholar] [CrossRef]
- Zachos, I.; Nowak, C.; Sieber, V. Biomimetic cofactors and methods for their recycling. Curr. Opin. Chem. Boil. 2019, 49, 59–66. [Google Scholar] [CrossRef]
- Baer, K.; Kraußer, M.; Burda, E.; Hummel, W.; Berkessel, A.; Gröger, H.; Kraußer, M.; Gröger, H. Sequential and Modular Synthesis of Chiral 1,3-Diols with Two Stereogenic Centers: Access to All Four Stereoisomers by Combination of Organo- and Biocatalysis. Angew. Chem. Int. Ed. 2009, 48, 9355–9358. [Google Scholar] [CrossRef]
- Meerwein, H.; Schmidt, R. Ein neues Verfahren zur Reduktion von Aldehyden und Ketonen. Eur. J. Org. Chem. 1925, 444, 221–238. [Google Scholar] [CrossRef]
- Ponndorf, W. Der reversible Austausch der Oxydationsstufen zwischen Aldehyden oder Ketonen einerseits und primären oder sekundären Alkoholen anderseits. Angew. Chem. 1926, 39, 138–143. [Google Scholar] [CrossRef]
- De Graauw, C.F.; Peters, J.A.; Van Bekkum, H.; Huskens, J. Meerwein-Ponndorf-Verley Reductions and Oppenauer Oxidations: An Integrated Approach. Synthesis 1994, 1994, 1007–1017. [Google Scholar] [CrossRef]
- Ni, Y.; Holtmann, D.; Hollmann, F. How Green is Biocatalysis? To Calculate is To Know. ChemCatChem 2014, 6, 930–943. [Google Scholar] [CrossRef]
- Wang, B.; Land, H.; Berglund, P. ChemInform Abstract: An Efficient Single-Enzymatic Cascade for Asymmetric Synthesis of Chiral Amines Catalyzed by ω-Transaminase. Chem. Commun. 2013, 49, 161–163. [Google Scholar] [CrossRef]
- Kara, S.; Spickermann, D.; Schrittwieser, J.H.; Leggewie, C.; Van Berkel, W.J.; Arends, I.W.C.E.; Hollmann, F. More efficient redox biocatalysis by utilising 1,4-butanediol as a ‘smart cosubstrate’. Green Chem. 2013, 15, 330. [Google Scholar] [CrossRef] [Green Version]
- Pätzold, M.; Siebenhaller, S.; Kara, S.; Liese, A.; Syldatk, C.; Holtmann, D. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol. 2019, 37, 943–959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108. [Google Scholar] [CrossRef] [PubMed]
- Guajardo, N.; Mueller, C.R.; Schrebler, R.; Carlesi, C.; De Maria, P.D. ChemInform Abstract: Deep Eutectic Solvents for Organocatalysis, Biotransformations, and Multistep Organocatalyst/Enzyme Combinations. ChemCatChem 2016, 47, 1020–1027. [Google Scholar] [CrossRef]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramon, D.J. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. Eur. J. Org. Chem. 2016, 2016, 612–632. [Google Scholar] [CrossRef] [Green Version]
- Guajardo, N.; De Maria, P.D.; Ahumada, K.; Schrebler, R.A.; Ramírez-Tagle, R.; Crespo, F.A.; Carlesi, C. Water as Cosolvent: Nonviscous Deep Eutectic Solvents for Efficient Lipase-Catalyzed Esterifications. ChemCatChem 2017, 9, 1393–1396. [Google Scholar] [CrossRef]
- Guajardo, N.; Schrebler, R.A.; De María, P.D. From batch to fed-batch and to continuous packed-bed reactors: Lipase-catalyzed esterifications in low viscous deep-eutectic-solvents with buffer as cosolvent. Bioresour. Technol. 2019, 273, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Guajardo, N.; De María, P.D.; De María, H.P.D. Continuous Biocatalysis in Environmentally-Friendly Media: A Triple Synergy for Future Sustainable Processes. ChemCatChem 2019, 11, 3128–3137. [Google Scholar] [CrossRef]
- Kara, S.; Spickermann, D.; Weckbecker, A.; Leggewie, C.; Arends, I.W.C.E.; Hollmann, F. Bioreductions Catalyzed by an Alcohol Dehydrogenase in Non-aqueous Media. ChemCatChem 2014, 6, 973–976. [Google Scholar] [CrossRef]
- Lavandera, I.; Kern, A.; Resch, V.; Silva, B.F.; Glieder, A.; Fabian, W.M.F.; De Wildeman, S.; Kroutil, W. One-Way Biohydrogen Transfer for Oxidation ofsec-Alcohols. Org. Lett. 2008, 10, 2155–2158. [Google Scholar] [CrossRef]
- Mourelle-Insua, Á.; Lavandera, I.; Gotor-Fernandez, V. A designer natural deep eutectic solvent to recycle the cofactor in alcohol dehydrogenase-catalysed processes. Green Chem. 2019, 21, 2946–2951. [Google Scholar] [CrossRef]
- Irwin, A.J.; Jones, J.B. Asymmetric syntheses via enantiotopically selective horse liver alcohol dehydrogenase catalyzed oxidations of diols containing a prochiral center. J. Am. Chem. Soc. 1977, 99, 556–561. [Google Scholar] [CrossRef]
- Lok, K.P.; Jakovac, I.J.; Jones, J.B. Enzymes in organic synthesis. 34. Preparations of enantiomerically pure exo- and endo-bridged bicyclic [2.2.1] and [2.2.2] chiral lactones via stereospecific horse liver alcohol dehydrogenase catalyzed oxidations of meso diols. J. Am. Chem. Soc. 1985, 107, 2521–2526. [Google Scholar] [CrossRef]
- Jakovac, I.J.; Goodbrand, H.B.; Lok, K.P.; Jones, J.B. Enzymes in organic synthesis. 24. Preparations of enantiomerically pure chiral lactones via stereospecific horse liver alcohol dehydrogenase catalyzed oxidations of monocyclic meso diols. J. Am. Chem. Soc. 1982, 104, 4659–4665. [Google Scholar]
- Kara, S.; Spickermann, D.; Schrittwieser, J.H.; Weckbecker, A.; Leggewie, C.; Arends, I.W.C.E.; Hollmann, F. Access to Lactone Building Blocks via Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactonization. ACS Catal. 2013, 3, 2436–2439. [Google Scholar] [CrossRef]
- Huang, L.; Bittner, J.P.; De María, P.D.; Jakobtorweihen, S.; Kara, S. Modeling Alcohol Dehydrogenase Catalysis in Deep Eutectic Solvent/Water Mixtures. ChemBioChem 2019, 21, 811–817. [Google Scholar] [CrossRef] [PubMed]
- All calibration curves for the substrates and product were conducted in the corresponding DES (80%, v/v) and buffer (20%, v/v), in which the reaction takes place. The sample calibration for DES (ChCl:1,4-BD/1:4) at 80% (v/v) and Tris-buffer at 20% (v/v) is shown in the supplementary information.
- Huang, L.; Romero, E.; Ressmann, A.K.; Rudroff, F.; Hollmann, F.; Fraaije, M.W.; Kara, S. Nicotinamide Adenine Dinucleotide-Dependent Redox-Neutral Convergent Cascade for Lactonizations with Type II Flavin-Containing Monooxygenase. Adv. Synth. Catal. 2017, 359, 2142–2148. [Google Scholar] [CrossRef] [Green Version]
- Klumbys, E.; ZebeC, Z.; Weise, N.J.; Turner, N.J.; Scrutton, N.S. Bio-derived production of cinnamyl alcohol via a three step biocatalytic cascade and metabolic engineering. Green Chem. 2018, 20, 658–663. [Google Scholar] [CrossRef]
- Chamouleau, F.; Hagedorn, C.; May, O.; Gröger, H. Biocatalytic aldehyde reduction using tailor-made whole-cell catalysts: A novel synthesis of the aroma chemical cinnamyl alcohol. Flavour Fragr. J. 2007, 22, 169–172. [Google Scholar] [CrossRef]
- Pennacchio, A.; Rossi, M.; Raia, C.A. Synthesis of Cinnamyl Alcohol from Cinnamaldehyde with Bacillus stearothermophilus Alcohol Dehydrogenase as the Isolated Enzyme and in Recombinant E. coli Cells. Appl. Biochem. Biotechnol. 2013, 170, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, Z.; Leitner, W.; De Maria, P.D. Practical separation of alcohol–ester mixtures using Deep-Eutectic-Solvents. Tetrahedron Lett. 2012, 53, 6968–6971. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanquia, S.N.; Huang, L.; García Liñares, G.; Domínguez de María, P.; Kara, S. Deep Eutectic Solvents as Smart Cosubstrate in Alcohol Dehydrogenase-Catalyzed Reductions. Catalysts 2020, 10, 1013. https://doi.org/10.3390/catal10091013
Chanquia SN, Huang L, García Liñares G, Domínguez de María P, Kara S. Deep Eutectic Solvents as Smart Cosubstrate in Alcohol Dehydrogenase-Catalyzed Reductions. Catalysts. 2020; 10(9):1013. https://doi.org/10.3390/catal10091013
Chicago/Turabian StyleChanquia, Santiago Nahuel, Lei Huang, Guadalupe García Liñares, Pablo Domínguez de María, and Selin Kara. 2020. "Deep Eutectic Solvents as Smart Cosubstrate in Alcohol Dehydrogenase-Catalyzed Reductions" Catalysts 10, no. 9: 1013. https://doi.org/10.3390/catal10091013
APA StyleChanquia, S. N., Huang, L., García Liñares, G., Domínguez de María, P., & Kara, S. (2020). Deep Eutectic Solvents as Smart Cosubstrate in Alcohol Dehydrogenase-Catalyzed Reductions. Catalysts, 10(9), 1013. https://doi.org/10.3390/catal10091013